共查询到20条相似文献,搜索用时 15 毫秒
1.
Heaps CL Mattox ML Kelly KA Meininger CJ Parker JL 《American journal of physiology. Heart and circulatory physiology》2006,290(3):H1128-H1135
Endurance exercise training increases basal active tone in coronary arteries and enhances myogenic tone in coronary arterioles of control animals. Paradoxically, exercise training has also been shown to augment nitric oxide production and nitric oxide-mediated relaxation in coronary arterioles. The purpose of the present study was to examine the effect of exercise training on basal active tone of arterioles (approximately 150 microm ID) isolated from the collateral-dependent region of hearts exposed to chronic coronary occlusion. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of miniature swine. Arterioles were isolated from both the collateral-dependent and nonoccluded myocardial regions of sedentary (pen confined) and exercise-trained (treadmill run; 14 wk) pigs. Coronary tone was studied in isolated arterioles using microvessel myographs and standard isometric techniques. Exposure to nominally Ca2+-free external solution reduced resting tension in all arterioles; decreases were most profound (P < 0.05) in arterioles from the collateral-dependent region of exercise-trained animals. Furthermore, nitric oxide synthase (NOS) inhibition (N(omega)-nitro-L-arginine methyl ester; 100 microM) unmasked markedly increased nitric oxide-sensitive tone in arterioles from the collateral-dependent region of exercise-trained swine. Blockade of K+ channels revealed significantly enhanced K+ channel contribution to basal tone in collateral-dependent arterioles of exercise-trained pigs. Protein content of endothelial NOS (eNOS) and phosphorylated eNOS (pS1179), determined by immunoblot, was elevated in arterioles from exercise-trained animals with the greatest effect in collateral-dependent vasculature. Taken together, we demonstrate the interaction of opposing exercise training-enhanced arteriolar basal active tone, nitric oxide production, and K+ channel activity in chronic coronary occlusion, potentially enhancing the capacity to regulate blood flow to collateral-dependent myocardium. 相似文献
2.
McAllister Richard M.; Reiter Brian L.; Amann John F.; Laughlin M. Harold 《Journal of applied physiology》1997,82(6):1862-1868
McAllister, Richard M., Brian L. Reiter, John F. Amann, andM. Harold Laughlin. Skeletal muscle biochemical adaptations toexercise training in miniature swine. J. Appl.Physiol. 82(6): 1862-1868, 1997.The primarypurpose of this study was to test the hypothesis that enduranceexercise training induces increased oxidative capacity in porcineskeletal muscle. To test this hypothesis, female miniature swine wereeither trained by treadmill running 5 days/wk over 16-20 wk (Trn;n = 35) or pen confined (Sed;n = 33). Myocardialhypertrophy, lower heart rates during submaximal stages of a maximaltreadmill running test, and increased running time to exhaustion duringthat test were indicative of training efficacy. A variety of skeletalmuscles were sampled and subsequently assayed for the enzymes citratesynthase (CS), 3-hydroxyacyl-CoA dehydrogenase, and lactatedehydrogenase and for antioxidant enzymes. Fiber type composition of arepresentative muscle was also determined histochemically. The largestincrease in CS activity (62%) was found in the gluteus maximus muscle(Sed, 14.7 ± 1.1 µmol · min1 · g1;Trn, 23.9 ± 1.0; P < 0.0005).Muscles exhibiting increased CS activity, however, were locatedprimarily in the forelimb; ankle and knee extensor and respiratorymuscles were unchanged with training. Only two muscles exhibited higher3-hydroxyacyl-CoA dehydrogenase activity in Trn compared with Sed.Lactate dehydrogenase activity was unchanged with training, as wereactivities of antioxidant enzymes. Histochemical analysis of thetriceps brachii muscle (long head) revealed lower type IIB fibernumbers in Trn (Sed, 42 ± 6%; Trn, 10 ± 4;P < 0.01) and greater type IID/Xfiber numbers (Sed, 11 ± 2; Trn, 22 ± 3;P < 0.025). These findingsindicate that porcine skeletal muscle adapts to endurance exercisetraining in a manner similar to muscle of humans and other animalmodels, with increased oxidative capacity. Specificmuscles exhibiting these adaptations, however, differ between theminiature swine and other species. 相似文献
3.
