首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to trigger increased mucosal secretory immune responses against bacterial surface antigens, we constructed an optimized human interleukin (hIL)-6-secreting Salmonella typhimurium strain (X4064(pCH1A+pYL3E)), utilizing the hemolysin (Hly) exporter for secretory delivery of a functional hIL-6-hemolysin fusion protein (hIL-6-HlyA(s)). Through stable introduction of a second hIL-6-HlyA(s) expression plasmid (pYL3E) in the previously described X4064(pCH1A) strain, hIL-6-HlyA(s) secretion efficiencies were increased by at least 10-fold. As pCH1A in the parental strain, pYL3E was stable in vitro in the absence of antibiotic selection and in vivo neither did plasmids interfere in their stabilities. Increased hIL-6-HlyA(s) expression did not adversely interfere with bacterial growth. Comparative immunization experiments in mice with oral application of the different hIL-6-secreting strains revealed that increased in situ hIL-6-production influenced systemic antibody responses against Salmonella antigens but had no marked effect on mucosal responses. In mice immunized with X4064(pCH1A+pYL3E) significantly higher sera IgG and IgA titers for lipopolysaccharide (LPS) were found compared to mice immunized with X4064(pCH1A) and a hIL-6-negative control strain. Higher sera antibody titers were accompanied by increased numbers of IgG- and IgA-specific antibody-secreting cells in spleens and Peyer's patches, respectively. These data suggest that systemic antibody responses against Salmonella LPS are largely effected by IL-6 and, moreover, the amount and the cellular location of recombinantly expressed IL-6 appears to be crucial for enhancement of immune responses.  相似文献   

2.
Human interleukin-6 (hIL-6) cDNA was genetically fused with the Escherichia coli hemolysin secretorial signal ( hlyAS ) sequence in a plasmid vector. Recombinant E. coli XL-1 Blue and attenuated Salmonella typhimurium secreted a 30 kDa hIL-6-HlyAS fusion protein, with an additional form of higher apparent molecular mass produced by S. typhimurium . In S. typhimurium cultures hIL-6-HlyAS concentrations entered a plateau at 500 to 600 ng ml−1 culture supernatant. In contrast to E. coli XL-1 Blue, in S. typhimurium culture supernatants hIL-6-HlyAS was accumulated faster reaching three-fold higher maximal concentrations. The cell proliferating activity of hIL-6-HlyAS fusion protein(s) was equivalent to that of mature recombinant hIL-6. Furthermore, hIL-6-secreting S. typhimurium were less invasive than the attenuated control strain. Therefore, the bulky hemolysin secretorial peptide at the C-terminus of the fusion protein does not markably affect hIL-6 activity, suggesting that the hemolysin secretion apparatus provides an excellent system to study immunomodulatory effects of in situ synthesized IL-6 in Salmonella vaccine strains.  相似文献   

3.
An E. coli vector system was constructed which allows the expression of fusion genes via a l-rhamnose-inducible promotor. The corresponding fusion proteins consist of the maltose-binding protein and a His-tag sequence for affinity purification, the Saccharomyces cerevisiae Smt3 protein for protein processing by proteolytic cleavage and the protein of interest. The Smt3 gene was codon-optimized for expression in E. coli. In a second rhamnose-inducible vector, the S. cerevisiae Ulp1 protease gene for processing Smt3 fusion proteins was fused in the same way to maltose-binding protein and His-tag sequence but without the Smt3 gene. The enhanced green fluorescent protein (eGFP) was used as reporter and protein of interest. Both fusion proteins (MalE-6xHis-Smt3-eGFP and MalE-6xHis-Ulp1) were efficiently produced in E. coli and separately purified by amylose resin. After proteolytic cleavage the products were applied to a Ni-NTA column to remove protease and tags. Pure eGFP protein was obtained in the flow-through of the column in a yield of around 35% of the crude cell extract.  相似文献   

4.
Bovine enterokinase is a serine protease that catalyzes the hydrolysis of peptide bonds and plays a key role in mammalian metabolism. Because of its high specificity towards the amino acid sequence (Asp)4-Lys, enterokinase is a potential tool for the cleavage of fusion proteins, which are gaining more importance in biopharmaceutical production. A candidate for adaptive cancer immunotherapy is mucin 1, which is produced recombinantly as a fusion protein in CHO cells. Here, we present the first repetitive application of immobilized enterokinase for the cleavage of the mucin fusion protein. The immobilization enables a facile biocatalytic process due to simplified separation of the biocatalyst and the target protein. Immobilized enterokinase was applied in a maximum of 18 repetitive reactions. The enzyme utilization (total turnover number) was increased significantly 419-fold compared to unbound enzyme by both immobilization and optimization of process conditions. Slight enzyme inactivation throughout the reaction cycles was observed, but was compensated by adjusting the process time accordingly. Thus, complete fusion protein cleavage was achieved. Furthermore, we obtained isolated mucin 1 with a purity of more than 90% by applying a simple and efficient purification process. The presented results demonstrate enterokinase to be an attractive tool for fusion protein cleavage.  相似文献   

