首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thorough spectral investigation of the copper(II) complex of the antitumor compound, bleomycin, has been carried out in solution employing optical, difference optical, electron spin resonance, and circular dichroism techniques. The optical spectrum of a pH = 7 solution of the 1:1 complex between copper(II) and bleomycin is characterized by a broad weak band in the visible region (λmax = 610 nm) that cannot be resolved and intense ultraviolet bands at 317 (? = 2800), 327 (shoulder), 250 (? = 4700), and 257 nm (shoulder). The circular dichroism spectrum in the visible region shows the broad and weak visible absorption band contains at least three components (558, 675, and 880 nm) that are likely to be “d-d” in origin. The electron spin resonance spectrum is characteristic of a tetragonal d9 copper(II) system showing no rhombic distoritions at X-band frequencies (gx = gy ± 0.002). The spin Hamiltonian parameters for the pH = 7.0 solution corrected for second order effects are A = 177 × 10?4 cm?1, A ? 15 × 10?4 cm?1, g = 2.214, g = 2.039. Most interesting was the observation of extra hyperfine splitting due to endogenous nitrogen coordination in a 30% glycerol glass (AN = 12.0 × 10?4 cm?1). That pattern is best interpreted as a seven-line sequence associated with three liganded nitrogens. A dramatic change in all spectral properties occurs when the pH of the copper(II)-bleomycin complex is lowered to 2.5. All these data taken together suggest a CuN3O coordination complex in solution. Details and justifications as well as a discussion of the limitations of the interpretations are presented.  相似文献   

2.
3.
《Inorganica chimica acta》1986,122(2):229-233
Three series of complexes were studied: Co(acetylacetonate)n(dibenzoylmethanato)3-n, Co(acetylacetonate)n(benzoylacetonate)3-n and Co(dibenzoylmethanato)n(benzoylacetonate)3-n. The product mixtures were separated by thin-layer chromatography. Complete separation of all compounds and stereoisomers was obtained. No attempt was made to separate optical isomers which exist for each single stereoisomer. Characterization was by elemental analyses, NMR spectroscopy and the separation characteristics. Electronic absorption spectra were measured in acetonitrile in the 200–800 nm region. Interpretation of the spectral data is provided in terms of ∏ → ∏*, d → ∏*, d → d* transitions. The influence of geometrical isomerism is discussed.  相似文献   

4.
《Inorganica chimica acta》1986,115(1):95-100
Racemic mer-[CoCl(en)(NH2CH2CHNCH2CH2NH2)]ZnCl4, which contains no dissymetric chelate rings, no asymmetric carbon centers and no asymmetric nitrogen centers, has been resolved using sodium arsenic(III)—(+)-tartrate. The chirality arises by virtue of the coordinated unsymmetric tridentate ligand and the less soluble diastereoisomeride is associated with the (+)-cation. The rate of base hydrolysis was measured spectrophotometrically using tris buffers. Kinetic parameters (25 °C, \3m; ∼ 0.04 M) are kOH = 1.28 X 103 M−3 s−1, Ea = 87.0 ± 0.7 kJ mol−1 and ΔS#; = +98 ± 1.4 J K−1 mol−1. Complete racemisation accompanies the base hydrolysis reaction and the rate of loss of optical activity is 0.5 times that of base hydrolysis. These data are interpreted in terms of the formation of a symmetrical trigonal bipyramid intermediate generated from the conjugate base.  相似文献   

5.
Electro-optical characterization of the photoreceptor disk membrane vesicle is performed by examining the electric field and concentration dependence of the steady-state birefringence of aqueous suspensions of the vesicles. The electric polarizability anisotropy is found to be negative and of large magnitude: α12 = ?(1?3) × 10?10 cm3. The optical anisotropy is determined to be also negative but of small magnitude: g1 ?g2 = ?1 × 10?7. The specific Kerr constant deduced from the concentration dependence of the Kerr constant is found to be very large: Ksp = 7 × 10?4 c.s.u. Upon deforming the vesicles osmotically from the spherical shell to the disk structure, the steady-state birefringence increases by an order of magnitude which is attributed solely to the increase in optical anisotropy attending the corresponding change in the geometric eccentricity of the vesicle. A plausible birefringence mechanism based on the known structural features of the vesicles is proposed, which would account for these findings.  相似文献   