The present study examined whether regulation ofcoronary tone in conduit arteries (>1.0 mm ID) is altered by exercisetraining. Yucatan miniature swine were treadmill trained for 16-20wk (Ex) and compared with sedentary counterparts (Sed).Endothelium-denuded arterial rings were stretched to optimal length andallowed to equilibrate for 60 min. Inhibition of eitherCa2+-activated channels [1mM tetraethylammonium (TEA) or 10 nM iberiotoxin (IBTX)] orvoltage-dependent K+ channels[1 mM 4-aminopyridine (4-AP)] significantlyincreased resting tension in both groups; however, the effect of allK+-channel blockers was greater inEx. Addition of 1 mM sodium nitroprusside reduced resting tension inboth groups, confirming the presence of active basal tone; however,sodium nitroprusside-sensitive tone was increased approximately twofoldin Ex compared with Sed group. Perforated patch-clamp experiments onisolated smooth muscle cells demonstrated no effect of exercisetraining on whole cell TEA-sensitive, 4-AP-sensitive, or basalK+ current. Similarly, whereasTEA, 4-AP, and IBTX all decreased resting membrane potential, there wasno difference in depolarization between groups. The greater effect ofTEA on resting tension in Ex could be mimicked in Sed by addition ofthe Ca2+-channel agonist BAY K8644. In conclusion, the greater response toK+-channel blockers after exercisetraining is consistent with an increased contribution ofK+ channels to regulation of basaltone in conduit coronary arteries. The lack of an effect of training onK+ current characteristics ormembrane potential responses in isolated cells suggests that arequisite factor for enhancedK+-channel activation in arteriesfrom Ex, possibly stretch, is absent in isolated cells. 相似文献
4.
Steiner JL Murphy EA McClellan JL Carmichael MD Davis JM 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,111(4):1066-1071
Increased muscle mitochondria are largely responsible for the increased resistance to fatigue and health benefits ascribed to exercise training. However, very little attention has been given to the likely benefits of increased brain mitochondria in this regard. We examined the effects of exercise training on markers of both brain and muscle mitochondrial biogenesis in relation to endurance capacity assessed by a treadmill run to fatigue (RTF) in mice. Male ICR mice were assigned to exercise (EX) or sedentary (SED) conditions (n = 16-19/group). EX mice performed 8 wk of treadmill running for 1 h/day, 6 days/wk at 25 m/min and a 5% incline. Twenty-four hours after the last training bout a subgroup of mice (n = 9-11/group) were euthanized, and brain (brain stem, cerebellum, cortex, frontal lobe, hippocampus, hypothalamus, and midbrain) and muscle (soleus) tissues were isolated for analysis of mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α), Silent Information Regulator T1 (SIRT1), citrate synthase (CS), and mitochondrial DNA (mtDNA) using RT-PCR. A different subgroup of EX and SED mice (n = 7-8/group) performed a treadmill RTF test. Exercise training increased PGC-1α, SIRT1, and CS mRNA and mtDNA in most brain regions in addition to the soleus (P < 0.05). Mean treadmill RTF increased from 74.0 ± 9.6 min to 126.5 ± 16.1 min following training (P < 0.05). These findings suggest that exercise training increases brain mitochondrial biogenesis, which may have important implications, not only with regard to fatigue, but also with respect to various central nervous system diseases and age-related dementia that are often characterized by mitochondrial dysfunction. 相似文献
5.
