首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
Cell-free extracts of Bacillus licheniformis were found to contain pyruvate carboxylase which catalyzes the reaction between pyruvate and bicarbonate to yield oxalacetate in the presence of adenosine triphosphate (ATP), acetylcoenzyme A (CoA), and manganese. The plot between the reaction velocity of the carboxylation by the partially purified pyruvate carboxylase (25-fold) and the concentration of pyruvate, bicarbonate, manganese, and ATP did not indicate a pronounced deviation from the Michaelis-Menten hyperbola. The enzyme was inhibited by avidin and aspartate. Biotin partially protected the enzyme from avidin inhibition, whereas the amount of inhibition by aspartate was dependent on the concentration of acetyl-CoA present. The intracellular concentration of acetyl-CoA did not vary significantly enough to allow control of the enzyme by this method. Extracts of 4-hr postexponential-phase cells of B. licheniformis were also found to contain phosphoenolpyruvate carboxykinase, which appears to be under catabolite repression control. It is suggested that the endogenous induction of this enzyme is the determining factor allowing the shift to gluconeogenesis from glycolysis during sporulation of glucose-grown cells.  相似文献   

2.
1. Pyruvate carboxylase from baker's yeast acts with either MgATP(2-) or MnATP(2-) as substrate. The optimum pH for the enzyme reaction is 8.0 with MgATP(2-) and 7.0 with MnATP(2-). 2. When the reaction velocity is plotted against MgATP(2-) (or MnATP(2-)) concentration slightly sigmoid curves are obtained, either in the presence or in the absence of acetyl-CoA (an allosteric activator). In the presence of excess of free Mg(2+) (or Mn(2+)) the curves turn into hyperbolae, whereas in the presence of excess of free ATP(4-) the apparent sigmoidicity of the curves increases. 3. The sigmoidicity of the plots of v against MgATP(2-) (or MnATP(2-)) concentration can be explained by the inhibitory effect of free ATP(4-), the concentration of which, in the experimental conditions employed, is significant and varies according to the total concentration of the ATP-magnesium chloride (or ATP-manganese chloride) mixture. Free ATP(4-) behaves as a negative modifier of yeast pyruvate carboxylase. 4. The effect of high concentrations of Mg(2+) (or Mn(2+)) on the kinetics of yeast pyruvate carboxylase can be explained as a deinhibition with respect to ATP(4-), instead of a direct enzyme activation. 5. At pH6.5 manganese chloride is more effective than magnesium chloride as enzyme activator even in the presence of a great excess (16-fold) of the latter. This is consistent with a significant contribution of the MnATP(2-) complex to the activity of yeast pyruvate carboxylase, in medium conditions resembling those existing inside the yeast cell (pH6.25-6.75; 12mm-magnesium chloride and 0.75mm-manganese chloride). 6. The physiological significance of the enzyme inhibition by free ATP(4-) is doubtful since the Mg(2+) and Mn(2+) concentrations reported to exist inside the yeast cell are sufficient to decrease ATP(4-) concentrations to ineffective values.  相似文献   

3.
1. The reaction pathway for the carboxylation of pyruvate, catalysed by pig liver pyruvate carboxylase, was studied in the presence of saturating concentrations of K(+) and acetyl-CoA. 2. Free Mg(2+) binds to the enzyme in an equilibrium fashion and remains bound during all further catalytic cycles. MgATP(2-) binds next, followed by HCO(3) (-) and then pyruvate. Oxaloacetate is released before the random release, at equilibrium, of P(i) and MgADP(-). 3. This reaction pathway is compared with the double displacement (Ping Pong) mechanisms that have previously been described for pyruvate carboxylases from other sources. The reaction pathway proposed for the pig liver enzyme is superior in that it shows no kinetic inconsistencies and satisfactorily explains the low rate of the ATP[unk][(32)P]P(i) equilibrium exchange reaction. 4. Values are presented for the stability constants of the magnesium complexes of ATP, ADP, acetyl-CoA, P(i), pyruvate and oxaloacetate.  相似文献   

