首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An erythroid stimulating activity which promotes the growth of small bursts probably arising from mature burst forming units-erythroid (BFU-Es) of adult human bone marrow cells and called human erythroid burst stimulating activity (HuEBSA), was previously found in media conditioned by a fetal human kidney cell line. In the present work we report that adding HuEBSA to cultures did not increase the burst number but increased the size of bursts from cord blood (CB) cells. A similar observation was made using stem cell factor (SCF). However, a synergistic effect on the burst number was noted when both HuEBSA and SCF were introduced to cultures. We also noticed that CB erythroid progenitors pre-cultured with 5637-Conditioned Medium [as a source of burst promoting activity (BPA)] and erythopoietin (Epo) for 3 days could be stimulated by HuEBSA but not by SCF. Similar results were obtained when interleukin 3 (IL-3) was introduced with Epo to the pre-cultures. These results suggest that two different populations of erythroid progenitors coexist in cord blood, one is Epo- and IL-3-sensitive, the other solely Epo-sensitive. It also seems probable that HuEBSA acts on erythroid progenitors arising from the more immature erythroid population, since its stimulating activity was evident after a 3-day pre-culture of cord blood cells in Epo and IL-3.  相似文献   

2.
We report the effect of four sources of hemopoietic growth factors, alone or in combination, on colony growth in serum-free cultures of bone marrow from normal mice or marrow from mice pre-treated with 5-fluorouracil (5-FU-bm). The four supplements were: mouse spleen conditioned medium (SCM, a source of multi-lineage colony-stimulating activity, multi-CSA), human placental conditioned medium (HPCM, a source of synergistic activity), pregnant mouse uterus extract (PMUE, a source of M-CSA) and erythropoietin (Epo). First, in cultures of normal marrow, only PMUE and SCM induced significant colony growth when added alone. The majority of those colonies contained granulocytes and macrophages (myeloid colonies). In Epo-supplemented cultures, only SCM supported the growth of erythroid bursts and mixed erythroid-myeloid colonies. HPCM thus appears to be a poor source of multi-CSA. Second, in cultures of 5-FU-bm, few colonies developed if any of the above supplements were added alone. Only SCM + Epo together stimulated the formation of a low number of very large, mixed erythroid/myeloid/megakaryocyte colonies. HPCM, but not SCM, synergized with PMUE to augment myeloid colony numbers. Hence, SCM appears to be a poor source of synergistic activity (SA). In cultures of 5-FU-bm already supplemented with HPCM + PMUE, the addition of Epo did not change total colony numbers but did induce erythroid differentiation in one third of the colonies present. These data suggest that multi-CSA and SA may be expressed by different factors and that 5-FU pre-treated marrow contains: a population of primitive multipotential progenitors which form large, mixed colonies in the presence of SCM + Epo, and a larger Epo-sensitive population which also requires HPCM + PMUE to form mixed colonies.  相似文献   

3.
A variety of biologic activities on human hematopoietic stem cells were detected in 12-O-tetradecanoylphorbol-13-acetate-stimulated leukocyte-conditioned medium (TPA-LCM). Partial purification of TPA-LCM demonstrated the presence of human-active granulocyte-macrophage colony-stimulating factor (GM-CSF; Mr 50-70Kd), macrophage-CSF (M-CSF; Mr greater than 100Kd) and possibly a third protein (Mr 24-26Kd) supporting survival and growth of hematopoietic stem cells in vitro. Activities investigated included GM-colony and erythroid burst-potentiation, burst-promoting activity (BPA) and delta granulocyte and delta burst-promoting activities (delta GPA and delta BPA).  相似文献   

