首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apple scab, caused by the fungus Venturia inaequalis, is the major production constraint in temperate zones with humid springs. Normally, its control relies on frequent and regular fungicide applications. Because this control strategy has come under increasing criticism, major efforts are being directed toward the breeding of scab-resistant apple cultivars. Modern apple breeding programs include the use of molecular markers, making it possible to combine several different scab-resistance genes in 1 apple cultivar (pyramiding) and to speed up the breeding process. The apple scab-resistance gene Vb is derived from the Siberian crab apple 'Hansen's baccata #2', and is 1 of the 6 "historical" major apple scab-resistance genes (Vf, Va, Vr, Vbj, Vm, and Vb). Molecular markers have been published for all these genes, except Vr. In testcross experiments conducted in the 1960s, it was reported that Vb segregated independently from 3 other major resistance genes, including Vf. Recently, however, Vb and Vf have both been mapped on linkage group 1, a result that contrasts with the findings from former testcross experiments. In this study, simple sequence repeat (SSR) markers were used to identify the precise position of Vb in a cross of 'Golden Delicious' (vbvb) and 'Hansen's baccata #2' (Vbvb). A genome scanning approach, a fast method already used to map apple scab-resistance genes Vr2 and Vm, was used, and the Vb locus was identified on linkage group 12, between the SSR markers Hi02d05 and Hi07f01. This finding confirms the independent segregation of Vb from Vf. With the identification of SSR markers linked to Vb, another major apple scab-resistance gene has become available; breeders can use it to develop durable resistant cultivars with several different resistance genes.  相似文献   

2.
Reports from several European countries of the breakdown of the Vf resistance, the most frequently used source of resistance in breeding programs against apple scab, emphasize the urgency of diversifying the basis of apple scab resistance and pyramiding different apple scab resistances with the use of their associated molecular markers. GMAL 2473 is an apple scab resistant selection thought to carry the resistance gene Vr. We report the identification by BSA of three AFLP markers and one RAPD marker associated with the GMAL 2473 resistance gene. SSRs associated with the resistance gene were found by (1) identifying the linkage group carrying the apple scab resistance and (2) testing the SSRs previously mapped in the same region. One such SSR, CH02c02a, mapped on linkage group 2, co-segregates with the resistance gene. GMAL 2473 was tested with molecular markers associated with other apple scab resistance genes, and accessions carrying known apple scab resistance genes were tested with the SSR linked to the resistance gene found in GMAL 2473. The results indicate that GMAL 2473 does not carry Vr, and that a new apple scab resistance gene, named Vr 2, has been identified.  相似文献   

3.
Scab, caused by the ascomycete fungus Venturia pirina, leads to severe damage on European pear varieties resulting in a loss of commercial value and requiring frequent use of fungicides. Identifying scab resistance genes, developing molecular markers linked to these genes and establishing marker-assisted selection would be an effective way to improve European pear breeding for scab resistance. Most of the European pear cultivars (Pyrus communis) are currently reported to be sensitive. The pear cultivar ‘Navara’ was shown to carry a major scab resistance gene whose phenotypic expression in seedling progenies was a typical stellate necrosis symptom. The resistance gene was called Rvp1, for resistance to V. pirina, and was mapped on linkage group 2 of the pear genome close to microsatellite marker CH02b10. This genomic region is known to carry a cluster of scab resistance genes in apple indicating a first functional synteny for scab resistance between apple and pear.  相似文献   

4.
Pear scab (caused by Venturia nashicola) is one of the most harmful diseases of pears, especially Japanese and Chinese pear species. The molecular identification and early selection of resistant plants could greatly improve pear breeding. We have identified the position of the scab resistance gene, designated Vnk in an indigenous Japanese pear cultivar Kinchaku, within the pear genome by using simple sequence repeat (SSR) markers derived from pear and apple. The position of Vnk was identified in the central region of linkage group 1 of Kinchaku. Several amplified fragment length polymorphism (AFLP) markers linked to Vnk were obtained by bulked segregant analysis. Among them, the AFLP marker closest to Vnk was converted into a sequence tagged site (STS) marker. Four random amplified polymorphic DNA (RAPD) markers previously found to be loosely associated with Vnk (Iketani et al. 2001) were successfully converted into STS markers. Six markers (one SSR Hi02c07 and five STSs converted from AFLP and RAPD) showed tight linkages to Vnk, being mapped with distances ranging from 2.4 to 12.4 cM. The SSR CH-Vf2, which was isolated from a BAC clone of the contig containing the apple scab gene Vf, was mapped at the bottom of linkage group 1 in Kinchaku, suggesting that the Vnk and Vf loci are located in different genomic regions of the same homologous linkage group.  相似文献   

