首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of PAF on the plasma membrane polarity of polymorphonuclear leukocytes (PMNs) was investigated by measuring the steady-state fluorescence emission spectra of 2-dimethylamino(6-1auroyl) naphthalene (Laurdan), which is known to be incorporated at the hydrophobic-hydrophilic interface of the bilayer, displaying spectral sensitivity to the polarity of its surrounding. Laurdan shows a marked steady-state emission blue-shift in non-polar solvents, with respect to polar solvents. Our results demonstrate that PAF (10(-7) M) induces a blue shift of the fluorescence emission spectra of Laurdan. These changes are blocked in the presence of the PAF antagonist, L-659,989. Our data indicate that the interaction between PAF and PMNs is accompanied by a decrease in polarity in the hydrophobic-hydrophilic interface of the plasma membrane.  相似文献   

2.
Plasma membrane fluidity of platelets (PLT) obtained from subjects with primary nocturnal enuresis (PNE) and healthy controls was investigated before and after addition of desmopressin (DDAVP). Membrane fluidity was studied by measuring steadystate fluorescence anisotropy of 1-(4-trimethylammoniumphenyl)-6-phenyl-1, 3, 5-hexatriene incorporated into PLT plasma membrane. Our results show an increase in membrane fluidity at the surface level of PLT from subjects with PNE. Moreover, the addition of DDAVP induces a stable and significant decrease of membrane fluidity in both groups. These results suggest alterations of the lipid order in the exterior part of the PLT plasma membrane from patients with PNE.  相似文献   

3.
The effect of cetirizine on plasma membrane fluidity and heterogeneity of human eosinophils, neutrophils, platelets and lymphocytes was investigated using a fluorescence technique. Membrane fluidity and heterogeneity were studied by measuring the steady-state fluorescence anisotropy and fluorescence decay of 1-(4- trimethylammonium-phenyl)-6-phenyl-1, 3, 5-hexatriene (TMA-DPH) incorporated in the membrane. The results demonstrate that cetirizine (1 mug/ml) induced a significant increase in the Hpid order in the exterior part of the membrane and a decrease in membrane heterogeneity in eosinophils, neutrophils and platelets. Moreover, cetirizine blocked the PAF induced changes in membrane fluidity in these cells. Cetirizine did not influence significantly the plasma membrane of lymphocytes. These data may partially explain the effect ofcetirizine on inflammatory cell activities.  相似文献   

4.
Alterations in membrane fluidity of diabetic polymorphonuclear leukocytes.   总被引:2,自引:0,他引:2  
Plasma membrane fluidity of polymorphonuclear leukocytes was investigated in 28 patients with insulin dependent diabetes mellitus and 30 healthy controls. Membrane fluidity was measured by steady-state fluorescence anisotropy of 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) incorporated into the plasma membrane. The fluorescence anisotropy values in resting (unstimulated) polymorphonuclear leukocytes from diabetic subjects were significantly higher than those of controls (0.318 +/- 0.003 vs 0.287 +/- 0.003, P less than 0.001). The addition of the respiratory burst stimulus phorbol myristate acetate induced a stable increase in fluorescence anisotropy values in both groups. Fluorescence anisotropy values of stimulated polymorphonuclear leukocytes from the diabetic and control groups were not significantly different (P greater than 0.05). These data demonstrate a decrease in plasma membrane fluidity of resting polymorphonuclear leukocytes obtained from diabetic subjects. This finding could be in part explained by an increase in their basal respiratory burst activity.  相似文献   

5.
Laurdan is a fluorescent probe that detects changes in membrane phase properties through its sensitivity to the polarity of its environment in the bilayer. Variations in membrane water content cause shifts in the laurdan emission spectrum, which are quantified by calculating the generalized polarization (GP). We tested whether laurdan fluorescence could be used to distinguish differences in phospholipid order from changes in membrane fluidity by examining the temperature dependence of laurdan GP and fluorescence anisotropy in dipalmitoylphosphatidylcholine (DPPC) vesicles. The phase transition from the solid ordered phase to the liquid disordered phase was observed as a decrease in laurdan GP values from 0.7 to −0.14 and a reduction in anisotropy from 0.25 to 0.12. Inclusion of various amounts of cholesterol in the membranes to generate a liquid ordered phase caused an increase in the apparent melting temperature detected by laurdan GP. In contrast, cholesterol decreased the apparent melting temperature estimated from anisotropy measurements. Based on these results, it appeared that laurdan anisotropy detected changes in membrane fluidity while laurdan GP sensed changes in phospholipid order. Thus, the same fluorescent probe can be used to distinguish effects of perturbations on membrane order and fluidity by comparing the results of fluorescence emission and anisotropy measurements.  相似文献   

