首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Splenocytes obtained from normal mice (BALB/c nude, BALB/c, C3H, C57Bl/6) and from mice bearing lung or pulmonary carcinomas were propagated for 1–12 months in the presence of crude or mitogen-depleted T-cell growth factor (TCGF). Clones from several TCGF-propagated lymphoid cell lines were established by limiting dilution or the soft agar techniques. All the cultured lines and the majority of the clonal populations derived from them exhibited strong cytotoxic activity in vitro (51Cr release assay) toward a variety of syngeneic and allogeneic tumor target cells, both freshly obtained and passaged in culture, and both lymphoid and solid in origin, and including targets usually resistant to fresh NK cells. Considerable cytotoxic activity was also observed with several rat and human cultured tumor lines. Only low cytotoxic activity was detected against normal lymphoid mouse cells. Cloned populations generally exhibited more restricted target cytotoxicity than the parental cultured lines, and the pattern of reactivity varied among the clones. Of the clones tested for surface markers, all were positive for Thy 1.2, T200, and asialo GM1 and had strong binding to peanut agglutinin (PNA), all had undetectable receptors for IgG or IgM, and some were positive for Lyt 2. The cytotoxic activity was augmented by pretreatment of the effector cells with interferon and inhibited by the presence of mannose or galactose during the assay. Several clones were capable of mediating antibody-dependent cellular cytotoxicity and lectin-induced cellular cytotoxicity (LICC), and produced relatively large quantities of interferon and lymphotoxinlike material. The findings indicated continuous culturing in TCGF of previously antigen-nonstimulated mouse lymphocytes selects for the growth of at least two distinct populations with activated NK activity, one reacting preferentially with lymphoid tumor target cells (designated CNK-L), and the second reacting effectively with both lymphoid and solid tumor targets (designated CNK-SL). Both populations have several features of both T lymphocytes and NK cells.  相似文献   

2.
Vaccinia virus-induced peritoneal exudate cells (PEC) in the hamster were characterized with regard to cell type(s), target specificity, and expression of the T cell antigen, Thy 1.2 homologue. Hamsters were immunized intraperitoneally with vaccinia virus and cytotoxicity was measured against 51Cr-labeled targets in a 16-hr assay. PEC collected 4 days after immunization were cytotoxic for both baby hamster kidney cells (BHK) and herpes virus-infected BHK (BHKHSV). Both the nonadherent (lymphocyte) and adherent macrophage (MP) fractions of PEC were cytotoxic. Treatment of cells with a monoclonal anti-murine Thy 1.2 antibody (alpha-Thy 1.2) known to detect a Thy 1.2 homologue on hamster T cells, removed all of the cytotoxicity in both PEC fractions, whereas, cytotoxic spleen cells from the same animals were resistant to antibody treatment. Similarly, the cytotoxic cells in PEC induced by bacillus Calmette-Guérin were exclusively of the Thy 1.2 homologue-positive phenotype. Target specificities of Thy 1.2+ PEC and Thy 1.2- spleen cells were similar as evidenced by comparable activity against hamster BHK and BHKHSV targets and murine SV3T3 and YAC-1 targets. Previous studies have attributed the cytotoxicity of the adherent PEC to MP. However, as determined by immunofluorescence and morphological studies, treatments that enriched for MP decreased cytotoxic activity, whereas, procedures that enriched for lymphocytes enhanced cytotoxic activity suggesting that all cytotoxicity in PEC is mediated by a non-specific Thy 1.2 homologue positive lymphocyte (Thy 1.2+ CL). Thus our data support the conclusion that intraperitoneal inoculation of hamsters with vaccinia induces two distinctly compartmentalized phenotypes with similar cytotoxic characteristics--the Thy 1.2+ CL and the Thy 1.2 homologue-negative natural killer cell (NK) or NK-like cell in the peritoneum and in the spleen, respectively.  相似文献   