6.
The aggregation of bacteriochlorophyll a and bacteriopheophytin a into large oligomers with maximum optical absorption at 860 nm was studied in a 3:1 (vol/vol) formamide/water solution, using optical absorption spectroscopy and electron microscopy. The aggregation is cooperative and proceeds according to two equilibrium constants. Initially, two pigment molecules form a “seed” that absorbs at ≈860 nm. The equilibrium constant, Ka, governing this reaction equals 1.3 × 103 M-1 in the case of bacteriochlorophyll a (due to experimental limitations, Ka for bacteriopheophytin a could not be determined). The addition of monomers to aggregates consisting of two or more units is governed by an equilibrium constant, Kb, equal to 2.2 × 106 M-1 for bacteriochlorophyll a and ≈ 109 M-1 for bacteriopheophytin a. The enthalpy and entropy changes that drive the bacteriochlorophyll oligomer formation are -9.25 and ≈0.0 kcal/mol, respectively. Above a threshold concentration, the amount of oligomers remains constant but their length continues to increase. Each oligomer appears to consist of dimers that are associated by hydrophobic interactions among their alcohol residues, forming long strands. Single strands presumably coil into helices that are seen as cylinders. The bacteriochlorophyll a oligomers form cylinders with a constant diameter of 150 Å and an average length of 2,000 Å (at 1.5 × 10-5 M bacteriochlorophyll a). These cylinders contain 200-250 bacteriochlorophyll a dimers. The bacteriopheophytin oligomers coil into wider cylinders (≈400 Å in diameter) which contain ≈600-700 bacteriopheophytin a dimers. In both cases, the separation between the dimers is ≈20 Å. At such distances, the dipolar interactions among adjacent dimers are negligible and do not affect the optical absorption of each individual pair. Therefore, the optical absorption of these pairs can be a tool for investigating the absorption pattern of photosynthetic pigments in vivo.  相似文献   

7.
1. An optical system is described which furnishes an intensity of 282,000 meter candles at the bottom of a Warburg manometric vessel. With such a high intensity available it was possible to measure the rate of photosynthesis of single fronds of Cabomba caroliniana over a large range of intensities and CO2 concentrations. 2. The data obtained are described with high precision by the equation KI = p/(p 2 max.p 2)½ where p is the rate of photosynthesis at light intensity I, K is a constant which locates the curve on the I axis, and p max. is the asymptotic maximum rate of photosynthesis. With CO2 concentration substituted for I, this equation describes the data of photosynthesis for Cabomba, as a function of CO2 concentration. 3. The above equation also describes the data obtained by other investigators for photosynthesis as a function of intensity, and of CO2 concentration where external diffusion rate is not the limiting factor. This shows that for different species of green plants there is a fundamental similarity in kinetic properties and therefore probably in chemical mechanism. 4. A derivation of the above equation can be made in terms of half-order photochemical and Blackman reactions, with intensity and CO2 concentration entering as the first power, or if both sides of the equation are squared, the photochemical and Blackman reactions are first order and intensity and CO2 enter as the square. The presence of fractional exponents or intensity as the square suggests a complex reaction mechanism involving more than one photochemical reaction. This is consistent with the requirement of 4 quanta for the reduction of a CO2 molecule.  相似文献   

8.
The green thionitrosyl complex [Cr(OH2)5(NS)]2+ was isolated in solution by the hydrolysis of [Cr(NCCH3)5(NS)]2+. The optical absorption spectra of both compounds are dominated by a band with vibrational progression around 600 nm assigned as a {dyz,zx, π(NS)} → {π(NS), dyz,zx} transition. The optical data indicate that the NS ligand is a weaker π-acceptor than the NO ligand. The EPR parameters of [Cr(OH2)5(NS)]2+ were determined: giso, g and g: 1.96515, 1.92686(5) and 1.986860(8); Aiso(53Cr), A(53Cr) and A(53Cr): 25.3 × 10−4, 38 × 10−4 and 18.5 × 10−4 cm−1; Aiso(14N), A(14N) and A(14N): 6.5 × 10−4, 2.81 × 10−4 and 8.346(12) × 10−4 cm−1.  相似文献   