4.
While crystallographic structures of the R. etli pyruvate carboxylase (PC) holoenzyme revealed the location and probable positioning of the essential activator, Mg(2+), and nonessential activator, acetyl-CoA, an understanding of how they affect catalysis remains unclear. The current steady-state kinetic investigation indicates that both acetyl-CoA and Mg(2+) assist in coupling the MgATP-dependent carboxylation of biotin in the biotin carboxylase (BC) domain with pyruvate carboxylation in the carboxyl transferase (CT) domain. Initial velocity plots of free Mg(2+) vs pyruvate were nonlinear at low concentrations of Mg(2+) and a nearly complete loss of coupling between the BC and CT domain reactions was observed in the absence of acetyl-CoA. Increasing concentrations of free Mg(2+) also resulted in a decrease in the K(a) for acetyl-CoA. Acetyl phosphate was determined to be a suitable phosphoryl donor for the catalytic phosphorylation of MgADP, while phosphonoacetate inhibited both the phosphorylation of MgADP by carbamoyl phosphate (K(i) = 0.026 mM) and pyruvate carboxylation (K(i) = 2.5 mM). In conjunction with crystal structures of T882A R. etli PC mutant cocrystallized with phosphonoacetate and MgADP, computational docking studies suggest that phosphonoacetate could coordinate to one of two Mg(2+) metal centers in the BC domain active site. Based on the pH profiles, inhibition studies, and initial velocity patterns, possible mechanisms for the activation, regulation, and coordination of catalysis between the two spatially distinct active sites in pyruvate carboxylase from R. etli by acetyl-CoA and Mg(2+) are described.  相似文献   

5.
Acetone degradation by cell suspensions of Desulfococcus biacutus was CO2 dependent, indicating initiation by a carboxylation reaction, while degradation of 3-hydroxybutyrate was not CO2 dependent. Growth on 3-hydroxybutyrate resulted in acetate accumulation in the medium at a ratio of 1 mol of acetate per mol of substrate degraded. In acetone-grown cultures no coenzyme A (CoA) transferase or CoA ligase appeared to be involved in acetone metabolism, and no acetate accumulated in the medium, suggesting that the carboxylation of acetone and activation to acetoacetyl-CoA may occur without the formation of a free intermediate. Catabolism of 3-hydroxybutyrate occurred after activation by CoA transfer from acetyl-CoA, followed by oxidation to acetoacetyl-CoA. In both acetone-grown cells and 3-hydroxybutyrate-grown cells, acetoacetyl-CoA was thioyltically cleaved to two acetyl-CoA residues and further metabolized through the carbon monoxide dehydrogenase pathway. Comparison of the growth yields on acetone and 3-hydroxybutyrate suggested an additional energy requirement in the catabolism of acetone. This is postulated to be the carboxylation reaction (delta G(o)' for the carboxylation of acetone to acetoacetate, +17.1 kJ.mol-1). At the intracellular acyl-CoA concentrations measured, the net free energy change of acetone carboxylation and catabolism to two acetyl-CoA residues would be close to 0 kJ.mol of acetone-1, if one mol of ATP was invested. In the absence of an energy-utilizing step in this catabolic pathway, the predicted intracellular acetoacetyl-CoA concentration would be 10(13) times lower than that measured. Thus, acetone catabolism to two acetyl-CoA residues must be accompanied by the utilization of teh energetic equivalent of (at lease) one ATP molecule. Measurement of enzyme activities suggested that assimilation of acetyl-CoA occurred through a modified citric acid cycle in which isocitrate was cleaved to succinate and glyoxylate. Malate synthase, condensing glyoxylate and acetyl-CoA, acted as an anaplerotic enzyme. Carboxylation of pyruvate of phosphoenolpyruvate could not be detected.  相似文献   