3.
Previous studies on the surface phenotype of natural cytotoxic (NC) cells defined by negative selection with antibodies and complement showed that most if not all NC activity is the property of "null" cells that did not express a variety of lymphoid markers, including some expressed by natural killer (NK) cells. In the present study we show that when murine C57BL/6 spleen cells were sorted by flow cytometry into fractions positive or negative for Qa-5, Ly-2.2, Thy-1.2, L3T4, or surface immunoglobulin (sIg) and for high or low expression of H-2Kb, the pattern of NC activities was quite different from the negative selection experiments with antibody and complement. Enrichment of NC activity tested against WEHI-164 targets was observed in the H-2Kb high, Qa-5+, Thy-1.2+, and Ly-2.2- fractions, and to a lesser extent in the L3T4+ and sIg- fractions. However, significant NC activity, although lower than in the unseparated cells, was also found in the H-2Kb low, Qa-5-, Thy-1.2-, L3T4-, Ly-2.2+, and sIg+. With the exception of the anti-Ig, all the reagents were monoclonal antibodies. By comparison, NK activity tested against YAC-1 targets was clearly enriched in the H-2Kb high, Ly-2.2-, sIg-, and to a lesser extent, Thy-1.2+ sorted fractions, whereas most of the NK activity was in the L3T4- fractions. These results indicate that NC activity against WEHI-164 targets is mediated by an heterogeneous population of effector cells, which includes cells with markers of both the T and the B lineages, as well as of NK cells. These studies also show that negative selection with antibodies and complement is not always a reliable method for defining the surface phenotype of effector cells.  相似文献   

4.
The susceptibility of human neuroblastoma cells to direct cellular cytotoxicity has not been previously established. This is of particular interest because of their aggressive growth and low HLA expression. Neuroblastoma lines CHP 100 and CHP 126 were found to be excellent targets in 4-hr CML assays. Natural killer (NK) cells from fresh PBL and from an NK clone, 3.3, have high lytic activity against both cell lines. We also studied mixed lymphocyte culture-generated cytotoxic lines containing allo-specific cytotoxic T lymphocytes (CTL) directed against HLA antigens present on the neuroblastoma target cell lines. These lines did show excellent lytic activity, but cold target competition studies indicated that all of the lysis resulted from NK activity. This was verified by using inhibition studies with the use of monoclonal antibodies. OKT 3 and anti-HLA antibodies that block CTL function caused no reduction in kill. In contrast, anti-lymphocyte function antigen-1 (anti-LFA-1), which blocks both NK and CTL function, significantly inhibited lysis. These results serve as a functional confirmation of earlier findings of a very weak expression of HLA-A,B,C and beta 2-microglobulin on neuroblastoma cells.  相似文献   

5.
Nonspecific cell-mediated cytotoxicity was examined in the peripheral blood and spleens of normal and vaccinia virus-infected adult domestic cats. Natural cytotoxic (NC)-like cells, as measured by lysis of vaccinia- or HSV-infected, adherent cat tongue cells, were found in both the spleen and peripheral blood of normal, nonimmune cats. Cytotoxicity was expressed in a 16-hr assay but not in a 4-hr assay. Natural killer (NK)-like cells, as measured by lysis of an FeLV-induced lymphoid tumor cell line (FL-74) growing in suspension, were found in the spleen but not PBL, and required a 16-hr assay for expression. Infection with vaccinia virus did not increase the activity of feline NC-like cells in either the peripheral blood or the spleen. NK-like function, however, was increased. Cytotoxicity peaked 6 days post-infection and required a 16-hr assay for maximal expression of cell lysis. Furthermore, a cell with cytotoxic characteristics of the spleen NK-like cell appeared at low levels in the circulation at 6 days post-vaccinia infection. NK-like cells from vaccinia-infected cats showed some cytotoxicity for FL74 targets in a 4-hr assay. The cat thus possesses at least two functionally different populations of naturally cytotoxic cells. NC-like cells are found in the spleen and peripheral blood, lyse virus-infected monolayer targets, and are not activated by infection. NK-like cells are found in the spleen, lyse-lymphoid tumor targets, and can be activated by infection, with their peak activity occurring 6 days after infection.  相似文献   