5.
Apple (Malus × domestica) is the third important fruit in terms of production and consumption worldwide. Apple scab caused by Venturia inaequalis is the most devastating disease of apple. In the apple-growing regions, many fungicides are sprayed to control the disease leading to increase in the production cost. Development of scab-resistant cultivars is the long-lasting solution to control the disease. In apples, more than 20 major scab resistance genes have been identified in various cultivars and few wild relatives. Of all these genes, Rvi6 derived from Malus floribunda has been most extensively used in different breeding programs. Gene for gene interactions of these resistance genes with the avirulence genes from V. inaequalis have been understood in many cases. QTL-based polygenic resistance has also been characterized in apple. Nucleotide Binding Site Leucine-Rich Repeats (NBS-LRR) have been identified from the apple genome and many of them have been characterized from the scab resistance region. Molecular markers associated with most of the major scab resistance genes have been identified and their position has been mapped on different linkage groups. Marker-assisted selection (MAS) can be helpful in speeding up and accurately identifying the scab-resistant parents and progeny. Pyramiding of several major resistance genes can be undertaken for more durable resistance against apple scab. The present paper reviews the Malus-Venturia pathosystem, current status of knowledge about scab resistance genes, and their application in breeding against apple scab.  相似文献   

6.
Apple is host to a wide range of pests and diseases, with several of these, such as apple scab, powdery mildew and woolly apple aphid, being major causes of damage in most areas around the world. Resistance breeding is an effective way of controlling pests and diseases, provided that the resistance is durable. As the gene pyramiding strategy for increasing durability requires a sufficient supply of resistance genes with different modes of action, the identification and mapping of new resistance genes is an ongoing process in breeding. In this paper, we describe the mapping of an apple scab, a powdery mildew and a woolly apple aphid gene from progeny of open-pollinated mildew immune selection. The scab resistance gene Rvi16 was identified in progeny 93.051 G07-098 and mapped to linkage group 3 of apple. The mildew and woolly aphid genes were identified in accession 93.051 G02-054. The woolly aphid resistance gene Er4 mapped to linkage group 7 to a region close to where previously the genes Sd1 and Sd2, for resistance to the rosy apple leaf-curling aphid, had been mapped. The mildew resistance gene Pl-m mapped to the same region on linkage group 11 where Pl2 had been mapped previously. Flanking markers useful for marker-assisted selection have been identified for each gene.  相似文献   

7.
 Apple scab, caused by the fungus Venturia inaequalis (Cke.) Wint., is an important disease in commercial apple production. A mapping population of 155 individuals, derived from a cross between the apple varieties ‘Prima’ (resistant)בFiesta’ (susceptible), was scored for response to the disease in replicated field and glasshouse trials throughout Europe. Twenty data sets were selected and cluster analysis was used to form a consensus score for the population fitting a 1 : 1 segregation ratio of resistance:susceptibility. The progeny were scored with molecular markers. A detailed map covering 54 cM of the ‘Prima’ linkage group containing the Vf gene for scab resistance was constructed using 24 molecular markers linked to the resistance gene. One isoenzyme marker (Pgm-1), six RFLP markers and 17 RAPD markers formed a linkage group with the consensus measure of resistance to scab. Four marker bridges were established with the corresponding ‘Fiesta’ linkage group with additional markers (one isozyme, one RFLP, three RAPD and one AFLP). A low chi-square value indicated a good fit of the marker ordering, which was in close agreement with previously reported linkage positions for some of the markers and Vf. Differences were observed in the ability of different scoring methods to resolve susceptible and resistant classes. The results obtained for the consensus classification of resistance to scab for the population may suggest the presence of virulent inocula at some sites, which could overcome the Vf gene for resistance. The consequences of relying on individual scoring occasions for studying Vf scab resistance are discussed in the context of linkage analysis, conventional breeding selection, and marker-assisted selection. Received: 23 July 1997 / Accepted: 31 October 1997  相似文献   

8.
Breeding for scab-resistant apple cultivars by pyramiding several resistance genes in the same genetic background is a promising way to control apple scab caused by the fungus Venturia inaequalis. To achieve this goal, DNA markers linked to the genes of interest are required in order to select seedlings with the desired resistance allele combinations. For several apple scab resistance genes, molecular markers are already available; but until now, none existed for the apple scab resistance gene Vbj originating from the crab apple Malus baccata jackii. Using bulk segregant analysis, three RAPD markers linked to Vbj were first identified. These markers were transformed into more reliable sequence-characterised amplified region (SCAR) markers that proved to be co-dominant. In addition, three SSR markers and one SCAR were identified by comparing homologous linkage groups of existing genetic maps. Discarding plants showing genotype–phenotype incongruence (GPI plants) plants, a linkage map was calculated. Vbj mapped between the markers CH05e03 (SSR) and T6-SCAR, at 0.6 cM from CH05e03 and at 3.9 cM from T6-SCAR. Without the removal of the GPI plants, Vbj was placed 15 cM away from the closest markers. Problems and pitfalls due to GPI plants and the consequences for mapping the resistance gene accurately are discussed. Finally, the usefulness of co-dominant markers for pedigree analysis is also demonstrated.  相似文献   