9.
The interaction between B-form DNA and twelve cationic triaryl-methane dyes was studied with respect lo optical properties and stabilities, using linear dichroism (LD) and aqueous two-phase partition techniques. Monovalent dyes derived from crystal violet as a rule form a single strong complex (K1 ca 105 M?1; site density per nucleotide base n1 ca 0.1 at 0.1M ionic strength) in which the plane of the dye is at an angle of less than 50° to the local DNA helix axis. The complex with fuchsin is weaker (104M?1) but can be explained by a similar orientation. For some of the dyes (those with pseudo-C2v symmetry) XXXre angular orientations of two molecule-fixed axes can be obtained. For the divalent methyl green a second complex appears to be formed at low ionic strength. Methyl green (and to some extent 2-thiophene green and malachite green) show exciton splitting in the LD spectrum and circular dichroism assignable to exciton coupling between transition dipoles roughly parallel to the helical strands, indicating a dye-dye interaction. Tne optical data, supported by fitting experiments with space-filling models, suggests a general structure for the binding site. The dye is not intercalated but is bound to exposed hydrophobic regions in the major groove. The ligand is in part (the charged amino groups) in contact with the phosphoribose chain but its main surface lies against the hydrophobic base-pair stack. For a diphenylmethane dye, Michler's hydrol blue, a perpendicular orientation was observed, possibly due to intercaiation.  相似文献   

10.
Davey K. G., Sommerville R. I. and Rogers W. P. 1982. The effect of ethoxyzolamide, an analogue of insect juvenile hormone, nor-adrenaline and iodine on changes in the optical path difference in the excretory cells and oesophagus during exsheathment in Haemonchus contortus. International Journal for Parasitology12: 509–513. Ethoxyzolamide, an inhibitor of carbonic anhydrase, markedly inhibits exsheathment of Haemonchus when the larvae are subsequently exposed to an exsheathing stimulus of CO2 at 38.5°C. Ethoxyzolamide at 2 × 10?5M does not prevent the increase in optical path difference in the oesophageal region which normally accompanies exsheathment, but markedly inhibits the increase in optical path difference in the excretory cells. An analogue of juvenile hormone (JHA; the methyl ester of 3,7,11 trimethyl-7,11-dichloro-2-dodecenic acid) does not affect the optical path difference in either the oesophagus or the excretory cells of ensheathed worms. When worms are artificially desheathed by exposure to NaOCl, a procedure which mimics the effect of CO2 upon the oesophagus, but which does not affect the excretory cells, subsequent exposure to JHA at room temperature increases the optical path difference in the excretory cells. This increase is enhanced by subsequent incubation of the worms at 38.5°C at 30–60 min and further enhanced when CO2 is present during the incubation at 38.5°C. The stimulation of the excretory cells by JHA is inhibited by ethoxyzolamide at 2 × 10?5M. Noradrenaline at 10?3M has no effect on ensheathed larvae, but causes an increase in optical path difference in the excretory cells of larvae desheathed with NaOCl. This increase is inhibited by ethoxyzolamide. A brief exposure to I2 blocks the response of the excretory cells of both CO2 and JHA, but does not significantly reduce the effect of nor-adrenaline. On the basis of these and previous results, it is proposed that both CO2 and JHA stimulate a hypothetical CO2 receptor which leads to the release of nor-adrenaline. The noradrenaline in turn stimulates, either directly or indirectly, the excretory cells.  相似文献   