5.
Two immobilisation methods for enterokinase were developed, which yielded high remaining activities for the cleavage of the fusion protein MUC1-IgG Fc. Different carrier materials were compared regarding remaining enzyme activity and storage stability. Immobilisation procedures involving support material activation using glutardialdehyde were found to result in low remaining activities. Applying less aggressive activation procedures, remaining activities of approximately 60% were received when immobilising enterokinase on either Estapor paramagnetic microspheres or hexamethylamino Sepabeads. In case of hexamethylamino Sepabeads we were able to increase the half-life time 4.3-fold at 23 degrees C and 3.8-fold at 4 degrees C compared to the free enzyme at the same temperatures. By immobilising the biocatalyst the downstream process is simplified allowing the easy removal of the enzyme from the reaction mixture. The immobilised enterokinase cleaves the fusion protein MUC1-IgG Fc in at least two repeated batches, proving the efficiency of the immobilisation method and the reusability of the biocatalyst.  相似文献   

6.
O Kagami  S Takada  R Kamiya 《FEBS letters》1990,260(2):179-182
Thrombopoietin (TPO), a regulatory factor in platelet production, was purified from the conditioned medium of TNK-01 cells cultured in the presence of human interleukin-1. The N-terminal sequence of purified TPO was determined to be VPPGEDSKDVAAPHRQPLT, identical to that of the N-terminal region of human interleukin-6 (IL-6). Two forms of TPO with molecular masses of 24 and 27 kDa were identified as IL-6 by Western analysis using an anti-IL-6 antibody. Commercial recombinant human IL-6 produced in Escherichia coli, stimulated megakaryocyte colony formation in the presence of mouse interleukin-3 and increased the number of peripheral platelets in mice in a dose-dependent manner. From these results, it is concluded that human IL-6 has thrombopoietic activity.  相似文献   

7.
Purpose: Albuleukin fusion protein is a recombinant human interleukin-2 (rIL-2) genetically fused to recombinant human serum albumin (rHSA). The pharmacokinetics and pharmacologic activity of Albuleukin were examined in mice to determine whether the fusion protein had the immunomodulatory and anti-tumor properties of rIL-2 as well as a prolonged serum half-life due to the rHSA. Methods: The effect of Albuleukin on lymphocyte proliferation, IL-2 receptor binding, and release of IFN- from human NK cells were examined in vitro. For the pharmacokinetic analysis, Albuleukin and rIL-2 were administered intravenously (i.v.) and subcutaneously (s.c.) to BALB/c mice, both at a single dose of 500 g/kg. The anti-tumor properties of Albuleukin were evaluated in a Renca tumor model in BALB/c mice and in a metastatic liver model of B16F10 melanoma in C57B1/6 mice. In the Renca tumor model, BALB/c mice were dosed intraperitoneally (i.p.) and s.c. with Albuleukin on days 12, 14, 16, 19, 21, and 23 and i.p. with rIL-2 daily for two periods of 5 days (days 10–14 and 17–21). In the B16 melanoma model, C57B1/6 mice were dosed s.c. with rIL-2 twice daily or Albuleukin every 48 h for 14 days. Results: In vitro, Albuleukin induced the proliferation of primary human and mouse T cells and B cells and primary human NK cells, competed with rIL-2 for binding to the IL-2 receptors, and induced the production of IFN- from primary human NK cells. The s.c. bioavailability of Albuleukin was about 45% relative to the i.v. dose. Plasma half-life was prolonged and ranged from 6 to 8 h with Albuleukin, compared to 19–57 min with rIL-2. Total clearance of Albuleukin was about 50-fold slower than that of rIL-2 after i.v. dosing. In vivo, Albuleukin suppressed the growth of Renca tumors and induced a dense infiltration of CD4+ and CD8+ T cells. Both Albuleukin and rIL-2 significantly reduced the tumor burden in mice with hepatic B16F10 metastases. Albuleukin significantly reduced the incidence of residual macroscopic hepatic tumors, resulting in improved survival relative to controls and rIL-2. Conclusion: Results from these studies suggest that the therapeutic efficacy of rIL-2 is improved in mice by prolonging its in vivo half-life through genetic fusion to albumin. Albuleukin, the fusion protein, had pronounced anti-tumor effects in Renca and hepatic melanoma tumor models without an increase in mortality. On the basis of its preclinical effects, Albuleukin was brought to the clinic to assess its therapeutic benefit in a variety of cancers.  相似文献   