6.
The effects of monosaccharides on various lymphocyte functions have provided useful probes for the study of cell-cell interactions. In this report, we show that a monosaccharide, alpha-L-fucose, significantly enhances the cytolytic capacity of MLC-induced or preincubated effector cells. The increase in activity was seen against cytotoxic T lymphocyte (CTL) targets (:relevant PHA blasts), natural killer cell (NK) targets (:K562), and natural cytotoxic cell (NC) targets (:MA-160). In addition, traditionally NK-insensitive targets (Raji cells, irrelevant and autologous PHA blasts) were lysed after preincubation of effector cells with fucose. Conversely, ADCC activity was not significantly increased with fucose induction. The addition of fucose directly to assay cultures did not enhance NK or CTL activity, whereas other sugars, such as alpha-methyl-D-mannoside and D-fructose, were inhibitory. The proportion of target-binding cells was not affected by preincubation with fucose, but the percentage of lytic conjugates was doubled. Significant augmentation of NK activity could be observed within 24 hr of incubation with alpha-L-fucose. Conversely, when fucose was added more than 24 hr after initiation of the culture, the increase in cytolytic activity was not observed. Parallel to the increase in cytolytic activity, after preincubation with alpha-L-fucose, an increase in the expression of a newly defined human NC cell marker, HNC-1A3, was observed. The HNC-1A3+ cells were not the major subpopulation responsible for fucose-induced activity, as ascertained by the use of positively sorted cells. The populations expressing antigens defined by the antibodies OKT8 and Leu-7 showed no quantitative change. The treatment of cells with OKM1 and complement (C) before culture eliminated fucose-enhanced killing, whereas similar treatment with OKT8 and C had no significant effect. The induction of fucose-activated killers (FAK) does not result in higher concentrations of interferon (IFN) in culture supernatants, in contrast to poly I:C, which induced both higher cytolytic activity and high titers of IFN. In addition, the induction of FAK was not sensitive to 100 ng/ml of cyclosporin A, suggesting that IL 2 did not play a major role in fucose activation of killing. These results provide strong evidence that alpha-L-fucose is capable of augmenting nonspecific activity by acting on OKM1+ precursors of cytotoxic cells and influencing a postbinding event.  相似文献   

7.
Alloreactive cytotoxic T lymphocytes (CTL) distinct from virus-specific CTL and activated natural killer (NK) cells were generated during acute lymphocytic choriomeningitis virus (LCMV) infection of C57BL/6J mice. The alloreactive CTL shared similar antigenic markers (Thy-1.2+, Lyt-2.2+, and asialo GM1-) with the virus-specific CTL that appeared at the same time 7 days postinfection, but had different target specificities. These alloreactive CTL lysed allogeneic but not syngeneic or xenogeneic targets. These were distinct from activated NK cells, which lysed all target cell types, peaked 3 days postinfection, and had a phenotype of asialo GM1+, Thy-1 +/-, Lyt-2.2-. Cold target competition studies indicated that there were several subsets of alloreactive T cells with distinct specificities, and that these alloreactive T cells were not subsets of the virus-specific T cells. Similar types of alloreactive CTL were induced at much lower levels in C3H/St mice. This may indicate that the generation of this "aberrant" T cell activity is under genetic control. Hence, the LCMV infection of C57BL/6J mice induces several cytotoxic effector populations including alloreactive CTL, activated NK cells, and virus-specific CTL. Virus infections therefore have the ability not only to polyclonally stimulate B cells, as previously described, but also to stimulate CTL.  相似文献   

8.
Fragmentation of YAC-1 target cell DNA during cytolysis mediated by mouse natural killer (NK) cells and cytotoxic T lymphocytes (CTL) was compared. Cleavage of nuclear chromatin was always an extensive and early event in CTL-mediated cytolysis, whereas with NK cell-mediated killing the degree of DNA fragmentation showed an unexpected relationship to the effector:target (E:T) ratio. At low NK:YAC-1 ratios, DNA fragmentation and 51Cr release were equivalent and increased proportionately until a ratio of about 50:1 was reached; at higher ratios, 51Cr release increased as expected but DNA fragmentation decreased dramatically. Comparison of time course data at E:T ratios producing similar rates of 51Cr release showed that the target cell DNA fragmentation observed in NK killing was not nearly as rapid nor as extensive as that observed with CTL effectors. These results suggest that NK cells induce target cell injury via two different mechanisms. One mechanism would involve lysis mediated by cell-to-cell contact, while the other may induce DNA fragmentation via a soluble mediator. In support of this notion, cell-free culture supernatants containing NK cytotoxic factor (NKCF) induced DNA fragmentation in YAC-1 cells. The DNA fragments induced by NK cells and NKCF-containing supernatants consisted of oligonucleosomes indistinguishable from those induced by CTL. The results presented here show distinct differences in target cell DNA fragmentation induced by CTL and NK cells, and suggest that these two effectors use different mechanisms to achieve the same end. CTL seem to induce DNA fragmentation in their targets by direct signaling, whereas NK cells may do so by means of a soluble factor.  相似文献   