11.
The binuclear copper in the active site of Carcinus maenas hemocyanin has been substituted with one EDTA-resistant Co(II) per 75 000 Mr by reconstitution of the apo protein. Specific cobalt substitution at the copper binding site is demonstrated from the optical spectral changes directly correlated with the amount of Co(II) bound to the protein, the ellipticity in CD spectra in the near UVVis region, and the efficiency of tryptophan fluorescence quenching. The optical absorption spectrum of the cobalt-substituted protein is characterized by a band pattern attributable to d-d transitions of the metal ion. Both the position of the wavelength maximum (568 nm) and the molar extinction coefficient (≅300 M-1 cm-1) are typical of a four-coordinate, pseudo-tetrahedral Co(II) center.Optical titrations indicate that Cl-, Br-, N3-, SCN-, and CN- bind to Co(II)Hc, each with a stoichiometry of 1:1 per metal center. The apparent stability constants determined from Hill plots of titration data decrease in the order CN- » N3- ≅ SCN- >Cl->Br-. Low temperature EPR studies demonstrate that at pH 7, the cobalt is high spin both in the presence and absence of anionic ligands. A low spin species is formed at pH 9 in the presence of cyanide. The spectrum of this latter complex exhibits superhyperfine structure indicative of metal ligation to 14N supplied by the protein. Direct ligation of cyanide to cobalt is demonstrated by additional spectral splitting observed when this complex is formed using 13C-labelled CN-.  相似文献   

12.
The kinetics of formation of the intermediate complex between catalase and H2O2 has been reexamined. It has been shown that the kinetics consists of a rapid and of a subsequent slow phase. At the maximum of the transient decrement of the optical absorption, the system was found to be in a terminal state with regard to the rapid phase. On this basis, the formation curve of the intermediate complex was calculated. From the parameters of the curve the maximal saturation of catalase hematins (from horse erythrocytes) by H2O2 is 35%. The absolute spectrum of the intermediate complex was established. The variation of the previously calculated rate constant of formation of the intermediate complex was shown to be due to the inapplicability of the pre-steady-state approximation to the rate data. By applying a more general approach and by the use of a computer, the individual rate constants of the peroxidatic scheme were calculated (relevant to micromolar solutions of catalase) k1 = (3.0 ± 0.2) × 106 M?1 sec?1k4 = (5.6 ± 0.3) × 106 M?1 sec?1 These values are 2.2 times higher in a nanomolar solution.  相似文献   

13.

Background

Application of less toxic normoxic polymer gel of N-isopropyl acrylamide (NIPAM) for radiation therapy has been studied in recent years.

Aim

In the current study the optical and NMR properties of NIPAM were studied for radiation therapy dosimetry application.

Materials and methods

NIPAM normoxic polymer gel was prepared and irradiated by 9 MV photon beam of a medical linac. The optical absorbance was measured using a conventional laboratory spectrophotometer in different wavelengths ranging from 390 to 860 nm. R2 measurements of NIPAM gels were performed using a 1.5 T scanner and R2–dose curve was obtained.

Results

Our results showed R2 dose sensitivity of 0.193 ± 0.01 s−1 Gy−1 for NIPAM gel. Both R2 and optical absorbance showed a linear relationship with dose from 1.5 to 11 Gy for NIPAM gel dosimeter. Moreover, absorbance–dose response varied considerably with light wavelength and highest sensitivity was seen for the blue part of the spectrum.

Conclusion

Our results showed that both optical and NMR approaches have acceptable sensitivity and accuracy for dose determination with NIPAM gel. However, for optical reading of the gel, utilization of an optimum optical wavelength is recommended.  相似文献   

14.
The effects of monovalent cations on DNA have been studied using static and dynamic electric birefringence. Kerr's law is obeyed in a limited E range (<30 Vcm?1) and the steady state birefringence values are close for the different cations. The birefringence kinetics have been analysed in terms of three relaxation times. On a semilogarithmice plot of Δn(t), the tail of the curve is linear over a wide range of time for Na+, K+, NH4+ and Li+. Only for Cs+ solution is no linear part found and a much longer relaxation time is determined. This only contributes a small part of the total birefringence. With Cs+ this contribution is more field-dependent than for the other cations and we observe a larger molecular flexibility. On the other hand, with Li+ a greater stiffness of the DNA molecule appears. The electrical polarizabilities anisotropies decrease in the order: Cs+ >NH+4 >K+ >Na+ >Li+. There are no significant differences in the optical anisotropy factors.  相似文献   