4.
Cultured human umbilical vein endothelial cells, when exposed to soluble products of peripheral blood monocytes, elaborate granulocyte-macrophage colony-stimulating activity (GM-CSA) and erythroid burst-promoting activity (BPA). We have performed studies to determine if the monokine IL 1 can stimulate endothelial cells to release hematopoietic growth factors and whether such factors can also support human megakaryocyte (Meg) and mixed-cell colony growth. Various concentrations of recombinant human IL 1 beta (rIL 1) and media conditioned by monocytes (MCM), endothelial cells (ECM), and endothelial cells cultured for 3 days in 50% MCM (ECMM) or rIL 1 (ECMrIL 1) were added to marrow mononuclear cells cultured in methylcellulose. ECMM and ECMrIL 1 stimulated, in a dose-dependent fashion, the growth of Meg, mixed-cell, and GM colonies and erythroid bursts. In contrast, ECM, MCM, and rIL 1 displayed little or no activity in the colony-forming assays. Preincubation with specific antisera to native human IL 1 or rIL 1 reduced by 75 to 100% the activity of MCM in stimulating endothelial cell release of BPA, GM-CSA, Meg-CSA, and mixed-cell CSA. Meg-CSA, although readily detectable at ECMM and ECMrIL 1 concentrations in culture of 1 to 5%, was partially masked by lineage-specific inhibitors of Meg colony growth. When ECMM was analyzed by gel filtration chromatography, the megakaryocytopoietic inhibitory activity eluted in the high Mr fractions (greater than 75 kD). Meg-CSA co-eluted with GM-CSA and BPA in a single peak of 30 kD. We conclude that endothelial cells, in response to IL 1, produce one or more growth factors that probably act on multiple classes of progenitor cells.  相似文献   

5.
We describe a serum-free medium for the formation of erythropoietic bursts by murine bone marrow cells. Iscove's modified Dulbecco's medium supplemented with bovine serum albumin, iron-saturated transferrin, soybean phospholipids and cholesterol supported burst formation. The further addition of hemin increased burst numbers to above those obtained in serum-containing cultures. With or without hemin, a source of burst-promoting activity (BPA) (crude or partially purified spleen conditioned medium) and erythropoietin were essential. This system provides a sensitive assay for BPA. Of all colonies developing in these cultures, 16% were pure erythroid, 17% mixed erythroid/myeloid, 36% macrophage, 19% macrophage/basophil and macrophage/neutrophil, 9% basophil and 2% neutrophil.  相似文献   

6.
H P Lohrmann  W Hansi  H Heimpel 《Blut》1978,36(2):81-88
Human placenta-conditioned medium (HPCM) has been reported to stimulate colony formation by human granulopoietic stem cells (CFU-C) in vitro. The present work was performed to further characterize this colony formation. The majority of HPCM batches tested stimulated colony growth equivalent to recombined human leukocyte feeder layers with optimal cellular composition. A broad plateau of the dose-response curve of HPCM was found. A linear correlation exists between the number of marrow cells plated and the number of colonies grown. Optimal duration of culture is between 9 and 11 days. Colonies are large and tend to be compact. Admixture of mature granulocytes does not affect the colony growth pattern under optimal culture conditions. These data document that HPCM is a suitable source of colony-stimulating activity for the routine assay of human CFU-C. Due to the constant colony stimulation, HPCM appears particularly valuable for longitudinal studies of human CFU-C.  相似文献   

7.
Purified recombinant human (rhu) IL-1 alpha and IL-1 beta were evaluated for their effects on the proliferation and survival of granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells from normal human bone marrow (BM). Using nonadherent low density T lymphocyte depleted (NALT-) BM cells cultured in the presence or absence of IL-1, CSF-deprivation studies demonstrated that IL-1 alpha or IL-1 beta by itself did not enhance the proliferation of CFU-GM or BFU-E. They did, however, promote the survival of progenitors responding to the delayed addition of media conditioned by the 5637 cell line (5637 conditioned medium), rhu GM-CSF and erythropoietin. The survival promoting effects of IL-1 alpha on CFU-GM and BFU-E were neutralized by anti-IL-1 alpha mAb added to the cultures. The survival promoting effect of IL-1 alpha did not appear to be mediated by CSF, because neither CSF nor erythroid burst promoting activity were detectable in cultures in which NALT- cells were incubated with rhuIL-1 alpha. In addition, suboptimal concentrations of rhu macrophage CSF (CSF-1), G-CSF, GM-CSF, and IL-3, which were just below the levels that would stimulate colony formation, did not enhance progenitor cell survival. Survival of CFU-GM and BFU-E in low density (LD) bone marrow cells did not decrease as drastically as that in NALT- BM cells, and exogenously added IL-1 did not enhance progenitor cell survival of CFU-GM and BFU-E in LD BM cells. However, addition of anti-IL-1 beta decreased survival of CFU-GM and BFU-E in LD BM cells. These results implicate IL-1 in the prolonged survival of human CFU-GM and BFU-E.  相似文献   

8.

Background

The supply of transfusable red blood cells (RBCs) is not sufficient in many countries. If erythroid cell lines able to produce transfusable RBCs in vitro were established, they would be valuable resources. However, such cell lines have not been established. To evaluate the feasibility of establishing useful erythroid cell lines, we attempted to establish such cell lines from mouse embryonic stem (ES) cells.