6.
The ratio of the specific radioactivities of 3-hydroxybutyrate: citrate was determined in rat liver mitochondria which were incubated in the presence of [1-14C]palmitate, pyruvate, bicarbonate, ATP, phosphate and malonate. Without compartmentation this ratio would maximally be 2, however, under our conditions values of 2.5-3.7 were observed. In further experiments with mitochondria, the sensitivity of pyruvate carboxylase for acetyl-CoA produced from various precursors was tested. It was found that acetyl-CoA produced from L-acetylcarnitine or by oxidation from either pyruvate, octanoate or palmitylcarnitine but not from leucine led to a stimulation of pyruvate carboxylation. These results demonstrate a compartmentation of acetyl-CoA in liver mitochondria. The further finding that different mitochondrial fractions showed varying ratios of specific radioactivities of 3-hydroxybutyrate:citrate indicates that the observed compartmentation may be explained by the existence of different types of mitochondria with varying enzyme patterns and acetyl-CoA pools.  相似文献   

7.
1. The effects of adenine nucleotides on pyruvate metabolism by isolated liver cells and isolated mitochondria have been investigated. The amount of pyruvate carboxylated has been estimated by determining the tricarboxylic acid-cycle intermediates, glutamate and aspartate accumulating in the incubation medium. The extent of pyruvate oxidation has been assessed by measuring oxygen uptake and the yield of 14CO2 from [1-14C]pyruvate and [2-14C]pyruvate. 2. When catalytic amounts of adenine nucleotides (1–2mm) were added to suspensions of isolated liver cells incubated with pyruvate an ATP:ADP ratio greater than 6:1 was maintained. Both pyruvate oxidation to acetyl-CoA and the oxidation of acetyl-CoA through the tricarboxylic acid cycle were stimulated but pyruvate carboxylation was not affected. The production of acetyl-CoA exceeded the capacity of the cells for the oxidation of acetyl-CoA and the excess was converted into ketone bodies. 3. If a low ATP:ADP ratio was maintained in isolated cells or mitochondria by incubating them with dinitrophenol or hexokinase, pyruvate carboxylation was grossly inhibited, oxygen uptake depressed and ketone-body formation stimulated. Measurement of oxaloacetate concentrations confirmed that under these conditions oxaloacetate was rate-limiting for the oxidation of acetyl-CoA via the tricarboxylic acid cycle. The inclusion in the incubation medium of fumarate (1·25mm) completely prevented the ketogenic action of dinitrophenol or hexokinase. 4. When ADP (5mm) was added to a suspension of isolated liver cells incubated with pyruvate an actual ADP concentration of about 1mm was attained. This brought about effects on pyruvate metabolism similar to those obtained with dinitrophenol or hexokinase. 5. These results support the concept that the relative concentrations of adenine nucleotides within the liver cell may play a role in governing the rates of pyruvate oxidation and carboxylation. In addition, they provide further evidence that the availability of oxaloacetate in the liver cell can play a key role in determining whether acetyl-CoA arising from pyruvate is oxidized through the tricarboxylic acid cycle or converted into ketone bodies.  相似文献   

8.
Initial velocity studies in the absence and presence of product and dead-end inhibitors suggest a steady-state random mechanism for malic enzyme in the direction of reductive carboxylation of pyruvate. For this quadreactant enzymatic reaction (Mn2+ is a pseudoreactant), initial velocity patterns were obtained under conditions in which two substrates were maintained at saturating concentrations while one reactant was varied at several fixed concentrations of the other. Data from the resulting reciprocal plots, analyzed in terms of a bireactant mechanism, are consistent with a sequential mechanism with an obligatory order of addition of metal prior to pyruvate. NAD is competitive against NADH whether pyruvate and CO2 are maintained at low or high concentrations, whereas it is noncompetitive against pyruvate and CO2. Thio-NADH, alpha-ketobutyrate, and nitrite were used as dead-end analogs of NADH, pyruvate, and CO2, respectively. Thio-NADH is competitive against NADH, whereas it is noncompetitive against pyruvate and CO2, in accordance with a random mechanism. alpha-Ketobutyrate and nitrite gave noncompetitive inhibition against all substrates. The noncompetitive patterns observed for alpha-ketobutyrate versus pyruvate and nitrite versus CO2 suggest binding of the inhibitor to both the E.Mn.NADH and E.Mn.NAD complexes. Primary deuterium isotope effects are equal on all kinetic parameters, in agreement with the random mechanism, and suggest equal off-rates for NAD from E.Mn.NAD as well as pyruvate and NADH from E.Mn.NADH.pyruvate. Data are consistent with an overall symmetry in the malic enzyme reaction in the two reaction directions with a requirement for metal bound prior to pyruvate and malate.  相似文献   