6.
The hydration properties of the interface between lipid bilayers and bulk water are important for determining membrane characteristics. Here, the emission properties of a solvent-sensitive fluorescence probe, 6-lauroyl-2-dimethylamino naphthalene (Laurdan), were evaluated in lipid bilayer systems composed of the sphingolipids D-erythro-N-palmitoyl-sphingosylphosphorylcholine (PSM) and D-erythro-N-palmitoyl-dihydrosphingomyelin (DHPSM). The glycerophospholipids 1-palmitoyl-2-palmitoyl-sn-glycero-3-phosphocholine and 1-oleoyl-2-oleoyl-sn-glycero-3-phosphocholine were used as controls. The fluorescence properties of Laurdan in sphingolipid bilayers indicated multiple excited states according to the results obtained from the emission spectra, fluorescence anisotropy, and the center-of-mass spectra during the decay time. Deconvolution of the Laurdan emission spectra into four components based on the solvent model enabled us to identify the varieties of hydration and the configurational states derived from intermolecular hydrogen bonding in sphingolipids. Sphingolipids showed specific, interfacial hydration properties stemming from their intra- and intermolecular hydrogen bonds. Particularly, the Laurdan in DHPSM revealed more hydrated properties compared to PSM, even though DHPSM has a higher Tm than PSM. Because DHPSM forms hydrogen bonds with water molecules (in 2NH configurational functional groups), the interfacial region of the DHPSM bilayer was expected to be in a highly polar environment. The careful analysis of Laurdan emission spectra through the four-component deconvolution in this study provides important insights for understanding the multiple polarity in the lipid membrane.  相似文献   

7.
Membrane fluidity of erythrocytes obtained from 15 children with trisomy 21 and 20 healthy controls were studied by measuring steady-state fluorescence anisotropy and fluorescence lifetime of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) incorporated in hemoglobin-free erythrocyte membranes. Our results demonstrate a significant decrease in DPH fluorescence anisotropy and a significant increase in TMA-DPH fluorescence anistropy in erythrocytes from subjects with trisomy 21. No significant differences between the two groups were observed in the fluorescence lifetime of DPH and TMA-DPH. These data suggest an increase in membrane fluidity in the interior part of the membrane and a decrease in fluidity at the lipid-water interface region. This could be in part attributed to an increased oxidative damage in trisomy 21.  相似文献   