Methodology/Principal Findings

We developed a robust method to obtain differentiated cell lines following the induction of hematopoietic differentiation of mouse ES cells and established five independent hematopoietic cell lines using the method. Three of these lines exhibited characteristics of erythroid cells. Although their precise characteristics varied, each of these lines could differentiate in vitro into more mature erythroid cells, including enucleated RBCs. Following transplantation of these erythroid cells into mice suffering from acute anemia, the cells proliferated transiently, subsequently differentiated into functional RBCs, and significantly ameliorated the acute anemia. In addition, we did not observe formation of any tumors following transplantation of these cells.

Conclusion/Significance

To the best of our knowledge, this is the first report to show the feasibility of establishing erythroid cell lines able to produce mature RBCs. Considering the number of human ES cell lines that have been established so far, the intensive testing of a number of these lines for erythroid potential may allow the establishment of human erythroid cell lines similar to the mouse erythroid cell lines described here. In addition, our results strongly suggest the possibility of establishing useful cell lines committed to specific lineages other than hematopoietic progenitors from human ES cells.  相似文献   

9.
10.
Medium conditioned by leukocytes in the presence of phytohemagglutinin (PHA-LCM) promotes the growth of multilineage hemopoietic progenitors derived from human bone marrow. However, PHA-LCM prepared in the presence of a human leukocyte interferon preparation does not support mixed colony formation. Crude PHA-LCM preparations were characterized by gel filtration, affinity chromatography, and gel electrophoresis. The elution profile on Sephacryl S-300 of PHA-LCM prepared without interferon showed a distinct peak that stimulated the growth of pluripotent stem cells (CFU-gemm) and committed precursors (CFU-c, BFU-e). Gel filtration of PHA-LCM, prepared with 1000 U/ml of interferon, revealed a change in the elution profile. The eluted material demonstrated no growth-promoting activities. We conclude that the abolished stimulatory activity of PHA-LCM, prepared with human leukocyte interferon, might be due to a reduced production of stimulatory molecules, suggesting that interferon interferes with the molecular events required for colony formation of committed and noncommitted hemopoietic progenitors.  相似文献   

11.
《The Journal of cell biology》1994,127(6):1743-1754
Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c- MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU- GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment.  相似文献   

12.
Normal human serum significantly increased the growth of erythroid colonies from bone marrow colony-forming units-erythroid (CFU-e) which were enriched by using a set of monoclonal antibodies in a panning technique. This activity was still observed in cultures of enriched CFU-e plated near the limiting cell dilution. When the addition of erythropoietin was delayed so that only early CFU-e could survive, we observed that the growth of erythroid colonies was less affected in cultures containing erythropoietin and normal serum than in those containing erythropoietin only. We have concluded from this study that normal human serum acts on in vitro erythropoiesis by directly stimulating the growth of a population of early CFU-e.  相似文献   

13.
Leukemic blast growth factors (LBGFs) are necessary for in vitro growth of clonogenic cells from patients with acute myeloblastic leukemia. As the human bladder carcinoma cell line 5637 had previously been reported to secrete abundant LBGFs into the culture supernatant, the LBGFs in 5637-conditioned medium (5637-CM) were characterized. Measurement of LBGFs was done using an in vitro leukemic blast colony assay in methylcellulose culture. LBGFs in 5637-CM were fractionated by anion exchange chromatography, and two peaks of activity were recovered. Pool B (high-salt eluent) and/or purified granulocyte colony-stimulating factor (G-CSF) were added to the clonogenic leukemic blast cell assays. It was found that pool B was more active than G-CSF in the majority of cases examined and that the two types of activity were synergistic in some cases.  相似文献   

14.
Erythropoietin (Ep) was isolated from the urine of patients with aplastic anemia [Yanagawa et al., J. Biol. Chem., 259, 2707 (1984)] and burst-promoting activity (BPA) was extensively purified from the residue obtained after removal of Ep. These erythropoietic factors were studied for their effcects on erythroid burst-colony formation of human peripheral blood mononuclear cells in methylcellulose cultures. Reddish bursts were formed with the addition of Ep alone. Addition of BPA not only elevated the number of bursts but also greatly reduced the amount of Ep required for burst formation. The presence of BPA alone in cultures did not permit bursts to form but did permit the growth of small colonies that did not contain hemoglobin (Hb). Addition of Ep to these small colonies led to the formation of erythroid bursts. Administration of Ep to the cultures could be delayed for 6 days without decreasing the number of bursts if the cultures were initiated in the presence of BPA; in the absence of BPA, the erythroid precursors (BUF-E) were rapidly lost if Ep was not provided at the start of the cultures. BPA produced larger bursts than those formed in the presence of Ep alone. Microassays of Hb in the bursts indicated that BPA increased the amonut of Hb per burst. This increase could not be entirely explained by the augumentation in cell number per burst but was partly ascribable to the increased amount of Hb per cell.  相似文献   