D K Bowles 《Journal of applied physiology》2001,91(6):2503-2510
Endurance exercise training increases smooth muscle L-type Ca(2+) current density in both resistance and proximal coronary arteries of female miniature swine. The purpose of the present study was to determine 1) whether gender differences exist in coronary smooth muscle (CSM) L-type Ca(2+) current density and 2) whether endurance training in males would demonstrate a similar adaptive response as females. Proximal, conduit (approximately 1.0 mm), and resistance [~200 microm (internal diameter)] coronary arteries were obtained from sedentary and treadmill-trained swine of both sexes. CSM were isolated by enzymatic digestion (collagenase plus elastase), and voltage-gated Ca(2+)-channel current (I(Ca)) was determined by using whole cell voltage clamp during superfusion with 75 mM tetraethylammonium chloride and 10 mM BaCl(2). Current-voltage relationships were obtained at test potentials from -60 to 70 mV from a holding potential of -80 mV, and I(Ca) was normalized to cell capacitance (pA/pF). Endurance treadmill training resulted in similar increases in heart weight-to-body weight ratio, endurance time, and skeletal muscle citrate synthase activity in male and female swine. I(Ca) density was significantly greater in males compared with females in both conduit (-7.57 +/- 0.58 vs. -4.14 +/- 0.47 pA/pF) and resistance arteries (-11.25 +/- 0.74 vs. -6.49 +/- 0.87 pA/pF, respectively). In addition, voltage-dependent activation of I(Ca) in resistance arteries was shifted to more negative membrane potentials in males. Exercise training significantly increased I(Ca) density in both conduit and resistance arteries in females (-7.01 +/- 0.47 and -9.73 +/- 1.13 pA/pF, respectively) but had no effect in males (-8.61 +/- 0.50 and -12.04 +/- 1.07 pA/pF, respectively). Thus gender plays a significant role in determining both the magnitude and voltage dependence of I(Ca) in CSM and the adaptive response of I(Ca) to endurance training. 相似文献
6.
Laughlin M. H.; Burns J. W.; Fanton J.; Ripperger J.; Peterson D. F. 《Journal of applied physiology》1988,64(6):2589-2596
The purpose of this study was to compare the coronary blood flow reserve (CBFR) that exists during maximal +Gz stress to the CBFR during maximal exercise stress. Maximal exercise stress was defined as an exercise intensity greater than or equal to that necessary to produce maximal levels of O2 consumption (VO2max). Coronary blood flows (CBF) were determined with the use of the microsphere technique in chronically instrumented conscious miniature swine during +Gz stress and exercise stress at 70 and 100% of maximal tolerance (for each stress) before and after maximal coronary vasodilation with 1-2 mg/kg dipyridamole. CBFR was measured as the amount of blood flow increase produced by maximal coronary vasodilation. During exercise at VO2max, dipyridamole produced 20-30% increases in CBF, whereas it induced no coronary vasodilation or changes in CBF during +Gz stress. Dipyridamole also produced decreases in the animals' tolerance to +Gz in that all five animals could maintain a steady state for 60 s at 7 +Gz before dipyridamole, whereas only two of these animals could maintain a steady state for 60 s at 7 +Gz after dipyridamole. These results confirm that CBFR exists during maximal exercise in normal mammals. However, this dose of dipyridamole produced no coronary vasodilation during either level of +Gz stress. 相似文献
7.
Aerobic exercise training is known to have profound cardioprotective effects in disease, yet cellular mechanisms remain largely undefined. We tested the hypothesis that increased sarcoplasmic reticulum Ca(2+) buffering and increased voltage-gated Ca(2+) channel density underlie coronary smooth muscle intracellular Ca(2+) (Ca(2+)(i)) dysregulation in diabetic dyslipidemia and that exercise training would prevent these increases. Yucatan swine were maintained in 1) control, 2) alloxan-induced hyperglycemic, 3) high fat/cholesterol fed, 4) hyperglycemic plus high fat/cholesterol fed (diabetic dyslipidemic), and 5) diabetic dyslipidemic plus exercise-trained (treadmill running) conditions. After 20 wk, the heart was removed and smooth muscle cells isolated from the right coronary artery. We utilized fura-2 imaging of Ca(2+)(i) levels to separate the functional role of the sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) from the Na(+)-Ca(2+) exchanger and the plasmalemmal Ca(2+)-ATPase, and whole-cell patch clamp to examine voltage-gated Ca(2+) channel current density (i.e., Ca(2+) influx). Results indicated that diabetic dyslipidemia impaired plasmalemmal Ca(2+) efflux, increased basal Ca(2+)(i) levels, increased SERCA protein and sarcoplasmic reticulum Ca(2+)(i) buffering, and elicited an approximately 50% decrease in voltage-gated Ca(2+) channel current density. Exercise training concurrent with the diabetic dyslipidemic state restored plasmalemmal Ca(2+) efflux, SERCA protein, sarcoplasmic reticulum Ca(2+)(i) buffering, and voltage-gated Ca(2+) channel current density to control levels. Interestingly, basal Ca(2+)(i) levels were significantly lower in the exercise-trained group compared with control. Collectively, these results demonstrate a crucial role for exercise in the prevention of diabetic dyslipidemia-induced Ca(2+)(i) dysregulation. 相似文献
8.