8.
M. Rost  E. Karge  W. Klinger 《Luminescence》1998,13(6):355-363
Evidence is provided that the amplifiers luminol and lucigenin react with different reactive oxygen species (ROS), depending on the ROS-generating system used. H2O2 is used to produce calibration curves for luminol- and lucigenin-amplified chemiluminescence. With this chemiluminescence generator we characterized the specificity and sensitivity of luminol- and lucigenin-amplified chemiluminescence and also studied penicillin G, a known enhancer of luminol-amplified chemiluminescence. The combination of luminol and lucigenin in reciprocally changing concentrations is effective in an additive manner, but the weak amplifier penicillin increases luminol-amplified chemiluminescence distinctly more than in an additive manner in different combinations. Lucigenin-amplified chemiluminescence is increased by penicillin at about 1% of the optimum concentration of penicillin; increasing concentrations of penicillin are less and less effective. On the other hand, low lucigenin concentrations enhance penicillin-amplified chemiluminescence at optimum penicillin concentrations more than in an additive manner. Fe2+ does not alter luminol-, lucigenin- or penicillin-amplified chemiluminescence. Co2+ increases luminol-amplified chemiluminescence by a factor of 100. Lucigenin- and penicillin-amplified chemiluminescence are minimally enhanced by Co2+. Cu2+ enhances luminol-amplified chemiluminescence with increasing concentrations by a factor of 1000. Lucigenin-amplified chemiluminescence increases also by the factor of 1000, but the concentration–reaction curve is not as steep. NaOCl enhances H2O2/Fe2+-driven luminol-amplified chemiluminescence in a concentration-dependent manner by a factor of 104 (in the highest concentration of 10 mmol/L) and lucigenin amplified chemiluminescence only by a factor of about 25. Catalase (CAT) abolishes luminol-, lucigenin- and penicillin-amplified chemiluminescence completely, whereas superoxide dismutase (SOD) has no effect on luminol- or penicillin-amplified chemiluminescence, but enhances lucigenin-amplified chemiluminescence five-fold increasingly with increasing SOD activity. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Alcoholic patients and experimental animals exposed to ethanol display biochemical signs of oxidative damage, suggesting a possible role of free radicals in causing some of the toxic effects of alcohol. The ester derivative, ethyl pyruvate (EP) is stable in solution and should function as an antioxidant and energy precursor. In the present study, the effect of ethanol intake on plasma membrane fluidity, lipid oxidation and antioxidant enzyme activities (GPx, CAT and SOD) were first evaluated. Secondly, the consequences of ethyl pyruvate treatment on the physico-chemical properties of erythrocyte plasma membranes were investigated. The results obtained demonstrate that ethanol induces an increase in lipid peroxidation, a reduction of GPx activity and fluidity in the hydrophilic-hydrophobic region of the bilayer, moreover an increase of fluidity in hydrophobic part of the plasma membrane was measured. When rats were treated with ethyl pyruvate a partially protective effect can be observed for the hydrophilic-hydrophobic region tested by Laurdan, while EP cannot restore the DPH anisotropy values to the control values. In summary, our data indicate that treatment with EP can only partially reduce ethanol plasma membrane perturbation. Since this study shows an ethyl pyruvate dose-dependent effect, it is important to consider the amount of EP required to maintain the right level of membrane fluidity and polarity. These results could be interesting in order to investigate if EP, due to its radical scavenging effect, can prevent oxidative damage induced by ethanol intake and can protect against injure related with ethanol intake.  相似文献   

10.
We have used 6-dodecanoil-2-dimethylaminonaphtalene (Laurdan) to study the membrane fluidity of Vesicular Stomatitis Virus (VSV) during virus activation at acidic pH 5.8). The fluorescence properties of Laurdan provide a unique possibility to study lipid organization because of the different excitation and emission spectra of this probe in the gel and liquid crystalline phase. Acidification to pH 5.8 (the pH which triggers VSV fusion with target membranes) generates a decrease in VSV membrane fluidity that could be reversed perfectly after neutralization. We conclude that lipid reorganization of the VSV membrane in the endocytic vesicles is needed for virus activation.  相似文献   

11.
In the present study, the in vitro effect of polyphenol rich plant extract, flavonoid--Pycnogenol (Pyc), on erythrocyte membrane fluidity was studied. Membrane fluidity was determined using 1-[4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), 1,6-diphenyl-1,3,5-hexatriene (DPH) and 12-(9-anthroyloxy) stearic acid (12-AS) fluorescence anisotropy. After Pyc action (50 microg/ml to 300 microg/ml), we observed decreases in the anisotropy values of TMA-DPH and DPH in a dose-dependent manner compared with the untreated erythrocyte membranes. Pyc significantly increased the membrane fluidity predominantly at the membrane surface. Further, we observed the protective effect of Pyc against lipid peroxidation, TBARP generation and oxidative hemolysis induced by H2O2. Pyc can reduce the lipid peroxidation and oxidative hemolysis either by quenching free radicals or by chelating metal ions, or by both. The exact mechanism(s) of the positive effect of Pyc is not known. We assume that Pyc efficacy to modify effectively some membrane dependent processes is related not only to the chemical action of Pyc but also to its ability to interact directly with cell membranes and/or penetrate the membrane thus inducing modification of the lipid bilayer and lipid-protein interactions.  相似文献   

12.
Our study emphasizes the effect of gamma irradiation on intestinal cell membrane fluidity and addresses the potential relationships existing between radiation-induced lipoperoxidation, membrane fluidity, and changes in membrane protein activities. Male Wistar rats were exposed to an 8-Gy total body irradiation (60Co source) and studied 1, 4, and 7 days after irradiation (D1, D4, and D7). Membrane enzyme activities and fluorescence anisotropy were determined on small intestinal crude membrane preparations. The supernatants of membrane preparations as well as plasma were used for malonedialdehyde (MDA) quantification. The effect of carbamylcholine on electrical parameters was estimated on distal ileum placed in Ussing chambers. We observed a decrease in fluorescence anisotropy for at least 7 days, an increase in membrane production of MDA at D4, a decrease in membrane enzyme activities at D4, but an amplification of carbamylcholine-induced increase in short-circuit current at D4 and D7. Furthermore, correlations were observed between the 1,6-diphenyl-1,3,5-hexatriene anisotropy coefficient and sucrase activity and between MDA levels and leucine aminopeptidase activity. Thus, total body irradiation induces changes in intestinal membrane fluidity and an increase in lipoperoxidation. These modifications may have an impact on the activity of membrane proteins involved in intestinal function.  相似文献   