15.
Target cells for Friend virus-induced erythroid bursts in vitro   总被引:9,自引:0,他引:9  
T A Kost  M J Koury  W D Hankins  S B Krantz 《Cell》1979,18(1):145-152
Erythropoietin (Epo) acts on mouse bone marrow cells in vitro in plasma clot or methyl cellulose culture systems to induce the formation of single erythroid colonies, or clusters of erythroid colonies termed bursts. Our laboratory has recently reported the observation that infection of mouse bone marrow cells in vitro with the polycythemia-inducing strain of Friend virus (FV) resulted in the formation of erythroid bursts after 5 days in plasma clot culture in the absence of added Epo. We have now used this system to characterize the target cells for this FV-induced erythroid transformation. The greatest number of FV bursts were observed when marrow cells were obtained from mice whose erythropoiesis had been stimulated by bleeding or phenylhydrazine treatment. Bleeding also resulted in an increase in the number of FV bursts following the infection of spleen cells in vitro. Hypertransfusion of mice, which results in decreased erythropoiesis, yielded a reduced number of FV bursts in vitro, as did prior treatment with actinomycin D. Cell separation studies using velocity sedimentation at unit gravity showed that the cells, which give rise to FV bursts, sedimented with a modal sedimentation velocity between 5.1–8.5 mm/hr. The Epo-dependent colony-forming unit erythroid (CFU-E), which gives rise to a single erythroid colony, also sediments with a modal velocity between 5.1–8.5 mm/hr, while the Epo-dependent day 8 burst-forming unit erythroid (day 8 BFU-E) sediments with a modal velocity between 3.0–6.0 mm/hr. A 20 min incubation of marrow cells with high specific activity 3H-thymidine, prior to virus infection, resulted in a 75–80% reduction in the number of FV bursts. Mixing cells from the upper portion of the gradient, which yielded no FV bursts, with cells from an area in which high numbers of FV bursts were observed did not result in the inhibition of burst formation. These experiments indicate that the primary target cells for FV bursts in vitro are most probably erythroid precursor cells that have matured beyond the day 8 BFU-E and are closely related to the CFU-E.  相似文献   

16.
There is evidence that anaemia is associated with aluminium (Al). We have already reported on the sensitivity to Al, showed by erythroid cell populations of animals chronically exposed to the metal. In order to investigate whether Al could also affect human cells, experiments were carried out both on immature and mature human erythroid cells. Erythroid progenitors (CFU-E, colony-forming units-erythroid) concentrated from human peripheral blood were cultured in an Al-rich medium under erythropoietin stimulation and their development analysed. Human peripheral erythrocytes were aged in the presence of Al. Cells were examined using scanning electron microscopy, and membrane proteins analysed by polyacrylamide gel electrophoresis with sodium dodecyl sulphate and immunoblotting. The development of the Al-treated progenitors was 8750/6600-9200 CFU-E/10(6) cells, a significantly lower median value (P<0.05) than that showed by non-treated cells (12300/11200-20700 CFU-E/10(6) cells). Erythrocyte morphological changes were induced by Al during the in vitro ageing. The cells lost their typical biconcave shape, turning into acanthocytes and stomatocytes. Simultaneously, an increased membrane protein breakdown compatible with band 3 degradation was detected. Besides, Al was found within the cells and attached to the membrane. The present in vitro results suggest that Al may disturb human erythropoiesis through combined effects on mature erythrocytes and cellular metabolism in late erythroid progenitors.  相似文献   