8.
9.
Glucose-dependent insulinotropic polypeptide (GIP) is a forty-two amino acid hormone that stimulates the secretion of insulin from the pancreatic B-cells in the presence of elevated glucose concentrations. The human GIP gene with the human A-fibrinopeptide sequence was synthesized and linked to the Staphylococcus aureus protein A gene in the vector pRIT2T. This plasmid was expressed in Escherichia coli, and the resulting fusion protein consisted of three domains: protein A for ease of purification, fibrinopeptide sequence for thrombin cleavage and human GIP. The GIP was subsequently cleaved from the fusion protein with -thrombin. The identity of the recombinant human GIP was confirmed by SDS-PAGE, ELISA, HPLC and amino-terminal amino acid sequence analysis. This recombinant product was shown to have comparable insulinotropic activity to porcine GIP in the isolated perfused pancreas.  相似文献   

10.
Abstract The secreted yield of hen egg-white lysozyme (HEWL) from the filamentous fungus Aspergillus niger was increased 10–20-fold by constructing a novel gene fusion. The cDNA sequence encoding mature HEWL was fused in frame to part of the native A. niger gene encoding glucoamylase ( gla A), separated by a proteolytic cleavage site for in vivo processing. Using this construct, peak secreted HEWL yields of 1 g/l were obtained in A. niger shake flask cultures compared to about 50 mg/l when using an expression cassette lacking any gla A coding sequence. The portion of gla A used in the gene fusion encoded the first 498 amino acids of glucoamylase (G498) and comprised its secretion signal, the catalytic domain and most of the O-glycosylated linker region which, in the entire glucoamylase molecule, spatially separates and links the catalytic and starch-binding domains.  相似文献   

11.
《Process Biochemistry》2014,49(9):1527-1532
Herein we describe the kinetic characterization of a fusion protein from the 3-ketoacyl-[acyl-carrier-protein]-reductase (KR) from Synechococcus PCC 7942 and a mutant formate dehydrogenase from Mycobacterium vaccae N10 (MycFDH). Upon purification, a specific proteolytic cleavage of the MycFDH was observed. The cleavage site was elucidated, which is ubiquitously spread among prokaryotic FDHs. After depletion of the cleavage site the correct, full length fusion protein was obtained. In asymmetric reductions of ethylbenzoyl acetate (EBA) this fusion protein performed equal or even better than the free enzymes, yielding up to 39% more of the fluoxetine precursor ethyl-(S)-3-hydroxy-3-phenylpropanoate ((S)-HPPE). The rate acceleration is due to an improved Km,EBA of the KR subunit.  相似文献   

12.
In contrast to the general protein secretion (Sec) system, the twin-arginine translocation (Tat) export pathway allows the translocation of proteins across the bacterial plasma membrane in a fully folded conformation. Due to this feature, the Tat pathway provides an attractive alternative to the secretory production of heterologous proteins via the Sec system. In this study, the potential for Tat-dependent heterologous protein secretion was compared in the three Gram-positive bacteria Staphylococcus carnosus, Bacillus subtilis, and Corynebacterium glutamicum using green fluorescent protein (GFP) as a model protein. In all three microorganisms, fusion of a Tat signal peptide to GFP resulted in its Tat-dependent translocation across the corresponding cytoplasmic membranes. However, striking differences with respect to the final localization and folding status of the exported GFP were observed. In S. carnosus, GFP was trapped entirely in the cell wall and not released into the supernatant. In B. subtilis, GFP was secreted into the supernatant, however, in an inactive form. In contrast, C. glutamicum effectively secreted active GFP. Our results clearly demonstrate that a comparative evaluation of different Gram-positive host microorganisms is a crucial step on the way to an efficient Tat-mediated secretory production process for a desired heterologous target protein. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper is dedicated to Hermann Sahm on the occasion of his 65th birthday.  相似文献   

13.
Live attenuated Salmonella strains have been extensively explored as oral delivery systems for recombinant vaccine antigens and effector proteins with immunoadjuvant and immunomodulatory potential. The feasibility of this approach was demonstrated in human vaccination trials for various antigens. However, immunization efficiencies with live vaccines are generally significantly lower compared to those monitored in parenteral immunizations with the same vaccine antigen. This is, at least partly, due to the lack of secretory expression systems, enabling large-scale extracellular delivery of vaccine and effector proteins by these strains. Because of their low complexity and the terminal location of the secretion signal in the secreted protein, Type I (ATP-binding cassette) secretion systems appear to be particularly suited for development of such recombinant extracellular expression systems. So far, the Escherichia coli hemolysin system is the only Type I secretion system, which has been adapted to recombinant protein secretion in Salmonella. However, this system has a number of disadvantages, including low secretion capacity, complex genetic regulation, and structural restriction to the secreted protein, which eventually hinder high-level in vivo delivery of recombinant vaccines and effector proteins. Thus, the development of more efficient recombinant protein secretion systems, based on Type I exporters can help to improve efficacies of live recombinant Salmonella vaccines. Type I secretion systems, mediating secretion of bacterial surface layer proteins, such as RsaA in Caulobacter crescentus, are discussed as promising candidates for improved secretory delivery systems.  相似文献   