9.
Apple scab, caused by the fungal pathogen Venturia inaequalis, is one of the most severe diseases of apple worldwide. It is the most studied plant–pathogen interaction involving a woody species using modern genetic, genomic, proteomic and bioinformatic approaches in both species. Although ‘Geneva’ apple was recognized long ago as a potential source of resistance to scab, this resistance has not been characterized previously. Differential interactions between various monoconidial isolates of V. inaequalis and six segregating F1 and F2 populations indicate the presence of at least five loci governing the resistance in ‘Geneva’. The 17 chromosomes of apple were screened using genotyping‐by‐sequencing, as well as single marker mapping, to position loci controlling the V. inaequalis resistance on linkage group 4. Next, we fine mapped a 5‐cM region containing five loci conferring both dominant and recessive scab resistance to the distal end of the linkage group. This region corresponds to 2.2 Mbp (from 20.3 to 22.5 Mbp) on the physical map of ‘Golden Delicious’ containing nine candidate nucleotide‐binding site leucine‐rich repeat (NBS‐LRR) resistance genes. This study increases our understanding of the complex genetic basis of apple scab resistance conferred by ‘Geneva’, as well as the gene‐for‐gene (GfG) relationships between the effector genes in the pathogen and resistance genes in the host.  相似文献   

10.
A major scab resistance gene initially called Vr1 was identified in the apple cultivar “Regia” derived from the Malus scab resistance source R12740-7A (Russian seedling, RS). A codominant, multiallelic sequence characterized amplified region (SCAR) marker was developed from a random amplified polymorphic DNA marker identified by bulked-segregant analysis. Additional alleles of the AD13 marker locus proved to be informative for the analysis of genetic relationships within Malus including putative relatives of RS. Separate linkage maps were created for the two families derived from crosses with “Regia”. Using phenotypic data from the greenhouse scab tests, the recombination frequency between Vr1 and AD13-SCAR was between 6 and 17%. The Vr1 locus appeared to be closely linked to the Vx [Hemmat et al. J Am Soc Hortic Sci, 127:365–370, 2002], Vr2 [Patocchi et al. Theor Appl Genet, 109:1087–1092, 2004], and the Vh4 gene [Bus et al. Mol Breed, 15:103–116, 2005a]. Our linkage analysis of the molecular markers identified by Hemmat et al. [J Am Soc Hortic Sci, 127:365–370, 2002] for two scab resistance factors from RS (Vr and Vx) indicate that both genes are separated by a large distance on apple linkage group 2 [Boudichevskaia et al. Acta Hortic, 663:171–175, 2004]. This is in agreement with the results of Bus et al., [Mol Breed, 15:103–116, 2005a] who concluded that (1) the RS-derived gene Vh2 is identical to Vr, (2) the RS-derived gene Vh4 is identical to Vx and Vr1, (3) Vh2/Vr and Vh4/Vr1/Vx map on opposite sides of LG 2. One of our main goals was the verification of the Vr1-SCAR within a practical apple-breeding program. The utility of the AD13-SCAR was evident after 2 years under natural scab infection conditions in both families investigated. This is the first report about the confirmation of a molecular marker for a RS resistance factor in a 2-year field experiment. A multiplex polymerase chain reaction assay based on two codominant SCARs for Vf and Vr1 was tested in an apple progeny segregating for both genes. The result of the two-marker approach is discussed with respect to scab races, which are able to overcome the Vf resistance gene.  相似文献   

11.
 Linkage maps for the apple cultivars ‘Prima’ and ‘Fiesta’ were constructed using RFLP, RAPD, isozyme, AFLP, SCAR and microsatellite markers in a ‘Prima’בFiesta’ progeny of 152 individuals. Seventeen linkage groups, putatively corresponding to the seventeen haploid apple chromosomes, were obtained for each parent. These maps were aligned using 67 multi-allelic markers that were heterozygous in both parents. A large number of duplicate RFLP loci was observed and, in several instances, linked RFLP markers in one linkage group showed corresponding linkage in another linkage group. Distorted segregation was observed mainly in two regions of the genome, especially in the male parent alleles. Map positions were provided for resistance genes to scab and rosy leaf curling aphid (Vf and Sd 1, respectively) for the fruit acidity gene Ma and for the self-incompatibility locus S. The high marker density and large number of mapped codominant RFLPs and some microsatellite markers make this map an ideal reference map for use in other progenies also and a valuable tool for the mapping of quantitative trait loci. Received: 17 November 1997 / Accepted: 9 December 1997  相似文献   