9.
The activity of the biotin-dependent enzyme pyruvate carboxylase from many organisms is highly regulated by the allosteric activator acetyl-CoA. A number of X-ray crystallographic structures of the native pyruvate carboxylase tetramer are now available for the enzyme from Rhizobium etli and Staphylococcus aureus. Although all of these structures show that intersubunit catalysis occurs, in the case of the R. etli enzyme, only two of the four subunits have the allosteric activator bound to them and are optimally configured for catalysis of the overall reaction. However, it is apparent that acetyl-CoA binding does not induce the observed asymmetrical tetramer conformation and it is likely that, under normal reaction conditions, all of the subunits have acetyl-CoA bound to them. Thus the activation of the enzyme by acetyl-CoA involves more subtle structural effects, one of which may be to facilitate the correct positioning of Arg353 and biotin in the biotin carboxylase domain active site, thereby promoting biotin carboxylation and, at the same time, preventing abortive decarboxylation of carboxybiotin. It is also apparent from the crystal structures that there are allosteric interactions induced by acetyl-CoA binding in the pair of subunits not optimally configured for catalysis of the overall reaction.  相似文献   

10.
The mitochondrial NADP-dependent malic enzyme (EC 1.1.1.40) was purified about 300-fold from cod Gadus morhua heart to a specific activity of 48 units (mumol/min)/mg at 30 degrees C. The possibility of the reductive carboxylation of pyruvate to malate was studied by determination of the respective enzyme properties. The reverse reaction was found to proceed at about five times the velocity of the forward rate at a pH 6.5. The Km values determined at pH 7.0 for pyruvate, NADPH and bicarbonate in the carboxylation reaction were 4.1 mM, 15 microM and 13.5 mM, respectively. The Km values for malate, NADP and Mn2+ in the decarboxylation reaction were 0.1 mM, 25 microM and 5 microM, respectively. The enzyme showed substrate inhibition at high malate concentrations for the oxidative decarboxylation reaction at pH 7.0. Malate inhibition suggests a possible modulation of cod heart mitochondrial NADP-malic enzyme by its own substrate. High NADP-dependent malic enzyme activity found in mitochondria from cod heart supports the possibility of malate formation under conditions facilitating carboxylation of pyruvate.  相似文献   