9.
10.
Pruchnic R Katsiaras A He J Kelley DE Winters C Goodpaster BH 《American journal of physiology. Endocrinology and metabolism》2004,287(5):E857-E862
Intramyocellular lipid (IMCL) has been associated with insulin resistance. However, an association between IMCL and insulin resistance might be modulated by oxidative capacity in skeletal muscle. We examined the hypothesis that 12 wk of exercise training would increase both IMCL and the oxidative capacity of skeletal muscle in older (67.3 +/- 0.7 yr), previously sedentary subjects (n = 13; 5 men and 8 women). Maximal aerobic capacity (Vo(2 max)) increased from 1.65 +/- 0.20 to 1.85 +/- 0.14 l/min (P < 0.05), and systemic fat oxidation induced by 1 h of cycle exercise at 45% of Vo(2 max) increased (P < 0.05) from 15.03 +/- 40 to 19.29 +/- 0.80 (micromol.min(-1).kg fat-free mass(-1)). IMCL, determined by quantitative histological staining in vastus lateralis biopsies, increased (P < 0.05) from 22.9 +/- 1.9 to 25.9 +/- 2.6 arbitrary units (AU). The oxidative capacity of muscle, determined by succinate dehydrogenase staining intensity, significantly increased (P < 0.05) from 75.2 +/- 5.2 to 83.9 +/- 3.6 AU. The percentage of type I fibers significantly increased (P < 0.05) from 35.4 +/- 2.1 to 40.1 +/- 2.3%. In conclusion, exercise training increases IMCL in older persons in parallel with an enhanced capacity for fat oxidation. 相似文献
11.
Cardiac function and morphology of Hanford miniature swine and Yucatan miniature and micro swine 总被引:3,自引:0,他引:3
The use of miniature swine in biomedical research is increasing; however, a comparison of cardiac function and morphology between strains has yet to be characterized. The purpose of this project was to examine comprehensive hemodynamics and cardiac morphology of three groups of ten normal, 4 months old, age-matched Yucatan miniature (MINI) pigs, Yucatan micropigs (MICRO) and Hanford (HAN) miniature pigs, 5 males and five females per group. Closed chest cardiac catheterization under equivalent conditions was performed followed by post mortem cardiac morphometry. Mean arterial pressure was significantly greater in the Hanford group when compared to both the minipig and micropig pigs (HAN: 89 +/- 4; MINI: 48 +/- 3; MICRO: 53 +/- 2 mmHg). Pulmonary vascular resistance was significantly different between the three groups (HAN: 9 +/- 1; MINI: 60 +/- 12; MICRO: 111 +/- 29 dyne x sec/cm x m2). The Hanford strain had a significantly smaller heart weight to body weight ratio than the other two groups (HAN: 4.6 +/- 1.0; MINI: 5.7 +/- 0.1; MICRO: 5.5 +/- 1.0). Variations in cardiovascular parameters occur among these strains and should be considered when constructing experimental designs. 相似文献
12.
13.
目的探讨一种高效、稳定的经胸腔镜构建不同程度冠状动脉狭窄动物模型的方法。方法 20头巴马小型猪,在胸腔镜直视下手术丝线永久性环扎左前降支近端,从而造成前降支不同程度的狭窄。术后进行定量冠状动脉造影检查评价狭窄程度。结果 20头小型猪中18头手术顺利完成,2头术中出现室颤,除颤成功后分别于术后8 h和48 h死亡。术后行定量冠状动脉造影显示7头小型猪狭窄程度不超过50%,6头狭窄程度在50%到70%,5头狭窄程度在70%以上,即时手术成功率100%,建模成功率90%。结论完全胸腔镜下应用丝线环扎法可成功地制作不同程度的冠脉狭窄动物模型。 相似文献
14.