17.
《The Journal of cell biology》1990,111(3):1217-1223
We have isolated a protein from media conditioned by a murine marrow- derived cell line (PB6) and from mouse marrow supernatants that antagonizes interleukin 3-dependent proliferation of cells in culture and reversibly inhibits DNA synthesis of erythroid progenitor cells (BFU-E) in vitro. This protein, p16 (monomer Mr = 16 kD on SDS-PAGE), was purified to homogeneity and amino acid sequencing of a polypeptide fragment yielded a sequence identical to that of murine cytosolic Cu,Zn- containing superoxide dismutase (SOD). The identification of p16 as SOD was confirmed by the detection of SOD enzymatic activity in pure p16 fractions, and when a commercial human erythrocytic SOD preparation was tested it showed the same cell inhibitory activities as p16. These observations show that superoxide dismutase is able to affect the cycling and growth factor responses of hematopoietic cells, activities that have not previously been associated with this enzyme.  相似文献   

18.
Antiserum prepared from a rabbit which was immunized with human erythrocyte glycerate-2,3-P2 synthase was found to react with glycerate-2,3-P2 synthase in rabbit erythroid cells. By using this antiserum, it was proved that the specific activity of this enzyme was unchanged during the development of the rabbit erythroid cells. This leads us to conclude that the increased activity of glycerate-2,3-P2 synthase in developing erythroid cells (Narita, H., Ikura, K., Yanagawa, S., Sasaki, R., Chiba, H., Saimyoji, H., and Kumagai, N. (1980) J. Biol. Chem. 255, 5230-5235) is due to the accumulation of enzyme protein. There is at least a 16-fold increase in the level of this protein during development from bone marrow erythroid cells to erythrocytes. The synthesis of glycerate-2,3-P2 synthase was shown to occur in rabbit reticulocytes and bone marrow erythroid cells. These cells were incubated for protein synthesis and the protein synthesized was precipitated with the anti-glycerate-2,3-P2 synthase antiserum and separated on sodium dodecyl sulfate-polyacrylamide gels. The immunoprecipitated product was shown to produce fragments of the same molecular weight after digestion with V8 protease as did the pure glycerate-2,3-P2 synthase. The proportion of glycerate-2,3-P2 synthase synthesis in reticulocytes (0.04% of total protein synthesis) was comparable to the level of this protein in the cells (0.07% of the total protein).  相似文献   

19.
Characterization of human megakaryocytic colony formation in human plasma   总被引:4,自引:0,他引:4  
We have analysed the contribution to megakaryocyte colony formation in methylcellulose made by human plasma, serum, media conditioned by phytohemagglutinin (PHA) stimulated leukocytes (PHA-LCM), erythropoietin (EPO) preparations, and platelets. The culture system was used as a bioassay for megakaryocyte colony stimulating activity (Meg-CSA) in plasma samples of patients with perturbed megakaryocytopoiesis. Preparations of heparinized platelet-poor plasma yielded the most consistent results. Platelet-poor plasma of normal subjects will at best facilitate the occasional growth of small megakaryocyte colonies. Colony frequency and size are reproducibly enhanced in the presence of PHA-LCM as a source of exogenous Meg-CSA. Commercially available EPO preparations may vary in their content of activities that influence megakaryocyte colony formation. Addition of these preparations to cultures that contain plasma and PHA-LCM usually does not enhance colony formation. In contrast to platelet-poor plasma, platelet rich plasma and serum are less supportive of megakaryocyte colony growth. It is suggested that this loss of activity may be related to the release of inhibitors by activated platelets or alternatively caused by absorption of activities by platelets. Plasma samples from patients with megakaryocytopoietic dysfunction may contain components that promote colony formation without addition of PHA-LCM or EPO. This phenomenon is consistently observed for patients with severe aplastic anemia and bone marrow transplant recipients after completion of their ablative preparative regimen.  相似文献   

20.
Circulating erythroid progenitors from 14 patients with acute lymphoblastic leukemia (ALL) and from 8 healthy subjects were studied in culture to determine the frequency and size of CFU-E- and BFU-E-derived colonies. Cells were cultured in a plasma clot system, and hemoglobinized colonies identified by diaminobenzidine reaction. The numbers of CFU-E and BFU-E per milliliter of peripheral blood were greatly increased in 10 patients when compared to controls. In 13 patients, the size distribution of BFU-E-derived colonies, analyzed by counting the number of subunits in each colony, was also found to differ significantly from controls, with a large excess of small colonies and a low percentage or a total lack of large colonies. This abnormal BFU-E size distribution was partially corrected, in the 5 patients tested, by the addition to the culture medium of 10% phytohemagglutinin-leukocyte-conditioned medium (PHA-LCM). Bone marrow crowding out of the normal progenitors, as well as disturbances in the cellular interactions involved in their normal development, most likely explain these results and these factors could be implicated in the frequent pancytopenia of ALL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号