14.
15.
Integration of lymphocyte-activating cytokines (e.g., interleukin-12: IL-12) to tumor cells offers promise for cancer immunotherapy, but the preparation of such heterodimeric proteins by refolding is difficult because of subunit instability. We achieved the refolding of Escherichia coli-expressed human IL-12 by a stepwise dialysis method, preventing the formation of insoluble aggregates by adding a redox reagent and an aggregation suppressor. We also constructed a tumor-specific IL-12 protein, each subunit of which was fused with one chain of variable domain fragment (Fv) of anticarcinoembryonic antigen (CEA) antibody T84.66 (aCEA-IL12). Fusion of IL-12 with Fv greatly increased the yield of functional heterodimer. Several assays have indicated that the Fv domain and IL-12 domain of the fused protein had cognate biological activities, and it enhanced the cytotoxicity of T-LAK cells for the cancer cell line.  相似文献   

16.
Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion.  相似文献   

17.
选择适宜的信号肽是实现外源蛋白高效分泌表达的一个重要因素。本研究利用生物信息学方法分析信号肽与外源蛋白之间的相容程度,将其定义为结构融合度,并从数学角度分析拼接信号肽与目的蛋白邻近残基之间的相互作用,提出了信号肽拼接区域与目标蛋白之间的数学模型,利用该模型进行结构融合度特征提取,以此来表征外源蛋白质的可分泌性。模拟结果显示结构融合度特征能有效区分枯草芽孢杆菌宿主的可分泌和不可分泌蛋白。研究结果有助于信号肽的选择,对目的蛋白分泌表达的优化具有一定的指导意义。  相似文献   

18.
Summary The activity of lymphokine-activated killer (LAK) cells is supported by various cytokines. The objective of this study was to see if recombinant interleukin-6 (IL-6) either alone or in combination with interleukin-2 (IL-2) has any effect on the generation of LAK cells. Peripheral blood mononuclear cells of healthy donors were cultured for 4 or 6 days with both cytokines either alone or in combination. LAK activity against K562 and natural killer-resistant Daudi cells was assessed by a 4-h and an 18-h51Cr-release assay at various effector to target ratios. IL-6 alone in increasing concentrations did not induce LAK cell activity. Neither additive nor synergistic effects of IL-6 with IL-2 were observed. Immunofluorescence analysis with phycoerythrin-conjugated anti-CD56 antibody demonstrated that IL-6 could not maintain or increase the number of CD56-positive cells over a 6-day culture period. These results suggest that IL-6 does not support LAK cell generation by itself or increase LAK cell activity in combination with IL-2.  相似文献   

19.
Cardiotrophin-1 induces interleukin-6 synthesis in human monocytes   总被引:2,自引:0,他引:2  
  相似文献   

20.
王萍  董俊芳  邹清华 《微生物学通报》2018,45(11):2529-2536
【背景】沙门氏菌是一种重要的人畜共患病原菌,可引起广泛的胃肠炎以及伤寒、副伤寒,其致病机制一直未被阐明。基因敲除技术在研究沙门氏菌致病性方面发挥了重要作用,然而目前的敲除技术仍存在费时、成功率低的问题。研究发现鼠伤寒沙门氏菌含有VI型分泌系统,其组成成分之一溶血素共调节蛋白(Hemolysin-coregulated protein,Hcp)可能在其致病过程中发挥了重要作用。【目的】拟通过对3个编码Hcp蛋白的基因进行敲除,在鼠伤寒沙门氏菌中建立一套方便快捷的重组系统,从而用于沙门氏菌致病性的研究。【方法】以pKD4为模板,扩增两端带有目的基因同源序列的卡那霉素抗性基因片段,将片段导入含重组酶系统的目的菌,重组后再导入质粒pCP20消除抗性基因片段,达到无痕敲除的效果。【结果】对3个单独的hcp基因及其组合进行了敲除,得到了所需的基因缺失株,并总结出了一些实验过程中可能遇到的问题的解决方案。【结论】Red重组系统可用于鼠伤寒沙门菌的基因敲除,通过优化同源片段的长度、PCR模板浓度、L-阿拉伯糖加入时间、实验过程中的温度等实验条件,提高Red重组系统在沙门氏菌中的重组效率。此方法简单、快速,重组效率高,值得推广。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号