9.
Cytotoxicity not restricted by the major histocompatibility complex (MHC) is mediated by two distinct types of lymphocyte: natural killer (NK) cells and non-MHC-restricted cytotoxic T lymphocytes (CTL). These two types of cytotoxic lymphocytes can be distinguished by antigenic phenotype, function, and molecular genetic studies. In human peripheral blood, NK cells are identified by expression of the Leu-19 and/or CD16 cell surface antigens, and lack of CD3/T cell antigen receptor (Ti) complex expression (i.e., CD3-,Leu-19+). Peripheral blood non-MHC-restricted CTL express both CD3 and Leu-19 (i.e., CD3+, Leu-19+, referred to as Leu-19+ T cells). Both Leu-19+ T cells and NK cells lyse "NK-sensitive" hematopoietic tumor cell targets, such as K562, without deliberate immunization of the host. However, most "NK activity" in peripheral blood is mediated by NK cells, because they are usually more abundant and more efficient cytotoxic effectors than Leu-19+ T cells. The cytolytic activity of both NK cells and Leu-19+ T cells against hematopoietic targets was enhanced by recombinant interleukin 2 (rIL 2). NK cells, but not peripheral blood Leu-19+ T cells, were also capable of lysing solid tumor cell targets after short-term culture in rIL 2. Southern blot analysis of NK cells revealed that both the T cell antigen receptor beta-chain genes and the T cell-associated gamma genes were not rearranged, but were in germ-line configuration. These findings indicate that NK cells are distinct in lineage from T lymphocytes and do not use the T cell antigen receptor genes for target recognition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The fruit and seeds of the bitter melon (Momordica charantia) have been reported to have anti-leukemic and antiviral activities. This anti-leukemic and antiviral action was associated with an activation of murine lymphocytes. A partially purified protein factor from the bitter melon caused an infiltration and activation of peritoneal exudate cells in C57B1/6J, C3H/HeJ, and C3H/HeN mice. When the extract was injected twice a week at 8 micrograms of protein per ip injection for 0-4 weeks, the peritoneal exudate cells from the treated mice were cytotoxic in a long-term (18-hr) 51Cr-release assay against a range of labeled targets: L1210, P388, and MOLT-4 tumor cells. Cytotoxicity was also observed against YAC-1 targets in a short-term (4-hr) assay. Fractionation of the cytotoxic immune cells implicated a nonadherent cell population which was capable of killing an NK-sensitive cell line in a 4-hr 51Cr-release assay. Unit gravity sedimentation studies indicated that the cytotoxicity was due to either a neutrophil or a large lymphocyte. Antibody depletion experiments using antibody to asialo GM1, an NK cell-specific antibody, depleted cytotoxicity observed in nonadherent, Ficoll/Hypaque-separated PEC. This suggests that at least part of the anti-leukemic activity of the bitter melon extract is due to the activation of NK cells in the host mouse.  相似文献   

11.
Bone marrow cells cultured for 5-6 days generate cytotoxic activity against a number of natural killer (NK)-susceptible tumor cells. In this study, these bone marrow cytotoxic cells were compared to cells with NK activity obtained either from spleen cells activated in vitro with interferon (IFN-alpha/beta) or mitogen or from peritoneal exudate cells (PEC) obtained 4 days after bacillus Calmette-Guerin (BCG) infection. Splenic and PEC cytotoxic cells were shown to be Thy 1.2+, NK 1.1+, Asialo GM+1, Lyt 1.2-, Lyt 2.2-. In contrast, bone marrow cytotoxic cells were Thy 1.2+, NK 1.1-, Lyt 1.2-, Lyt 2.2- and expressed low levels of Asialo GM1 antigen (Asialo GM +/- 1). Precursor cells for bone marrow cytotoxic activity were shown to be Thy 1.2-, NK 1.1-, Lyt 1.2-, Lyt 2.2- but also expressed low levels of Asialo GM1 antigen (Asialo GM +/- 1). Cytotoxic activity for both bone marrow and spleen cells peaked in the low-density fractions of discontinuous Percoll density gradients. The cytotoxic activity of these bone marrow cells was augmented by pretreatment with IFN (-alpha/beta, -gamma) or soluble factors (IFN free) from activated EL-4 thymoma cells. Surprisingly, the ability of bone marrow cells to generate high levels of cytotoxic activity following in vitro culture appeared to be associated primarily with mice which were of the H-2b haplotype.  相似文献   

