首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultivation-independent analyses were applied to study the structural diversity of the bacterial community which developed in groundwater inoculated microcosms actively metabolizing monochlorobenzene (MCB) under anaerobic conditions. Addition of 13C-labelled MCB demonstrated that the community produced 13CO2 as a metabolite at slightly increasing rates over a period of 1,051 days while no 13C-methane evolved. Genetic profiles of partial 16S rRNA genes generated with the single-strand conformation polymorphism (SSCP) technique by PCR from directly extracted total DNA revealed that, despite the long incubation period, six replicate microcosms were characterized by almost the same microbial members. Nine distinguishable contributors to the SSCP-profiles were characterized by DNA sequencing, revealing the presence of different members from the phyla Proteobacteria, Fibrobacteres and from the candidate division OD1. DNA-stable isotope probing (SIP) was applied to distinguish the actual MCB metabolizing bacteria from the other community members. This study reveals for the first time the structural diversity of an anaerobic MCB metabolizing bacterial community. However, it also demonstrates the limitations of SIP to detect bacteria slowly metabolizing carbon sources under anaerobic conditions.  相似文献   

2.
The influence of soil environmental factors such as aeration on the ecology of microorganisms involved in the mineralization and degradation of the popular soil-applied pre-emergent herbicide, metolachlor is unknown. To address this knowledge gap, we utilized DNA-based stable isotope probing (SIP) where soil microcosms were incubated aerobically or anaerobically and received herbicide treatments with unlabeled metolachlor or 13C-metolachlor. Mineralization of metolachlor was confirmed as noted from the evolution of 14CO2 from 14C-metolachlor-treated microcosms and clearly demonstrated the efficient utilization of the herbicide as a carbon source. Terminal restriction fragment length polymorphisms (T-RFLP) bacterial community profiling performed on soil DNA extracts indicated that fragment 307 bp from aerobic soil and 212 bp from anaerobic soil were detected only in the herbicide-treated (both unlabeled metolachlor and 13C-metolachlor) soils when compared to the untreated control microcosms. T-RFLP profiles from the ultracentrifugation fractions illustrated that these individual fragments experienced an increase in relative abundance at a higher buoyant density (BD) in the labeled fractions when compared to the unlabeled herbicide amendment fractions. The shift in BD of individual T-RFLP fragments in the density-resolved fractions suggested the incorporation of 13C from labeled herbicide into the bacterial DNA and enabled the identification of organisms responsible for metolachlor uptake from the soil. Subsequent cloning and 16S rRNA gene sequencing of the 13C-enriched fractions implicated the role of organisms closely related to Bacillus spp. in aerobic mineralization and members of Acidobacteria phylum in anaerobic mineralization of metolachlor in soil.  相似文献   

3.
A considerable amount of methane produced during decomposition of landfill waste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with (13)C-labelled methane and under either nutrient-rich nitrate mineral salt medium or water. The identity of active methanotrophs was revealed by analysis of (13)C-labelled DNA fractions. The diversity of functional genes (pmoA and mmoX) and 16S rRNA genes was analyzed using clone libraries, microarrays and denaturing gradient gel electrophoresis. 16S rRNA gene analysis revealed that the cover soil was mainly dominated by Type II methanotrophs closely related to the genera Methylocella and Methylocapsa and to Methylocystis species. These results were supported by analysis of mmoX genes in (13)C-DNA. Analysis of pmoA gene diversity indicated that a significant proportion of active bacteria were also closely related to the Type I methanotrophs, Methylobacter and Methylomonas species. Environmental conditions in the slightly acidic peat soil from Roscommon landfill cover allow establishment of both Type I and Type II methanotrophs.  相似文献   

4.
The microbial ecology of soil still presents a challenge to microbiologists attempting to establish the ways in which bacteria and fungi actively metabolise substrates, link into food webs and recycle plant and animal remains and provide essential nutrients for plants. Extraction and in situ analysis of rRNA has enabled identification of active taxa, and detection of mRNA has provided an insight into the expression of key functional genes in soil. Recent advances in genomic analysis and stable isotope probing are the first steps in resolving the linkage between structure and function in microbial communities.  相似文献   