11.
12.
1. A method was devised for preparing pig heart pyruvate dehydrogenase free of thiamin pyrophosphate (TPP), permitting studies of the binding of [35S]TPP to pyruvate dehydrogenase and pyruvate dehydrogenase phosphate. The Kd of TPP for pyruvate dehydrogenase was in the range 6.2-8.2 muM, whereas that for pyruvate dehydrogenase phosphate was approximately 15 muM; both forms of the complex contained about the same total number of binding sites (500 pmol/unit of enzyme). EDTA completely inhibited binding of TPP; sodium pyrophosphate, adenylyl imidodiphosphate and GTP, which are inhibitors (competitive with TPP) of the overall pyruvate dehydrogenase reaction, did not appreciably affect TPP binding. 2. Initial-velocity patterns of the overall pyruvate dehydrogenase reaction obtained with varying TPP, CoA and NAD+ concentrations at a fixed pyruvate concentration were consistent with a sequential three-site Ping Pong mechanism; in the presence of oxaloacetate and citrate synthase to remove acetyl-CoA (an inhibitor of the overall reaction) the values of Km for NAD+ and CoA were 53+/- 5 muM and 1.9+/-0.2 muM respectively. Initial-velocity patterns observed with varying TPP concentrations at various fixed concentrations of pyruvate were indicative of either a compulsory order of addition of substrates to form a ternary complex (pyruvate-Enz-TPP) or a random-sequence mechanism in which interconversion of ternary intermediates is rate-limiting; values of Km for pyruvate and TPP were 25+/-4 muM and 50+/-10 nM respectively. The Kia-TPP (the dissociation constant for Enz-TPP complex calculated from kinetic plots) was close to the value of Kd-TPP (determined by direct binding studies). 3. Inhibition of the overall pyruvate dehydrogenase reaction by pyrophosphate was mixed non-competitive versus pyruvate and competitive versus TPP; however, pyrophosphate did not alter the calculated value for Kia-TPP, consistent with the lack of effect of pyrophosphate on the Kd for TPP. 4. Pyruvate dehydrogenase catalysed a TPP-dependent production of 14CO2 from [1-14C]pyruvate in the absence of NAD+ and CoA at approximately 0.35% of the overall reaction rate; this was substantially inhibited by phosphorylation of the enzyme both in the presence and absence of acetaldehyde (which stimulates the rate of 14CO2 production two- or three-fold). 5. Pyruvate dehydrogenase catalysed a partial back-reaction in the presence of TPP, acetyl-CoA and NADH. The Km for TPP was 4.1+/-0.5 muM. The partial back-reaction was stimulated by acetaldehyde, inhibited by pyrophosphate and abolished by phosphorylation. 6. Formation of enzyme-bound [14C]acetylhydrolipoate from [3-14C]pyruvate but not from [1-14C]acetyl-CoA was inhibited by phosphorylation. Phosphorylation also substantially inhibited the transfer of [14C]acetyl groups from enzyme-bound [14C]acetylhydrolipoate to TPP in the presence of NADH. 7...  相似文献   

13.
The goal of this study was to test the relationship between malonyl-CoA concentration and its turnover measured in isolated rat hearts perfused with NaH(13)CO(3). This turnover is a direct measurement of the flux of acetyl-CoA carboxylation in the intact heart. It also reflects the rate of malonyl-CoA decarboxylation, i.e. the only known fate of malonyl-CoA in the heart. Conditions were selected to result in stable malonyl-CoA concentrations ranging from 1.5 to 5 nmol.g wet weight-(1). The malonyl-CoA concentration was directly correlated with the turnover of malonyl-CoA, ranging from 0.7 to 4.2 nmol.min(-) (1).g wet weight(-1) (slope = 0.98, r(2) = 0.94). The V(max) activities of acetyl-CoA carboxylase and of malonyl-CoA decarboxylase exceeded the rate of malonyl-CoA turnover by 2 orders of magnitude and did not correlate with either concentration or turnover of malonyl-CoA. However, conditions of perfusion that increased acetyl-CoA supply resulted in higher turnover and concentration, demonstrating that malonyl-CoA turnover is regulated by the supply of acetyl-CoA. The only condition where the activity of malonyl-CoA decarboxylase regulated malonyl-CoA kinetics was when the enzyme was pharmacologically inhibited, resulting in increased malonyl-CoA concentration and decreased turnover. Our data show that, in the absence of enzyme inhibitors, the rate of acetyl-CoA carboxylation is the main determinant of the malonyl-CoA concentration in the heart.  相似文献   