13.
The influence of mature lysozyme fibrils on the structural and physical properties of model membranes composed of phosphatidylcholine (PC) and its mixtures with cardiolipin (CL) (10 mol%) and cholesterol (Chol) (30 mol%) was studied using fluorescent probes DPH, pyrene, Laurdan and MBA. Analysis of pyrene fluorescence spectra along with the measurements of DPH fluorescence anisotropy revealed that the structure of hydrocarbon chains region of lipid bilayer is not affected by the fibrillar aggregates of lysozyme. In contrast, probing the membrane effects by Laurdan and MBA showed the rise of both the generalized polarization of Laurdan and the MBA fluorescence anisotropy, suggesting that amyloid protein induces reduction of bilayer hydration and increase of lipid packing in the interfacial region of model membranes.  相似文献   

14.
Detection of the fluorescent properties of Laurdan has been proven to be an efficient tool to investigate membrane packing and ordered lipid phases in model membranes and living cells. Traditionally the spectral shift of Laurdan’s emission from blue in the ordered lipid phase of the membrane (more rigid) toward green in the disordered lipid phase (more fluid) is quantified by the generalized polarization function. Here, we investigate the fluorescence lifetime of Laurdan at two different emission wavelengths and find that when the dipolar relaxation of Laurdan’s emission is spectrally isolated, analysis of the fluorescence decay can distinguish changes in membrane fluidity from changes in cholesterol content. Using the phasor representation to analyze changes in Laurdan’s fluorescence lifetime we obtain two different phasor trajectories for changes in polarity versus changes in cholesterol content. This gives us the ability to resolve in vivo membranes with different properties such as water content and cholesterol content and thus perform a more comprehensive analysis of cell membrane heterogeneity. We demonstrate this analysis in NIH3T3 cells using Laurdan as a biosensor to monitor changes in the membrane water content during cell migration.  相似文献   

15.
The incorporation efficiencies of lutein, zeaxanthin, canthaxanthin and beta-carotene into Retinal Pigment Epithelial (RPE) cells (the human RPE cell line D 407), liver microsomes and EYPC liposomes are investigated. In RPE cells the efficiency ratio of lutein and zeaxanthin compared to canthaxanthin and beta-carotene is higher than in the other membranes. The preferential interactions of lutein and zeaxanthin with RPE cells are discussed considering special protein binding properties. Incorporation yields were obtained from the UV-Vis spectra of the carotenoids. Membrane modulating effects of the carotenoids were obtained from the fluorescence spectra of co-incorporated Laurdan (6-dodecanoyl-2-dimethylaminonaphtalene). The Laurdan fluorescence quenching efficiencies of the membrane bound carotenoids offer an access to direct determinations of membrane carotenoid concentrations. Fetal calf serum as carrier for carotenoid incorporation appears superior to tetrahydrofuran.  相似文献   

16.
Changes in the physico-chemical properties of erythrocyte membranes induced by nonenzymatic glycation as well as the possible prevention of their rise were studied. Using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), fluorescence anisotropy values were determined in erythrocyte membranes isolated from type 1 and type 2 diabetic patients with and without complications. The mean anisotropy values for the groups of diabetic patients were significantly higher than those for the control group (p < 0.01). This indicated pathologically decreased fluidity in cell membranes in the diabetics regardless of the type of diabetes or the presence of complications. The fluorescence anisotropy positively correlated (p < 0.01) with clinical parameters, such as glycohaemoglobin and plasma cholesterol content, which are important for the monitoring of the compensation status of the diabetic patient. Our results support the suggestion that protein crosslinking and oxidative stress induced by nonenzymatic glycation contribute to changes in the physico-chemical properties of erythrocyte membranes. In vitro testing of a new potential drug resorcylidene aminoguanidine (RAG) showed its ability to increase significantly (p < 0.001), to various extent (p < 0.01), the fluidity of both diabetic and control erythrocyte membranes. Upon the administration of RAG, reduced fluorescence anisotropy values for the groups of diabetic patients approached the normal values obtained for the controls. This may play an important role in the improvement of impaired cell functions found in diabetes that are controlled by the cell membrane.  相似文献   

