首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) The coronary vasodilator adenosine can be formed in the heart by breakdown of AMP or S-adenosylhomocysteine (SAdoHcy). The purpose of this study was to get insight into the relative importance of these routes of adenosine formation in both the normoxic and the ischemic heart. (2) A novel HPLC method was used to determine myocardial adenosine and SAdoHcy. Accumulation of SAdoHcy was induced in isolated rat hearts by perfusion with L-homocysteine thiolactone or L-homocysteine. The release of adenosine, inosine, hypoxanthine, xanthine and uric acid was determined. Additional in vitro experiments were performed to determine the kinteic parameters of S-adenosylhomocysteine hydrolase. (3) During normoxia the thiolactone caused a concentration-dependent increase in SAdoHcy. At 2000 μM of the thiolactone an SAdoHcy accumulation of 0.49 nmol/min per g wet weight was found during normoxia. L-Homocysteine (200 μM) caused an increased of 0.37 and 4.17 nmol SAdony/soc per g wet weight during normaxia and ischemia, respectively. (4) The adenosine concentration in ischemic hearts was significantly lower when homocysteine was infused (6.2 vs. 115 nmol/g; P < 0.05). Purine release was increased 4-fold during ischemia. (5) The Km for hydrolysis of SAdoHcy was about 12 μM. At in vitro conditions favoring near-maximal SAdoHcy synthesis (72 μM adenosine, 1.8 mM homocysteine), the synthesis rate in homogenates was 10 nmol/min per g wet weight. (6) From the combined in vitro and perfusion studies, we comclude that S-adenosylhomocysteine hydrolase can contribute significantly to adenosine production in normoxic rat heart, but not during ischemia.  相似文献   

2.
Several synthetic adeonosine analogs: 8-fluoro-, 8-azido-, 8-iodo-, 8-methylthioadenosine; 8-bromo-2′-deoxyadenosine, 8-bromoxylofuranosyladenine, 5′-benzoly-8-bromoadenosine; 8,2′-S-, 8,2′-O-, 8,2′-NH-, 8,2′-N-CH3-, 8,3′,-S-, 8,3′-O-, 8,5′-S- and 8,5′O-cycloadenosine; 1-deaza- and 3-deazaadenosine, as well as tubercidine (7-deazaadenosine), were tested as substrates of calf intestine adenosine deaminase.It was found that the adenine base of adenosine should be in the range φrmCN = 0–120° (anti to syn-anti) and 8-fluoroadenosine was hydroylzed very slowly. The purine base should have N1, N3 or N7 atoms for the hydrolysis and only 1-deazaadenosine revealed an inhibitory effect toward the hydrolysis of adenosine.5′-OH group should be in the position of S-configuration and must not be substituted.  相似文献   

3.
Mitochondria of chloroquine-resistant Plasmodium falciparum (K1 strain) were isolated from mature trophozoites by differential centrifugation. The mitochondrial marker enzyme cytochrome c reductase was employed to monitor the steps of mitochondria isolation. Partial purification of DNA polymerase from P. falciparum mitochondria was performed using fast protein liquid chromatography (FPLC). DNA polymerase of P. falciparum mitochondria was characterized as a γ-like DNA polymerase based on its sensitivity to the inhibitors aphidicolin, N-ethylmaleimide and 9-β- -arabinofuranosyladenine-5′-triphosphate. In contrast, the enzyme was found to be strongly resistant to 2′,3′-dideoxythymidine-5′-triphosphate (IC50>400 μM) and differed in this aspect from the human homologue, possibly indicating structural differences between human and P. falciparum DNA polymerase γ. In addition, the DNA polymerase of parasite mitochondria was shown to be resistant (IC50>1 mM) to the nucleotide analogue (S)-1-[3-hydroxy-2-phosphonylmethoxypropyl]adenine diphosphate (HPMPApp).  相似文献   

4.
Three phenolic glycosides 5-O-{[5′′-O-E-(4′′′-O-threo-guaiacylglycerol)-feruloyl]-β-apiofuranosyl-(1→2)-β-xylopyranosyl} gentisic acid, 5-O-[(5′′-O-vanilloyl)-β-apiofuranosyl-(1→2)-β-xylopyranosyl] gentisic acid and 1-O-[E-(4′′′-O-threo-guaiacylglycerol)-feruloyl]-3-O-β-galacturonopyranosyl glycerol were isolated and identified from the roots of Medicago truncatula together with four known 5-O-β-xylopyranosyl gentisic acid, vicenin-2, hovetrichoside C and pterosupin identified for the first time in this species. Structural elucidation was carried out on the basis of UV, mass, 1H and 13C NMR spectral data.  相似文献   