14.
The yeast Pyc1 isoform of pyruvate carboxylase has been further characterized and shown to differ from the Pyc2 isoform in its K(a) for K(+) activation. Pyc1 differs from chicken liver pyruvate carboxylase in the lack of effect of acetyl-CoA on ADP phosphorylation by carbamoyl phosphate, which may be a result of differences in the loci of action of the effector between the two enzymes. Solvent D(2)O isotope effects have been measured with Pyc1 on the full pyruvate carboxylation reaction, the ATPase reaction in the absence of pyruvate, and the carbamoyl phosphate-ADP phosphorylation reaction for the first time for pyruvate carboxylase. Proton inventories indicate that the measured isotope effects are due to a single proton transfer step in the reaction. The inverse isotope effects observed in all reactions suggest that the proton transfer step converts the enzyme from an inactive to an active form. Kinetic measurements on the C249A mutant enzyme suggest that C249 is involved in the binding and action of enzyme activators K(+) and acetyl-CoA. C249 is not involved in ATP binding as was observed for the corresponding residue in the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase, nor is it directly responsible for the measured inverse (D)(k(cat)/K(m)) isotope effects. The size of the inverse isotope effects indicates that they may result from formation of a low-barrier hydrogen bond. Modification of the wild type and C249A mutant with o-phthalaldehyde suggests that C249 is involved in isoindole formation but that the modification of this residue is not directly responsible for the accompanying major loss of enzyme activity.  相似文献   

15.
Regulation of `malic'' enzyme of Solanum tuberosum by metabolites   总被引:5,自引:1,他引:4       下载免费PDF全文
A purification of ;malic' enzyme from potato is described. The purified enzyme is specific for NADP and requires a bivalent cation for activity. At pH values below 7 the plot of rate versus malate concentration approximates to normal Michaelis-Menten kinetics. At pH values above 7 the plot of rate versus malate concentration is sigmoid. A number of dicarboxylic acids activate the enzyme and remove the sigmoidicity. The enzyme is inhibited by phosphate, triose phosphates and AMP. In general, effectors of the oxidative decarboxylation of malate behave in the same manner in the reductive carboxylation of pyruvate. The response of the enzyme to energy charge is reported and the physiological significance of the response to metabolites is discussed in relation to the proposed role of the enzyme in the control of pH.  相似文献   

16.
An acetaldehyde dehydrogenase from germinating seeds   总被引:2,自引:2,他引:0       下载免费PDF全文
An acetaldehyde dehydrogenase from germinating peanut cotyledons has been purified and its properties have been studied. At the highest purification achieved the preparation is free of alcohol dehydrogenase activity.

The enzyme is specific toward diphosphopyridine nucleotide, and can oxidize a variety of aldehydes. The highest reaction rate is obtained with acetaldehyde, which is oxidized to acetate. All the attempts to demonstrate the formation of an energy-rich acetyl derivative during the course of the reaction failed. The enzyme is inhibited by aldol; it is sensitive toward sulfhydryl reagents, including arsenite. Reduced glutathione stabilizes the enzyme, while cysteine, mercaptoethanol, and coenzyme A are inhibitory.

Acetaldehyde dehydrogenase is activated by phosphate and inhibited by fatty acyl-CoA derivatives. It appears to be activated by the substrate, as was deduced from the shape of the plot of reaction velocity against acetaldehyde. These properties suggest that the enzyme is an allosteric protein.

The plot of reaction velocity against substrate concentration is anomalous. The shape of this plot seems to reflect the presence of 2 different enzymatic activities, one with extremely high apparent affinity for acetaldehyde. The 2 activities may reflect 2 conformational states of a single enzyme or 2 separate enzymes.

Experiments with tissue slices indicate that the reaction catalyzed by this enzyme is a step in the oxidation of ethanol to acetyl-CoA. This enzyme may also participate in the oxidation of pyruvate to acetyl-CoA in certain tissues.

  相似文献   

17.
Pyruvate kinase from Propionibacterium shermanii was shown to be activated by glucose-6-phosphate (G-6-P) at non-saturating phosphoenol pyruvate (PEP) concentrations but other glycolytic and hexose monophosphate pathway intermediates and AMP were without effect. Half-maximal activation was obtained at 1 mM G-6-P. The presence of G-6-P decreased both the PEP0.5V and ADP0.5V values and the slope of the Hill plots for both substrates. The enzyme was strongly inhibited by ATP and inorganic phosphate (Pi) at all PEP concentrations. At non-saturating (0.5 mM) PEP, half-maximal inhibition was obtained at 1.8 mM ATP or 1.4 mM Pi. The inhibition by both Pi and ATP was largely overcome by 4 mM G-6-P. The specific activity of pyruvate kinase was considerably higher in lactate-, glucose- and glycerol-grown cultures than that of the enzyme catalysing the reverse reaction, pyruvate, phosphate dikinase. It is suggested that the activity of pyruvate kinase in vivo is determined by the balance between activators and inhibitors such that it is inhibited during gluconeogenesis while, during glycolysis, the inhibition is relieved by G-6-P.Abbreviations PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate - Pi inorganic phosphate  相似文献   