12.
Murine spleen cells developed into nonspecific cytotoxic cells within 72 hr of culture in the presence of highly purified sources of human interleukin 2. In whole spleen cell cultures, human interleukin 2 generated effector cells which were Thy 1.2+, Lyt 2.2+, resistant to γ irradiation (1000 R), and capable of lysing both H-2 compatible and incompatible targets. The effector cells generated in this manner were not restricted to classical natural killer cell-sensitive targets. If thymus-derived cells (T cells) were depleted from the spleen cell population before culture with human interleukin 2, the effector cells generated were enriched in effectors capable of lysing natural killer cell-sensitive targets. Interferon was not produced in interleukin 2-stimulated spleen cell cultures. In addition, heterologous antibody to murine -γ-interferon did not abrogate the generation of cytotoxic cells by human interleukin 2. These and additional data suggest that human interleukin 2 is capable of stimulating γ-irradiation-sensitive Thy 1.2+ cell(s) capable of lysing a variety of target cells regardless of inherent sensitivities to classical natural killer cells. Thy 1.2? cells were also stimulated by human interleukin 2 and lysed only natural killer cell-sensitive targets. Human interleukin 2 caused some Thy 1.2? cells to become susceptible to lysis by anti-Thy 1.2 serum and complement.  相似文献   

13.
Blast natural killer (NK) cells were elicited in the spleens of mice by treatments with the interferon inducers lymphocytic choriomeningitis virus (LCMV) or polyinosinic-polycytidylic acid (poly I:C). The blast-NK cells, separated on the basis of size by centrifugal elutriation, were compared with blast cytotoxic T lymphocytes (CTL) generated during infection with LCMV. In vivo treatments with antibody to asialo GM1 (AGM1) blocked the appearance of blast-NK cells but not blast-CTL. Antibody and complement depletion experiments indicated that the blast-NK cells were AGM1+, NK 1.2+/-, Lyt-5+/-, Thy+/-, Qa-5/NK 1.1+, Lyt-2-, B23.1-, and J11d-. Blast-NK cells could be unequivocally distinguished from blast-CTL, because the blast-CTL were completely sensitive to treatments with anti-Lyt-2 and complement, whereas the blast-NK cells were completely resistant. The blast-NK cells were purified from populations of large-size cells by antibody and complement treatments that depleted the co-eluting monocyte/macrophages and polymorphonuclear leukocytes. The population resulting after separation from dead cells over Percoll gradients represented approximately 1% of the total spleen cells, contained greater than 60% large granular lymphocytes and mediated greater than 15% killing of YAC-1 target cells in a 4-hr 51Cr release assay at an effector to target cell ratio of 1:1. The purified blast-NK cells lysed a broad range of target cells at relatively low effector to target cell ratios. The order of sensitivity of the target cells was YAC-1 much greater than K562 approximately equal to L-929 much greater than P815, consistent with that reported for NK cell-mediated lysis. The ability of the blast-NK cells to mediate lysis of NK cells also was examined. The purified NK cells mediated significant levels of lysis against the NK-like cloned line, NK1B6B10, in a 51Cr release assay. Furthermore, the purified blast-NK cells mediated lysis of bound blast-NK cells in a single-cell agarose assay. These results indicate that highly purified blast-NK cells are exceptionally efficient at mediating lysis and suggest that NK cells may act to negatively regulate the proliferation of NK cells by lysing other NK cells.  相似文献   

14.
Summary Cytotoxic cells (CTCs) generated from peripheral blood lymphocytes of 5 chronic myeloid leukemia (CML) patients in remission on stimulation with autologous leukemic cells and allogeneic lymphocytes (3-cell assay), were propagated in vitro in interleukin-2 (IL-2)-containing medium and periodic stimulation with autologous leukemic cells, for a period of 4 to 6 months. During this period, the cells were assessed for phenotype and for cytotoxic responses in a 4-h 51Cr release microcytotoxicity assay. The CTCs continued to show specific lysis of autologous leukemic cells and bone marrow (BM) cells. However, the nonspecific lysis of natural killer (NK) targets and the proportion of cells showing NK phenotype (HNK-1 antigen) increased progressively on cultivation in IL-2-containing medium. Therefore cells showing CD8 phenotype and specific cytotoxic function were segregated by cloning CTCs under the condition of limiting dilution in the presence of allogeneic feeder cells and IL-2-containing medium. Three cytotoxic T cell (CTL) clones expressing CD3+, CD8+, and HLA DR+ phenotypes were obtained from CTCs of 2 CML patients. These clonoid populations, maintained in IL-2-containing medium and periodic antigenic stimulation with autologous leukemic cells, showed specific lysis of autologous leukemic cells and BM cells even at lower (10:1) effector:target ratios. They did not kill K562 (erythroblastoid leukemic NK target cell line) cells and autologous phytohemagglutinin-induced blasts. These clones apparently functioned in an MHC-restricted manner as they did not lyse allogeneic CML cells which would also express a similar set of maturation antigens if sensitization was, as it appeared, against these antigens. Finally, interaction of autologous BM cells with CTL clones reduced the colony forming potential of BM cells only to the extent of 18%–30%. The results therefore indicate that such CTL clones can possibly be used in adoptive immunotherapy as they showed minimal BM toxicity.  相似文献   