This study investigated the effects of exercise training on the regional release of endothelium-derived nitric oxide (EDNO) in spontaneously hypertensive rats (SHR). Male SHR and Wistar-Kyoto rats were divided into control and training groups, respectively. The training groups received moderate exercise by running on a drum exerciser for 60 min/day, 5 days/week for 10 weeks. At the end of experiments, thoracic aortae and common carotid arteries were excised. Acetylcholine (ACh)-induced relaxing responses due to EDNO release were evaluated in the presence of indomethacin. Vascular relaxing responses to A23187 or to sodium nitroprusside (SNP) were also studied. Our results indicated that after training, (1) the vascular sensitivity of thoracic aortae to ACh-induced relaxation was elevated when indomethacin was present; this effect was absent in the common carotid artery and it was abolished by adding N-nitro-L-arginine, and (2) no significant changes in SNP- or A23187-induced vascular relaxing responses, both being nonreceptor-mediated processes, were observed. We can conclude that for both hypertensive and normotensive rats, exercise training may increase receptor-mediated agonist-stimulated EDNO release in the thoracic aorta, but not in the common carotid artery. 相似文献
15.
Howarth KR Burgomaster KA Phillips SM Gibala MJ 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,293(3):R1335-R1341
The branched-chain oxoacid dehydrogenase complex (BCOAD) is rate determining for the oxidation of branched-chain amino acids (BCAAs) in skeletal muscle. Exercise training blunts the acute exercise-induced activation of BCOAD (BCOADa) in human skeletal muscle (McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA. Am J Physiol Endocrinol Metab 278: E580-E587, 2000); however, the mechanism is unknown. We hypothesized that training would increase the muscle protein content of BCOAD kinase, the enzyme responsible for inactivation of BCOAD by phosphorylation. Twenty subjects [23 +/- 1 yr; peak oxygen uptake (.VO(2peak)) = 41 +/- 2 ml.kg(-1).min(-1)] performed 6 wk of either high-intensity interval or continuous moderate-intensity training on a cycle ergometer (n = 10/group). Before and after training, subjects performed 60 min of cycling at 65% of pretraining .VO(2peak), and needle biopsy samples (vastus lateralis) were obtained before and immediately after exercise. The effect of training was demonstrated by an increased .VO(2peak), increased citrate synthase maximal activity, and reduced muscle glycogenolysis during exercise, with no difference between groups (main effects, P < 0.05). BCOADa was lower after training (main effect, P < 0.05), and this was associated with a approximately 30% increase in BCOAD kinase protein content (main effect, P < 0.05). We conclude that the increased protein content of BCOAD kinase may be involved in the mechanism for reduced BCOADa after exercise training in human skeletal muscle. These data also highlight differences in models used to study the regulation of skeletal muscle BCAA metabolism, since exercise training was previously reported to increase BCOADa during exercise and decrease BCOAD kinase content in rats (Fujii H, Shimomura Y, Murakami T, Nakai N, Sato T, Suzuki M, Harris RA. Biochem Mol Biol Int 44: 1211-1216, 1998). 相似文献
16.
P J Rogers T D Miller B A Bauer J M Brum A A Bove P M Vanhoutte 《Journal of applied physiology》1991,71(6):2346-2351
Exercise is associated with release of catecholamines and vasoactive intestinal polypeptides. Recurrent exposure to catecholamines modifies the sensitivity of adrenoceptors. To test the hypothesis that exercise training may affect the sensitivity of the epicardial coronary arteries, we performed studies on isolated coronary arteries from male dogs capable of running on a treadmill. The animals were separated randomly into two groups: sedentary and exercise training. After 11 wk, rings of left circumflex and left anterior descending coronary arteries were studied in vitro. Contractions to alpha 1-adrenergic agonists (norepinephrine and phenylephrine) were not affected by exercise training. During contractions with prostaglandin F2 alpha, endothelium-dependent relaxations to alpha 2-adrenergic agonists (norepinephrine and UK 14304) were not reduced significantly by exercise training. The concentration-relaxation curves to beta-adrenergic agonists (norepinephrine, isoproterenol, and epinephrine) were shifted to the right after training. The concentration-response curves to vasoactive intestinal polypeptide, but not that to substance P, were shifted to the right in rings with endothelium from exercise-trained animals. These findings demonstrate a decrease in responsiveness of canine vascular smooth muscle to beta-adrenergic agonists and to vasoactive intestinal polypeptide after exercise training. 相似文献
17.