12.
13.
Loquat canker disease, caused by Pseudomonas syringae pv. eriobotryae, is one of the most harmful diseases of commercial cultivars of loquat (Eriobotrya japonica). To introgress resistance to loquat canker, we identified the linkage group and position of the resistance locus derived from the related wild species bronze loquat (Eriobotrya deflexa). The segregation of resistance and susceptibility fit the expected ratio of 1:1 in 96 individuals from a three-way cross involving bronze loquat (heterozygous for resistance) and two cultivars of loquat (susceptible). The genomic region containing Pse-a was identified by using a genome scanning approach, and the loquat canker resistance locus was mapped at the top of linkage group 10 by applying novel simple sequence repeat (SSR) markers designed on the basis of the ‘Golden Delicious’ apple genome sequence. The constructed linkage group spans 69.4 cM and has an average marker density of 2.6 cM per marker. The developed molecular markers tightly linked to the loquat canker resistance locus will be useful for marker-assisted selection and for introgression of resistance into loquat in breeding programs.  相似文献   

14.
Woolly apple aphid (WAA; Eriosoma lanigerum Hausm.) can be a major economic problem to apple growers in most parts of the world, and resistance breeding provides a sustainable means to control this pest. We report molecular markers for three genes conferring WAA resistance and placing them on two linkage groups (LG) on the genetic map of apple. The Er1 and Er2 genes derived from ‘Northern Spy’ and ‘Robusta 5,’ respectively, are the two major genes that breeders have used to date to improve the resistance of apple rootstocks to this pest. The gene Er3, from ‘Aotea 1’ (an accession classified as Malus sieboldii), is a new major gene for WAA resistance. Genetic markers linked to the Er1 and Er3 genes were identified by screening random amplification of polymorphic deoxyribonucleic acid (DNA; RAPD) markers across DNA bulks from resistant and susceptible plants from populations segregating for these genes. The closest RAPD markers were converted into sequence-characterized amplified region markers and the genome location of these two genes was assigned to LG 08 by aligning the maps around the genes with a reference map of ‘Discovery’ using microsatellite markers. The Er2 gene was located on LG 17 of ‘Robusta 5’ using a genetic map developed in a M.9 × ‘Robusta 5’ progeny. Markers for each of the genes were validated for their usefulness for marker-assisted selection in separate populations. The potential use of the genetic markers for these genes in the breeding of apple cultivars with durable resistance to WAA is discussed.  相似文献   

15.
We used a new method called nucleotide-binding site (NBS) profiling to identify and map resistance gene analogues (RGAs) in apple. This method simultaneously allows the amplification and the mapping of genetic markers anchored in the conserved NBS-encoding domain of plant disease resistance genes. Ninety-four individuals belonging to an F1 progeny derived from a cross between the apple cultivars Discovery and TN10-8 were studied. Two degenerate primers designed from the highly conserved P-loop motif within the NBS domain were used together with adapter primers. Forty-three markers generated with NBS profiling could be mapped in this progeny. After sequencing, 23 markers were identified as RGAs, based on their homologies with known resistance genes or NBS/leucine-rich-repeat-like genes. Markers were mapped on 10 of the 17 linkage groups of the apple genetic map used. Most of these markers were organized in clusters. Twenty-five markers mapped close to major genes or quantitative trait loci for resistance to scab and mildew previously identified in different apple progenies. Several markers could become efficient tools for marker-assisted selection once converted into breeder-friendly markers. This study demonstrates the efficiency of the NBS-profiling method for generating RGA markers for resistance loci in apple.  相似文献   

16.
Large-scale marker-assisted selection requires highly reproducible, consistent and simple markers. The use of genetic markers is important in woody plant breeding in general, and in apple in particular, because of the high level of heterozygosity present in Malus species. We present here the transformation of two RAPD markers, which we found previously to be linked to the major scab resistance gene Vf, into more reliable and reproducible markers that can be applied directly to apple breeding. We give an example of how the use of such markers can speed up selection for the introduction of scab resistance genes into the same plant, reducing labour and avoiding time-consuming test crosses. We discuss the nature and relationship of the scab resistance gene Vf to the one present in Nova Easygro, thought to be Vr.  相似文献   