15.
Cloned and uncloned populations of natural killer (NK) cells and cytotoxic T lymphocytes (CTL) were treated with tunicamycin, an antibiotic that inhibits N-linked glycosylation, in order to study the potential role of cell surface carbohydrate determinants in lytic function. It is shown that tunicamycin-treated NK and CTL effector cells lose killer function in a dose-dependent manner. This effect is reversible; cells washed free of tunicamycin begin to recover their killer activity within 2 to 3 days after initial treatment. Conjugate experiments indicate that killer-target cell binding is not affected by tunicamycin treatment of the NK cells. It is also shown that tunicamycin treatment of target cells does not significantly affect their ability to be lysed by NK or CTL effector cells. These studies provide evidence that carbohydrate determinants are important in the lytic mechanism of both CTL and NK cells, rather than in specific effector-target cell binding.  相似文献   

16.
We and other investigators have recently shown that inhibitors of lipoxygenase reversibly inhibit natural cytotoxic (NC) or natural killer (NK) cell activity, whereas some inhibitors of cyclooxygenase enhance these functions. In addition, exogenous LTB4 augments NC and NK activity, whereas PGE2 depresses it. In the present studies, we sought to investigate the possible role of the TxA2 synthase pathway in NC function. Inhibition of this pathway by OKY-1581 or dazoxiben significantly inhibited NC activity against HSV-infected cells as well as NK function against K562 target cells. The inhibition was dose dependent, reversible, and not due to direct toxicity. NC activity was also significantly inhibited by the addition of PGE2 or PGI2 to the 4-hr assay, whereas addition of 6-keto-PGF1 alpha had no effect. Addition of PGH2, which could be converted to TxA2 or other PG, had no significant effect, but concomitant use of OKY-1581 produced a greater inhibition of NC function than by using OKY-1581 alone. U44069, a TxA2 analog, was inhibitory by itself and could not alter the inhibition caused by OKY-1581 or dazoxiben. In contrast, the TxA2 receptor blocker 13-APA significantly enhanced NC activity and even reversed the inhibitory effect of U44069 at equimolar (10(-7)M) concentrations. Taken together, these data suggest that most of the inhibitory effect of the TxA2 synthase inhibitors on NC and NK cell function derives from their ability to reorient cyclic endoperoxide metabolism toward more inhibitory compounds. In addition, TxA2 itself could exert a negative feedback on NC function through its receptor, as evidenced by the use of a TxA2 analog and a TxA2 blocker.  相似文献   

17.
We have proposed that natural killer (NK) cells are germ-line V-gene encoded prothymocytes specific for either self or non-self histocompatibility antigens. This hypothesis predicts that at least some precursors of allospecific cytotoxic T cells (allo-CTL) are NK cells. To test this we examined the effect of depleting NK cells and/or T cells (by complement lysis with anti-asialo GM1 and/or anti-Thy 1) on the development of allo-CTL induced during mixed lymphocyte culture (MLC). Removal of Thy 1+ cells from MLC responder populations prevented development of allo-CTL. This was partially reversed by addition of concanavalin A-conditioned medium (Con A-CM) to the MLC at day 0. Removal of asialo GM1+ cells eliminated NK activity measured at day 0, but failed to prevent development of allo-CTL of otherwise intact responder cells. However, removal of asialo GM1+ cells did prevent the Con A-CM dependent development of allo-CTL by responder cells depleted of Thy 1+ cells. These findings indicate that a subpopulation of allo-CTL precursors has the phenotypic characteristics of NK cells: absence or low density of Thy 1, and susceptibility to complement lysis by anti-asialo GM1.  相似文献   