N M Buckley P M Gootman P Brazeau B P Matanic I D Frasier E L Gentles 《Laboratory animal science》1979,29(2):200-208
Miniature swine anesthetized with pentobarbital were studied with respect to their cardiovascular function under control conditions and in response to catecholamines, baroreceptor inhibition, bilateral vagotomy and vagal nerve stimulation. Measurements included aortic pressure, heart rate, intraventricular pressure and its maximum rate of rise during contraction, carotid blood flow and resistance, femoral blood flow and resistance, and renal blood flow and resistance. The cardiovascular actions of norepinephrine, epiniphrine and isoproterenol were similar to those in other mammals, and the adrenergic receptor mechanisms also were susceptible to blockade with phentolamine or propranolol. Inhibition of the carotid baroreceptors was accompanied by elevation of aortic pressure, reflex bradycardia and increased femoral and renal resistances. Bileteral vagotomy was followed by hypertension, tachycardia and increased renal resistance. Changes in femoral resistance to these procedures differed between the two strains of miniature swine studied. Stimulation of the peripheral end of either vagus nerve was accompanied by bradycardia without hypotension. 相似文献
18.
Zhang Z Takarada S Molloi S 《American journal of physiology. Heart and circulatory physiology》2012,303(3):H401-H410
Coronary flow reserve (CFR) and fractional flow reserve (FFR) are important physiological indexes for coronary disease. The purpose of this study was to validate the CFR and FFR measurement techniques using only angiographic image data. Fifteen swine were instrumented with an ultrasound flow probe on the left anterior descending artery (LAD). Microspheres were gradually injected into the LAD to create microvascular disruption. An occluder was used to produce stenosis. Contrast material injections were made into the left coronary artery during image acquisition. Volumetric blood flow from the flow probe (Q(q)) was continuously recorded. Angiography-based blood flow (Q(a)) was calculated by using a time-density curve based on the first-pass analysis technique. Flow probe-based CFR (CFR(q)) and angiography-based CFR (CFR(a)) were calculated as the ratio of hyperemic to baseline flow using Q(q) and Q(a), respectively. Relative angiographic FFR (relative FFR(a)) was calculated as the ratio of the normalized Q(a) in LAD to the left circumflex artery (LC(X)) during hyperemia. Flow probe-based FFR (FFR(q)) was measured from the ratio of hyperemic flow with and without disease. CFR(a) showed a strong correlation with the gold standard CFR(q) (CFR(a) = 0.91 CFR(q) + 0.30; r = 0.90; P < 0.0001). Relative FFR(a) correlated linearly with FFR(q) (relative FFR(a) = 0.86 FFR(q) + 0.05; r = 0.90; P < 0.0001). The quantification of CFR and relative FFR(a) using angiographic image data was validated in a swine model. This angiographic technique can potentially be used for coronary physiological assessment during routine cardiac catheterization. 相似文献
19.
Yucatan miniature swine were the experimental model used to examine the effect of ischemia-injury on post-ischemic monocyte (MO) and immune function. Monocyte plasminogen activator (PA) was depressed while MO tissue factor activity was increased. The ability of porcine monocytes to generate a primary in vitro antibody forming cell (AFC) response to sheep red blood cells (SRBC) also was depressed by ischemic injury. The mechanism by which ischemic injury modulated immunosuppression appeared to be through generation of immunosuppressive serum substances. 相似文献
20.
Buttrick P. M.; Levite H. A.; Schaible T. F.; Ciambrone G.; Scheuer J. 《Journal of applied physiology》1985,59(6):1861-1865
To evaluate the relationship between the physiological cardiac hypertrophy associated with physical training and the increases in vascular capacitance associated with this stimuli, male and female rats trained by a swimming program were studied. Both sexes were used so that the coronary vascular response to exercise could be studied in the presence (females) and absence (males) of cardiac hypertrophy. Coronary vascular reserve was assessed in isolated retrograde buffer-perfused hearts under conditions of minimal coronary resistance (15 microM adenosine or anoxia). Both groups demonstrated an increase in coronary vascular reserve after 8 wk of exercise swim training, male animals increasing flow (per g of myocardium) by 15% and females by 18%. When the time course of this response was compared in female animals with the time course of the development of myocardial hypertrophy, it was evident that the vascular changes occurred early, greater than 80% of the response was seen within the first 10 days of exercise, compared with an approximately 35% increase in cardiac mass. These data suggest that the vascular response to exercise swim training is independent of the hypertrophic response and further that the increase in coronary vascularity is an early event in the cardiac adaptation to a physiological load. 相似文献