17.
Simple sequence repeat (SSR) markers developed from Malus, as well as Prunus, Pyrus and Sorbus, and some other sequence-tagged site (STS) loci were analysed in an interspecific F1 apple progeny from the cross ‘Fiesta’ × ‘Totem’ that segregated for several agronomic characters. A linkage map was constructed using 259 STS loci (247 SSRs, four SCARs and eight known-function genes) and five genes for agronomic traits—scab resistance (Vf), mildew resistance (Pl-2), columnar growth habit (Co), red tissues (Rt) and green flesh background colour (Gfc). Ninety SSR loci and three genes (ETR1, Rt and Gfc) were mapped for the first time in apple. The transferability of markers from other Maloideae to Malus was found to be around 44%. The loci are spread across 17 linkage groups, corresponding to the basic chromosome number of Malus and cover 1,208 cM, approximately 85% of the estimated length of the apple genome. Interestingly, we have extended the top of LG15 with eight markers covering 25 cM. The average map density is 4.7 cM per marker; however, marker density varies greatly between linkage groups, from 2.5 in LG14 to 8.9 in LG7, with some areas of the genome still in need of further STS markers for saturation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

18.
??Antonovka?? has long been recognised as a major source of scab (Venturia inaequalis) resistance useful for apple breeding worldwide. Both major gene resistances in the form of the Rvi10 and Rvi17 and quantitative resistance, collectively identified as VA, have been identified in different accessions of ??Antonovka??. Most of the ??Antonovka?? scab resistance used in apple-breeding programmes around the world can be traced back to Schmidt ??Antonovka?? and predominantly its B VIII progenies 33,25 (PI 172623), 34,6 (PI 172633), 33,8 (PI 172612) and 34,5 (PI 172632). Using genetic profile reconstruction, we have identified ??common ??Antonovka?? ?? as the progenitor of the B VIII family, which is consistent with it having been a commercial cultivar in Poland and the single source of scab resistance used by Dr. Martin Schmidt. The major ??Antonovka?? scab resistance genes mapped to date are located either very close to Rvi6, or about 20?C25?cM above it, but their identities need further elucidation. The presence of the 139?bp allele of the CH-Vf1 microsatellite marker known to be associated with Rvi17 (Va1) in most of the ??Antonovka?? germplasm used in breeding suggests that it plays a central role in the resistance. The nature and the genetic relationships of the scab resistance in these accessions as well as a number of apple cultivars derived from ??Antonovka??, such as, ??Freedom??, ??Burgundy?? and ??Angold??, are discussed. The parentage of ??Reglindis?? is unclear, but the cultivar commercialised as ??Reglindis?? was confirmed to be an Rvi6 cultivar.  相似文献   

19.
Simple sequence repeat (SSR) markers developed from Malus, as well as Prunus, Pyrus and Sorbus, and some other sequence-tagged site (STS) loci were analysed in an interspecific F1 apple progeny from the cross ‘Fiesta’ × ‘Totem’ that segregated for several agronomic characters. A linkage map was constructed using 259 STS loci (247 SSRs, four SCARs and eight known-function genes) and five genes for agronomic traits—scab resistance (Vf), mildew resistance (Pl-2), columnar growth habit (Co), red tissues (Rt) and green flesh background colour (Gfc). Ninety SSR loci and three genes (ETR1, Rt and Gfc) were mapped for the first time in apple. The transferability of markers from other Maloideae to Malus was found to be around 44%. The loci are spread across 17 linkage groups, corresponding to the basic chromosome number of Malus and cover 1,208 cM, approximately 85% of the estimated length of the apple genome. Interestingly, we have extended the top of LG15 with eight markers covering 25 cM. The average map density is 4.7 cM per marker; however, marker density varies greatly between linkage groups, from 2.5 in LG14 to 8.9 in LG7, with some areas of the genome still in need of further STS markers for saturation.  相似文献   

20.
70个水稻微卫星标记染色体位置的更正   总被引:1,自引:0,他引:1  
微卫星标记(SSR)因其操作简单和稳定可靠的特点而成为一种重要的分子标记,被广泛应用于遗传作图和种质鉴定等方面。但其在染色体上位置的正确性将直接影响到基因定位的正确性和后续研究的方向。利用美国国家生物信息技术中心(NCBI)网站的Blast程序,将2740个SSR标记的前后引物序列与水稻粳稻品种日本晴基因组进行比对,共发现70个标记位于另一条染色体,对这70个标记重新锚定的染色体进行了更正。这将有助于今后水稻分子标记遗传连锁图的正确构建。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号