18.
BACKGROUND: The most common assay used to detect natural killer (NK) and cytotoxic T-lymphocyte (CTL) activity is the (51)Cr release assay. The numerous disadvantages of this method led us to evaluate cytotoxicity functions by flow cytometry. We described a flow cytometric assay to assess NK and CTL activity from different species. METHODS: This assay is based on a dual fluorescent staining of target cells. The dye, DIOC18((3)) (3, 3'-dioctadecyloxacarbocyanine perchlorate), is used to stain the membrane of different target cells. Propidium iodide (PI) is used to label dead target and effector cells. This labeling allows a clear discrimination between both cell populations. RESULTS: A good correlation was observed between the percentage of target lysis and the effector-to-target cell (E/T) ratios with human and porcine peripheral blood mononuclear cells (PBMC) as effector cells. The flow cytometric assay was shown to be as sensitive and as reliable as the (51)Cr release performed with human cells. The assay was also applied successfully to measure NK cell activity in other animal species (pig, rabbit, hen, and mouse) and to measure murine CTL activity against the influenza virus. CONCLUSIONS: We provide evidence that the flow cytometric assay using DIOC18((3)) is highly reproducible and is suitable to measure different types of cell cytotoxicity.  相似文献   

19.
Unstimulated human peripheral blood mononuclear cells from healthy donors exhibited spontaneous cytotoxicity against noncultured solid tumor targets in a 12- to 24-hr 51Cr release or 111In release assay. Both purified monocytes (greater than 99% monocytes) and natural killer (NK)-enriched lymphocytes exhibited comparable levels of spontaneous cytotoxicity against fresh melanoma tumor targets. This cytotoxicity was observed under endotoxin-free conditions. NK-depleted lymphocytes did not lyse the melanoma targets. Culture supernatants of monocytes incubated with the melanoma tumor cells did not exhibit cytotoxic activity against these targets. Purified monocytes lacked NK activity against the K562 targets in a 4-hr 51Cr release assay. Treatment of the monocytes with anti-Leu 1 1b and anti-Leu7 monoclonal antibodies plus complement did not reduce monocyte-mediated lysis of the melanoma targets, demonstrating that contaminating NK cells, if any, were not responsible for the lysis of noncultured melanoma targets by monocytes. In contrast, Leu 1 1b+ NK cells were responsible for the lysis of the melanoma targets by NK-enriched lymphocytes. The addition of recombinant interferon-gamma (rIFN-gamma), but not lipopolysaccharide, into the 51Cr release assay or pretreatment of monocytes with rIFN-gamma significantly increased their cytotoxicity against noncultured solid tumor cells. Monocytes cultured for 3 days with medium alone lost their cytotoxic activity. The addition of rIFN-gamma from the beginning of these cultures prevented the loss of the cytotoxic activity of monocytes. In summary, both unstimulated monocytes and NK-enriched lymphocytes exhibit comparable levels of spontaneous cytotoxicity against fresh solid tumor targets.  相似文献   

20.
This report describes the morphology, surface markers, growth requirements, and functional activity of the M1-A5 cell line, which was established by the limiting dilution of spleen cells from a mouse bearing a large methylcholanthrene-induced fibrosarcoma. The M1-A5 cells share many of the morphological features of large granular lymphocytes and, in addition, express asialo GM1 and Ly-5 surface markers which are commonly found on natural killer cells (NK) cells. There is no expression of T-cell differentiation antigens, surface immunoglobulin, or the granulocyte/macrophage marker, MAC-1. M1-A5 cells are dependent on exogenous growth factor(s) for survival and will proliferate if cultured in interleukin 3 (IL-3), but not in interleukin 1 (IL-1), interleukin 2 (IL-2), or granulocyte/macrophage colony stimulating factor (GM-CSF). In addition, the M1-A5 cells do not absorb IL-2. Despite their morphology and surface characteristics, the M1-A5 cells do not lyse NK targets such as YAC-1 and RLM1 in 4- or 18-hr cytotoxic assays but do lyse the natural cytotoxic (NC) susceptible target, WEHI-164, and to a very small extent, the M-1 fibrosarcoma cells, in an 18-hr assay. Thus they exhibit NC-like cytotoxic activity. In addition, the M1-A5 cells secrete a small molecular weight factor which activates suppressor cells capable of inhibiting antibody synthesis by cocultured syngeneic spleen cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号