5.
Di-nor-benzofuran neolignan aldehydes, Δ7-3,4-methylenedioxy-3′-methoxy-8′,9′-dinor-4′,7-epoxy-8,3′-neolignan-7′-aldehyde (ocophyllal A) 1, Δ7-3,4,5,3′-tetramethoxy-8′,9′-dinor-4′,7-epoxy-8,3′-neolignan-7′-aldehyde (ocophyllal B) 2, and macrophyllin-type bicyclo[3.2.1]octanoid neolignans (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-5′-methoxy-3,4-methylenedioxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol A) 3, (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-3,4,5′-trimethoxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol B) 4, (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-3,4,5,5′-tetramethoxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol C) 5, as well as 2′-epi-guianin 6 and (+)-licarin B 7, were isolated and characterized from leaves of Ocotea macrophylla (Lauraceae). The structures and configuration of these compounds were determined by extensive spectroscopic analyses. Inhibition of platelet activating factor (PAF)-induced aggregation of rabbit platelets were tested with neolignans 1–7. Although compound 6 was the most potent PAF-antagonist, compounds 3–5 showed some activity.  相似文献   

6.
Three series of new cannabinoids were prepared and their affinities for the CB1 and CB2 cannabinoid recptors were determined. These are the 1-methoxy-3-(1′,1′-dimethylalkyl)-, 1-deoxy-11-hydroxy-3-(1′,1′-dimethylalkyl)- and 11-hydroxy-1-methoxy-3-(1′,1′-dimethylalkyl)-Δ8-tetrahydrocannabinols, which contain alkyl chains from dimethylethyl to dimethylheptyl appended to C-3 of the cannabinoid. All of these compounds have greater affinity for the CB2 receptor than for the CB1 receptor, however only 1-methoxy-3-(1′,1′-dimethylhexyl)-Δ8-THC (JWH-229, 6e) has effectively no affinity for the CB1 receptor (Ki=3134±110 nM) and high affinity for CB2 (Ki=18±2 nM).  相似文献   

7.
Two fatty acids differing from arachidonic acid in lacking one of the internal double bonds (20:35,8,14 and 20:35,11,14) and their 1-C14 and acetylenic analogues were synthesized. 20:35,8,14 was not metabolized by human platelets but 20:35,11,14 yielded a small amount (1.5% conversion) of two hydroxy fatty acids in a three (11-hydroxy-5,12,14-icosatrienoic acid) to one (15-hydroxy-5,11,13-icosatrienoic acid) proportion. Indomethacin inhibited formation of both hydroxy fatty acids indicating that they are produced via cyclooxygenase. Both ethylenic acids were weak inhibitors of cyclooxygenase (substrate 20 μM arachidonic acid) (ID50: 8.8 μM 20:35,8,14; 11.2 μM 20:35,11,14) but were inactive against lipoxygenase (RD50 > 100 μM). Similarly, both acetylenic analogues were poor inhibitors of lipoxygenase (ID50: 23.4 μM 20:35,8,14; 47.8 μM 20:35,11,14) but although 20:35,8,14 was inactive against cyclooxygenase (ID50 > 100 μM) the 20:35,11,14 was a potent inhibitor (ID50: 0.35 μM). The results are interpreted on the basis that hydrogen removal by the lipoxygenase is from C10 and by the cyclooxygenase from C13 but only in 20:35,11,14 are these hydrogens (C13) located at the center of a 1,4 pentadiene system (ethylenic) or a 1,4 pentadiyne system (acetylenic).  相似文献   

8.
The regioselectivity of 20 extracellular β-N-acetylhexosaminidases of fungal origin was screened in the reverse hydrolysis with 2-acetamido-2-deoxy- -glucopyranose. Most of the enzymes used yielded 2-acetamido-2-deoxy-β- -glucopyranosyl-(1→4)-2-acetamido-2-deoxy- -glucopyranose (3) and 2-acetamido-2-deoxy-β- -glucopyranosyl-(1→6)-2-acetamido-2-deoxy- -glucopyranose (4). So far unknown product of enzymatic condensation, 2-acetamido-2-deoxy-β- -glucopyranosyl-(1→3)-2-acetamido-2-deoxy- -glucopyranose (2) was synthesised using the β-N-acetylhexosaminidases from Penicillium funiculosum CCF 1994, P. funiculosum CCF 2325 and Aspergillus tamarii CCF 1665. Addition of salts ((NH4)2SO4 or MgSO4 (0.1–1.0 M)) to the reaction increased the yields and also enhanced the β-N-acetylhexosaminidase regioselectivity.  相似文献   