18.
Treatment of rats for 3 h with dexamethasone was shown to stimulate both pyruvate carboxylation and decarboxylation in the subsequently isolated mitochondria. The effect of hormone treatment on pyruvate carboxylation was also apparent in liver homogenates assayed within minutes of killing the animal and was independent of the temperature at which the assay was performed, suggesting that it was not an artifact of the mitochondrial preparation procedure. The stimulation of both aspects of pyruvate metabolism in the intact organelle was independent of the induction of either pyruvate carboxylase or pyruvate dehydrogenase. Similarly, there was no change in the percentage of pyruvate dehydrogenase in the active form, indicating that the effect of steroid treatment on pyruvate oxidation was not via changes in the degree of phosphorylation of the enzyme. Adrenalectomizing the animals for a period of 14 days before the experiment had no effect on either parameter. Glucocorticoid treatment of the animals increased the rate of pyruvate uptake into the mitochondria, as measured by the titration of pyruvate metabolism with alpha-cyano-4-hydroxycinnamate, a specific inhibitor of the pyruvate translocator. It also increased the intramitochondrial concentrations of acetyl-CoA and ATP and led to an elevated [ATP]/[ADP] ratio within the mitochondria. It is suggested that both enzymes of pyruvate metabolism exist in the mitochondria under considerable restraint and that glucocorticoids act to relieve this restraint by alterations in substrate supply and the intramitochondrial concentrations of effector molecules.  相似文献   

19.
1. An NADH dehydrogenase, obtained from an extremely halophilic bacterium, was activated by various salts when enzyme activity was measured as the observed velocity, whereas the maximum velocity was unaffected by either the salt concentration or the nature of the salt. 2. Two ion effects were observed; a quantitative cation effect, reflected in changes in the apparent Michaelis constant for 2,6-dichlorophenolindophenol, and a qualitative anion effect, reflected in the apparent Michaelis and dissociation constants for NADH. 3. The data suggest that cations act by neutralizing electrostatic charges surrounding the 2,6-dichlorophenolindophenol-binding site, whereas the anions affect the conformation of the enzyme by altering the accessibility of the NADH-binding site to the bulk solvent. 4. Thus, the apparent activation of this enzyme, obtained from an extremely halophilic bacterium, is a reflection of measuring enzyme activity at non-saturating substrate concentrations.  相似文献   

20.
Isolated rat liver mitochondria incubated in the presence of 3-hydroxybutyrate display a markedly increased rate of pyruvate carboxylation as measured by malate and citrate production from pyruvate. The stimulation was demonstrable both with exogenously added pyruvate, even at saturating concentration, and with pyruvate intramitochondrially generated from alanine. The concentration of DL-3-hydroxybutyrate required for half-maximal stimulation amounted to about 1.5 mM. The intramitochondrial ATP/ADP ratio as well as the matrix acetyl-CoA level was found to remain unchanged by 3-hydroxybutyrate exposure, which, however, lowered the absolute intramitochondrial contents of the respective adenine nucleotides. The effects of 3-hydroxybutyrate were diminished by the concomitant addition of acetoacetate. Moreover, a direct relationship between mitochondrial reduction by proline and the rate of pyruvate carboxylation was observed. The results seem to indicate that the mitochondrial oxidation--reduction state might be involved in the expression of the 3-hydroxybutyrate effect. As to the physiological relevance of the findings, 3-hydroxybutyrate could be shown to activate pyruvate carboxylation in isolated hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号