17.
Effects of ionizing radiation on biological membranes include alterations in membrane proteins, peroxidation of unsaturated lipids accompanied by perturbations of the lipid bilayer polarity. We have measured radiation-induced membrane modifications using two fluorescent lipophilic membrane probes (TMA-DPH and DPH) by the technique of fluorescence polarization on two different cell lines (Chinese hamster ovary CHO-K1 and lymphoblastic RPMI 1788 cell lines). γ-Irradiation was performed using a 60Co source with dose rates of 0.1 and 1 Gy/min for final doses of 4 and 8 Gy. Irradiation induced a decrease of fluorescence intensity and anisotropy of DPH and TMA-DPH in both cell lines, which was dose-dependent but varied inversely with the dose rate. Moreover, the fluorescence anisotropy measured in lymphoblastic cells using TMA-DPH was found to decrease as early as 1 h after irradiation, and remained significantly lower 24 h after irradiation. This study indicates that some alterations of membrane fluidity are observed after low irradiation doses and for some time thereafter. The changes in membrane fluidity might reflect oxidative damage, thus confirming a radiation-induced fluidization of biological membranes. The use of membrane fluidity changes as a potential biological indicator of radiation injury is discussed. Received: 14 May 1996 / Accepted in revised form: 30 September 1996  相似文献   

18.
According to "fluid-mosaic model," plasma membrane is a bilayer constituted by phospholipids which regulates the various cellular activities governed by many proteins and enzymes. Any chemical, biochemical, or physical factor has to interact with the bilayer in order to regulate the cellular metabolism where various physicochemical properties of membrane, i.e., polarization, fluidity, electrostatic potential, and phase state may get affected. In this study, we have observed the in vivo effects of a pro-carcinogen 1,2-dimethylhydrazine dihydrochloride (DMH) and the two non steroidal anti-inflammatory drugs (NSAIDs); sulindac and celecoxib on various properties of the plasma membrane of colonocytes, i.e., electric potential, fluidity, anisotropy, microviscosity, lateral diffusion, and phase state in the experimentally induced colorectal cancer. A number of fluorescence probes were utilized like membrane fluidity and anisotropy by 1,6-diphenyl-1,3,5-hexatriene, membrane microviscosity by Pyrene, membrane electric potential by merocyanine 540, lateral diffusion by N-NBD-PE, and phase state by Laurdan. It is observed that membrane phospholipids are less densely packed and therefore, the membrane is more fluid in case of carcinogenesis produced by DMH than control. But NSAIDs are effective in reverting back the membrane toward normal state when co-administered with DMH. The membrane becomes less fluid, composed of low electric potential phospholipids whose lateral diffusion is being prohibited and the membrane stays mostly in relative gel phase. It may be stated that sulindac and celecoxib, the two NSAIDs may exert their anti-neoplastic role in colorectal cancer via modifying the physicochemical properties of the membranes.  相似文献   

19.
The thermotropic behaviour of membrane phospholipids was estimated in intact cells of Bacillus subtilis. Membrane fluidity (microviscosity) of intact cells depended markedly on the ambient temperature - increase in cultivation temperature led to an increase in membrane fluidity. Estimated as anisotropy of 1,6-diphenyl-1,3,5-hexatriene fluorescence, a 30% difference was observed when cells cultivated at 20 and 40 degrees C were compared. This lack of rigorous homeostatic control of bulk-phase lipid fluidity prompted the reevaluation of the physiological significance of the "homeoviscous adaptation" in B. subtilis.  相似文献   

20.
The effect of nedocromil sodium on the plasma membrane fluidity of polymorphonuclear leukocytes (PMNs) was investigated by measuring steady-state fluorescence anisotropy of 1-[4-trimethylammonium-phenyl]-6-phenyl- 1,3,5-hexatriene (TMA-DPH) incorporated in the membrane. Our results show that nedocromil sodium 300 muM significantly decreased membrane fluidity of PMNs. The decrease in membrane fluidity of PMNs induced by fMLP was abolished in the presence of nedocromil sodium. These data suggest that nedocromil sodium interferes with the plasma membranes of PMNs and modulates their activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号