9.
Two iridoid glucosides, 8-epi-grandifloric acid and 3′-O-β-glucopyranosyl-stilbericoside, were isolated from the aerial part of Thunbergia laurifolia along with seven known compounds, benzyl β-glucopyranoside, benzyl β-(2′-O-β-glucopyranosyl) glucopyranoside, grandifloric acid, (E)-2-hexenyl β-glucopyranoside, hexanol β-glucopyranoside, 6-C-glucopyranosylapigenin and 6,8-di-C-glucopyranosylapigenin. Strucural elucidation was based on the analyses of spectroscopic data.  相似文献   

10.
New analogues of 3β-hydroxy-5α-cholest-8(14)-en-15-one (15-ketosterol) with modified 17-chains [(22S,23S,24S)- and (22R,23R,24S)-3β-hydroxy-24-methyl-22,23-oxido-5α -cholest-8(14)-en-15- ones and (22RS,23ξ,24S)-24-methyl-5α-cholesta-8(14)-ene-3β, 22,23-triol-15-one] were synthesized from (22E,24S)-3β-acetoxy-24-methyl-5α-cholesta-8(14), 22-dien-15-one. The chiralities of their 22 and 23 centers were determined by NMR spectroscopy. The isomeric 22,23-epoxides effectively inhibited cholesterol biosynthesis in hepatoma Hep G2 cells (IC50 0.9±0.2 and 0.7±0.2 μM, respectively), and their activities significantly exceeded those of 15-ketosterol (IC50 4.0±0.5 μM), (22E,24S)-3β-hydroxy-24-methyl-5α-cholesta-8(14),22- dien-15-one (IC50 3.1±0.4 μM), and the 3β,22,23-triol synthesized (IC50 6.0±1.0 μM).__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 312–319.Original Russian Text Copyright © 2005 by Flegentov, Piir, Medvedeva, Tkachev, Timofeev, Misharin.  相似文献   

11.
Abstract

Various carbocyclic analogues of adenosine, including aristeromycin (carbocyclic adenosine), carbocyclic 3-deazaadenosine, neplanocin A, 3-deazaneplanocin A, the 5′-nor derivatives of aristeromycin, carbocylic 3-deazaadenosine, neplanocin A and 3-deazaneplanocin A, and the 2-halo (i.e., 2-fluoro) and 6′-R-alkyl (i.e., 6′-R-methyl) derivatives of neplanocin A have been recognized as potent inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase. This enzyme plays a key role in methylation reactions depending on S-adenosylmethionine (AdoMet) as methyl donor. AdoHcy hydrolase inhibitors have been shown to exert broad-spectrum antiviral activity against pox-, paramyxo-, rhabdo-, filo-, bunya-, arena-, and reoviruses. They also interfere with the replication of human immunodeficiency virus through inhibition of the Tat transactivation process.  相似文献   

12.
Two apiose-containing kaempferol triosides, together with nine known flavonoids were isolated from the leaves of Silphium perfoliatum L. Their structures were elucidated by acid hydrolysis and spectroscopic methods including UV, LSI MS, FAB MS, CI MS, 1H, 13C and 2D-NMR, DEPT, HMQC and HMBC experiments. The two new compounds were identified as kaempferol 3-O-β- -apiofuranoside 7-O-α- -rhamnosyl-(1′→6)-O-β- -galactopyranoside and kaempferol 3-O-β- -apiofuranoside 7-O-α- -rhamnosyl-(1→ 6)-O-β- (2-O-E-caffeoylgalactopyranoside).  相似文献   