15.
The fluorescence spectrum of Eu3+ recorded at a temperature of 12 K between 14.000 and 20.000 cm?1 shows transitions from the excited stare 5Do to the Stark components of the lowest 7Fj. The optical analysis suggests an octahedral site symmetry for the rare earth ion which is confirmed by the three-dimensional crystal determination. The highly disordered crystal structure refined in space group F23 to an R-factor of 13.2%. Both the europium and the arsenic ions are located in special positions of point symmetry 23(T). The EuO bond distance is 2.28 Å. The value of the Bqk parameters was determined.  相似文献   

16.
The pH dependence of the oxidation of β-methyl-d-galactopyranoside by galactose oxidase at 1.33 mm O2 has been determined. The kcat exhibits a bell-shaped dependence on the ionization of at least two groups in the enzyme-substrate complex, pKb' = 6.3 and pKa' = 7.1, respectively. The pH-independent value for kcat at 1.33 mm O2 (nonsaturating) and saturating glycoside is 1435 s?; the pH optimum is 6.7. Galactose oxidase is inactivated rapidly by iodoacetamide. Although the reaction is much slower, iodoacetate also inactivates the enzyme. The inactivation by iodoacetamide obeys saturation kinetics; at pH 7.0 k3 = 2.19 min?1 and Ki = 5.1 mM; k3 but not Ki exhibits a bell-shaped pH dependence, with pKa values of 6.3 and 7.6, respectively. Labeling with [14C]iodoacetamide establishes that one carboxamidomethyl group is incorporated per enzyme molecule. This incorporation parallels the loss of enzymatic activity. Only N-3-carboxymethylhistidine is detected in chromatograms following hydrolysis of the labeled protein. The protein-bound copper is not lost as a consequence of alkylation. Apogalactose oxidase does not react with iodoacetamide. The alkylation is inhibited by the oxidation of an active center tryptophan residue (s) by N-bromosuccinimide. The fraction of residual enzyme activity remaining after tryptophan oxidation corresponds to the extent of labeling by [14C]iodoacetamide. Although alkylation causes little change in the spin Hamiltonian parameters of the Cu(II) atom, it nearly abolishes both the optical activity and optical absorbance of the metal. The native tryptophan fluorescence of the enzyme, which is a sensitive probe of its active site, is also markedly affected. Since binding of a substrate, β-methyl-d-galactopyranoside, reduces fluorescence as it does in the active enzyme and binding of CN? at the Cu(II) site as detected by electron spin resonance appears unaffected by the alkylation, the effect of alkylation is on catalysis, per se. Both a catalytic and a subtle conformational role for the active site histidine are inferred from the results.  相似文献   

17.
Crystal-structure determination of trans-O-β-D-glucopyranosyl methyl acetoacetate, C11H18O8, m.p. 186°, confirmed the trans orientation deduced previously from physical properties. The conformation of the D-glucopyranosyl group is 4C1, although the most symmetrical chair-conformer is actually 3Co. The glycosidic link is sc, with a CO anomeric bond of 1.428 Å (142.8 pm), i.e. longer than is normal in methyl β-glycopyranosides. All of the hydrogen bonding is intermolecular. The unusual optical rotations in solution can be interpreted in terms of rotameric populations that are derived from the solid-state conformers and are stabilized by intramolecular or solvent hydrogen-bonding.  相似文献   