13.
The reactions of platinum(II) bis(dithiolates) Pt(S---S)2 ((S---S)=S2P(OEt)2 (dtp), S2COnPr (xan), S2CNEt2 (dtc)) with two potentially tetradentate phosphine ligands have been investigated by multinuclear magnetic resonance spectroscopy and electrospray mass spectrometry (ESMS). The phosphines used were P(CH2CH2PPh2)3 (P3P′) and Ph2PCH2CH2P(Ph)CH2CH2P(Ph)CH2CH2PPh2 (P2P′2). 31P and 195Pt NMR spectroscopies show that P3P′ reacts in dichloromethane solution with Pt(dtp)2 and Pt(xan)2 to give five-coordinate [(η4-P3P′)Pt(η1-S---S)]+ and with Pt(dtc)2 to give a temperature dependent mixture of [(η4-P3P′)Pt(η1-dtc)]+ and [(η3-P3P′)Pt(η2-dtc)]+. All these formulations were confirmed by observation of the intact ions in the ES mass spectra directly from the solutions. [(η4-P3P′)Pt(η1-xan)]+ slowly reacts with the free xan ion to give the dithiocarbonate complex (η3-P3P′)Pt(η2-S2CO). The pendant phosphine in [(η3-P3P′)Pt(η2-dtc)]+ undergoes various chemical reactions such as methylation and reaction with sulfur, and the cation behaves as a monodentate phosphine towards Pt(dtp)2 to give [(η1-dtp)(η2-dtp)Pt(η123-P3P′)Pt(η2-dtc)]+ which was fully characterised by multi-NMR spectroscopy and confirmed by observation of the intact ion by ESMS. P2P′2 reacts with Pt(dtp)2 to give [(P2P′2)Pt]2+, but with Pt(xan)2 and Pt(dtc)2 the products are [(η4-P2P′2)Pt(η1-S---S)]+, but the xanthate complex slowly de-alkylates to give (η3-P2P′2)Pt(η2-S2CO). The identities of the cationic P2P′2 species in solution were confirmed by direct observation of the intact ion by ESMS.  相似文献   

14.
The effect of 6,74′-trihydroxyisoflavan on human platelet 12-lipoxygenase and human and porcine PMNL 5-lipoxygenase activities has been studied. 6,7,4′-Trihydroxyisoflavan was found to inhibit 5-lipoxygenase more strongly than 12-lipoxygenase; its concentration for 50% inhibition (IC50) was 1.6 μm for human and porcine 5-lipoxygenase adn 22 μM for human platelet 12-lipoxygenase. Inhibition of microsomal cyclooxygenase from ram seminal vesicles is exhibited at much higher concentrations of 6,7,4′-trihydroxyisoflavan (IC50 = 200 μM).  相似文献   

15.
A series of [ω-(adenosin-5′-O-yl)alkyl]cobalamins were examined for their inhibitory properties of ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii in the presence of 5′-deoxyadenosylcobalamin (AdoCbl, Coenzyme B12). These AdoCbl analogs, in which oligomethylene chains (C3-C7) were inserted between the corrin Co-atom and a 5′-O-atom of the adenosine moiety, were designed to probe the Co-C bond posthomolysis state in AdoCbl-dependent enzymes, a state in which the Co and 5′-C distance is believed to be significantly increased. Experimentally, all five analogs were competitive inhibitors, with Ki in the range of 8–56 μM. The [ω-(adenosin-5′-O-yl)alkyl]cobalamin analog with C5 methylene carbons was the strongest inhibitor. This same pattern of inhibition, in which the C5-analog is the strongest inhibitor, was previously observed in the AdoCbl-dependent eliminase enzyme systems, diol dehydratase and glycerol dehydratase. However, in methylmalonyl CoA mutase, the strongest inhibition is by the C6-analog. This supports the hypothesis that the cobalamin posthomolysis intermediate in the eliminase enzymes differs from that in the mutase enzymes. These findings led, in turn, to an examination of the visible spectra of enzyme-bound cob(II)alamin in these two subclasses of AdoCbl-dependent enzymes. The results reveal an additional insight into the difference between the two classes: in the eliminases, the γ-band of bound cob(II)alamin is shifted from the 473 nm for free cob(II)alamin to longer wavelengths, 475–480 nm. However, in mutases, the γ-band of bound cob(II)alamin is shifted to shorter wavelengths, 465–470 nm. Overall, the results (a) provide strong evidence that two subclasses of AdoCbl-dependent enzymes exist, (b) give insights into the probable posthomolysis state in RTPR and other eliminases, and (c) identifies the C5-analog as the tightest-binding analog for crystallization and other biophysical studies.  相似文献   

16.
An analog of adenosine 5′-triphosphate (ATP) was synthesized in which the C4′---C5′---O---Pα system is replaced by a trans C4′---CH=CH---Pα system. In the form of 1:1 complexes with Mg, this analog and its counterpart with a C4′---CH2---CH2---Pα system were linear competitive inhibitors, with respect to MgATP, of the MAT-II (normal tissue) and MAT-T (hepatoma tissue) forms of rat ATP: -methionine-S-adenosyltransferase (MAT); Km(ATP)/Ki values ranged from 0.4 to 2.4. 2′-Deoxy-ATP was a weak substrate, Km(ATP)/Km = 0.035, of MAT-II and a weak competitive inhibitor, Km(ATP)/Ki = 0.07, of MAT-T. These findings, together with interactions of the MAT forms with other substrates and inhibitors, indicate that binding of ATP to these transferases is accompanied by little rotation about the C5′---O5′ bond, and that C4′ and Pα are in a trans-type relationship in enzyme-bound ATP.  相似文献   

17.
18.
The conformationally restricted S-adenosylmethionine analogue AdoMac (S-(5′-deoxy-5′-adenosyl)-1-ammonio-4-methylsulfonio-2-cyclopentene has been shown to act as an enzyme activated, irreversible inhibitor of theEscherichia coli form of the enzyme S-adenosylmethionine decarboxylase. Inactivation of the enzyme is presumably initiated by formation of an imine linkage between the inhibitor and the terminal pyruvate of the enzyme, followed by base-catalyzed elimination of methylthioadenosine and generation of a latent electrophile. Removal of the driving force for the elimination of methylthioadenosine resulted in a reversibly binding inhibitor. Thus, the thioether analogue corresponding to AdoMac, and the corresponding dihydro derivative (H2-AdoMac), reversibly inhibit the enzyme. AdoMac was resolved into its four pure diastereomeric forms, and each diastereomer was evaluated as an irreversible inhibitor of the enzyme. The KI values for the individual diastereomers range between 3.83 and 39.6 μM, with the cis-1S,4R diastereomer being the most potent inhibitor. However, the kinact values for the four diastereomers are not significantly different, suggesting that the binding of each diastereomer to the enzyme is configuration-dependent, while the subsequent inactivation likely proceeds through a single intermediate which is formed from each of the four diastereomers. Since each pure diastereomer represents a distinct conformational mimic exhibiting restricted sidechain rotation, the data suggests that these and related analogues may be useful as conformational probes for the catalytic site of AdoMet-DC.  相似文献   

19.
A panel of six complementary monodeoxy and mono-O-methyl congeners of methyl β-d-mannopyranosyl-(1→2)-β-d-mannopyranoside (1) were synthesized by stereoselective glycosylation of monodeoxy and mono-O-methyl monosaccharide acceptors with a 2-O-acetyl-glucosyl trichloroacetimidate donor, followed by a two-step oxidation–reduction sequence at C-2′. The β-manno configurations of the final deprotected congeners 2–7 were confirmed by measurement of 1JC1,H1 heteronuclear and 3J1′,2′ homonuclear coupling constants. These disaccharide derivatives will be used to map the protective epitope recognized by a protective anti-Candida albicans monoclonal antibody C3.1 (IgG3) and to determine its key polar contacts with the binding site.  相似文献   

20.
β-(1→4)-Thiodisaccharides formed by a pentopyranose unit as reducing or non reducing end have been synthesized using a sugar enone derived from a hexose or pentose as Michael acceptor of a 1-thiopentopyranose or 1-thiohexopyranose derivatives. Thus, 2-propyl per-O-acetyl-3-deoxy-4-S-(β-d-Xylp)-4-thiohexopyranosid-2-ulose (3) and benzyl per-O-acetyl-3-deoxy-4-S-(β-d-Galp)-4-thiopentopyranosid-2-ulose (11) were obtained in almost quantitative yields. The carbonyl function of these uloses was reduced with NaBH4 or K-Selectride, and the stereochemical course of the reduction was highly dependent on the reaction temperature, reducing agent and solvent. Unexpectedly, reduction of 3 with NaBH4–THF at 0 °C gave a 3-deoxy-4-S-(β-d-Xylp)-4-thio-α-d-ribo-hexopyranoside derivative (6) as major product (74% yield), with isomerization of the sulfur-substituted C-4 stereocenter of the pyranone. Reduction of 11 gave always as major product the benzyl 3-deoxy-4-S-(Galp)-4-thio-β-d-threo-pentopyranoside derivative 14, which was the only product isolated (80% yield) in the reduction with K-Selectride in THF at −78 °C. Deprotection of 14 and its epimer at C-2 (13) afforded, respectively the free thiodisaccharides 19 and 18. They displayed strong inhibitory activity against the β-galactosidase from Escherichia coli. Thus, compound 18 proved to be a non-competitive inhibitor of the enzyme (Ki = 0.80 mM), whereas 19 was a mixed-type inhibitor (Ki = 32 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号