18.
Due to the industrial development, drinking water is getting polluted by disposing several waste products of the industries. Hardness is one of the prominent impurities in drinking water which is mainly due to the presence of carbonate and bicarbonate ions (CO3 2? and HCO3 ?) in it. Here, we present the synthesis of the zinc oxide (ZnO) and polyaniline (PANI) nanocomposite for the detection and estimation of hardness of the drinking water. The chemical formula of such a nanocomposite is defined in terms of the fraction of polyaniline nanoparticles reinforced in ZnO matrix and is derived as ZnO(1???x)PANI x (0?≤?x?≤?0.9); x is the composition ratio. Silver and ZnO(1???x)PANI x layers are coated over the unclad core of the optical fiber so as to create the four layer system as that of Kretschmann configuration SPR structure. The working principle involves the change in dielectric constant of (ZnO(1???x)PANI x ) by CO3 2? or HCO3 ? ions in aqueous atmosphere. Due to the strong interaction of the sensing surface to the CO3 2? and HCO3 ? ions, a red shift in the SPR spectrum is observed in the concentration range 0–200 μg/l. The sensitivity of the sensor depends on the composition ratio of the nanocomposite and has been found to be maximum for the composition ratio lying in the range 0.45–0.60. This has been further confirmed in terms of the enhancement of the electric field density and found to be in agreement with the experimental value. The sensitivity of the sensor with optimum value of the composition ratio is 0.094 and 0.065 nm/(μg/l) for CO3 2? and HCO3 ?, respectively. The sensor is highly selective to CO3 2? and HCO3 ?. The sensor has advantages of online monitoring and remote sensing of water quality because the probe is fabricated over an optical fiber.  相似文献   

19.
Isolated cytochrome c1 contains endogenous reducing equivalents. They can be removed by treating the protein with sodium dithionite followed by chromatography. This treatment has no effect on the reaction with cytochrome c, nor does it alter the optical spectrum, or the polypeptide or amino acid composition of the protein. Both the titration of dithionite-treated ferrocytochrome c1 with potassium ferricyanide and the anaerobic titration of dithionite-treated ferricytochrome c1 with NADH in the presence of phenazine methosulphate lead to the same value for the absorbance coefficient of cytochrome c1 : 19.2 mM?1 · cm?1 at 552.4 nm for the reduced-minus-oxidised form. This value was also obtained when the haem content was determined by comparing the spectra of the reduced pyridine haemochromes of cytochrome c and cytochrome c1. Comparison of the optical spectra of cytochrome c and cytochrome c1 by integration shows equal transition moments for the transitions in the porphyrin systems of both proteins. A set of equations is presented with which the concentration of the cytochromes aa3, b, c and c1 can be calculated from one reduced-minus-oxidised difference spectrum of a mixture of these proteins.  相似文献   

20.
Efficient methods for accurate and meaningful high-throughput plant phenotyping are limiting the development and breeding of stress-tolerant crops. A number of emerging techniques, specifically remote sensing methods, have been identified as promising tools for plant phenotyping. These remote sensing methods can be used to accurately and rapidly relate variations in leaf optical properties with important plant characteristics, such as chemistry, morphology, and photosynthetic properties at the leaf and canopy scales. In this study, we explored the potential to utilize optical (λ = 500–2,400 nm) near-surface remote sensing reflectance spectroscopy to evaluate the effects of ozone pollution on photosynthetic capacity of soybean (Glycine max Merr.). The research was conducted at the Soybean Free Air Concentration Enrichment (SoyFACE) facility where we subjected plants to ambient (44 nL L?1) and elevated ozone (79–82 nL L?1 target) concentrations throughout the growing season. Exposure to elevated ozone resulted in a significant loss of productivity, with the ozone-treated plants displaying a ~30 % average decrease in seed yield. From leaf reflectance data, it was also clear that elevated ozone decreased leaf nitrogen and chlorophyll content as well as the photochemical reflectance index (PRI), an optical indicator of the epoxidation state of xanthophyll cycle pigments and thus physiological status. We assessed the potential to use leaf reflectance properties and partial least-squares regression (PLSR) modeling as an alternative, rapid approach to standard gas exchange for the estimation of the maximum rates of RuBP carboxylation (V c,max), an important parameter describing plant photosynthetic capacity. While we did not find a significant impact of ozone fumigation on V c,max, standardized to a reference temperature of 25 °C, the PLSR approach provided accurate and precise estimates of V c,max across ambient plots and ozone treatments (r 2 = 0.88 and RMSE = 13.4 μmol m?2 s?1) based only on the variation in leaf optical properties and despite significant variability in leaf nutritional status. The results of this study illustrate the potential for combining the phenotyping methods used here with high-throughput genotyping methods as a promising approach for elucidating the basis for ozone tolerance in sensitive crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号