5.
Plant residues, mainly made up of cellulose, are the largest fraction of organic carbon material in terrestrial ecosystems. Soil microorganisms are mainly responsible for the transfer of this carbon to the atmosphere, but their contribution is not accurately known. The aim of the present study was to identify bacterial populations that are actively involved in cellulose degradation, using the DNA-stable isotope probing (DNA-SIP) technique. 13C-cellulose was produced by Acetobacter xylinus and incubated in soil for 7, 14, 30 and 90 days. Total DNA was extracted from the soil, the 13C-labelled (heavy) and unlabelled (light) DNA fractions were separated by ultracentrifugation, and the structure of active bacterial communities was analysed by bacterial-automated ribosomal intergenic spacer analysis (B-ARISA) and characterized with denaturing gradient gel electrophoresis (DGGE). Cellulose degradation was associated with significant changes in bacterial community structure issued from heavy DNA, leading to the appearance of new bands and increase in relative intensities of other bands until day 30. The majority of bands decreased in relative intensity at day 90. Sequencing and phylogenetic analysis of 10 of these bands in DGGE profiles indicated that most sequences were closely related to sequences from organisms known for their ability to degrade cellulose or to uncultured soil bacteria.  相似文献   

6.
To determine phylogenetic diversity of a functional gene from strain collections or environmental DNA amplifications, new and fast methods are required. Catechol 2,3-dioxygenase (C23O) subfamily I.2.A genes, known to be of crucial importance for aromatic degradation, were used as a model to adapt the amplified ribosomal DNA restriction analysis to functional genes. Sequence data of C23O genes from 13 reference strains, representing the main branches of the C23O family I.2.A phylogeny, were used for simulation of theoretical restriction patterns. Among other restriction enzymes, Sau3A1 theoretically produce characteristic profiles from each subfamily I.2.A member and their similarities reassembled the main divergent branches of C23O gene phylogeny. This enzyme was used to perform an amplified functional DNA restriction analysis (AFDRA) on C23O genes of reference strains and 19 isolates. Cluster analyses of the restriction fragment profiles obtained from isolates showed patterns with distinct similarities to the reference strain profiles, allowing to distinguish four different groups. Sequences of PCR fragments from isolates were in close agreement with the phylogenetic correlations predicted with the AFDRA approach. AFDRA thus provided a quick assessment of C23O diversity in a strain collection and insights of its gene phylogeny affiliation among known family members. It cannot only be easily applied to a vast number of isolates but also to define the predominant polymorphism of a functional gene present in environmental DNA extracts. This approach may be useful to differentiate functional genes also for many other gene families.  相似文献   

7.
8.
Stable isotope probing (SIP) can be used to analyze the active bacterial populations involved in a process by incorporating 13C-labeled substrate into cellular components such as DNA. Relatively long incubation times are often used with laboratory microcosms in order to incorporate sufficient 13C into the DNA of the target organisms. Addition of nutrients can be used to accelerate the processes. However, unnatural concentrations of nutrients may artificially change bacterial diversity and activity. In this study, methanotroph activity and diversity in soil was examined during the consumption of 13CH4 with three DNA-SIP experiments, using microcosms with natural field soil water conditions, the addition of water, and the addition of mineral salts solution. Methanotroph population diversity was studied by targeting 16S rRNA and pmoA genes. Clone library analyses, denaturing gradient gel electrophoresis fingerprinting, and pmoA microarray hybridization analyses were carried out. Most methanotroph diversity (type I and type II methanotrophs) was observed in non-amended SIP microcosms. Although this treatment probably best reflected the in situ environmental conditions, one major disadvantage of this incubation was that the incorporation of 13CH4 was slow and some cross-feeding of 13C occurred, thereby leading to labeling of nonmethanotroph microorganisms. Conversely, microcosms supplemented with mineral salts medium exhibited rapid consumption of 13CH4, resulting in the labeling of a less diverse population of only type I methanotrophs. DNA-SIP incubations using water-amended microcosms yielded faster incorporation of 13C into active methanotrophs while avoiding the cross-feeding of 13C.  相似文献   

9.
Rapid responses of bacteria to sudden changes in their environment can have important implications for the structure and function of microbial communities. In this study, we used heavy-water stable isotope probing (H2(18)O-SIP) to identify bacteria that respond to soil rewetting. First, we conducted experiments to address uncertainties regarding the H2(18)O-SIP method. Using liquid chromatography-mass spectroscopy (LC-MS), we determined that oxygen from H2(18)O was incorporated into all structural components of DNA. Although this incorporation was uneven, we could effectively separate 18O-labeled and unlabeled DNAs derived from laboratory cultures and environmental samples that were incubated with H2(18)O. We found no evidence for ex vivo exchange of oxygen atoms between DNA and extracellular H2O, suggesting that 18O incorporation into DNA is relatively stable. Furthermore, the rate of 18O incorporation into bacterial DNA was high (within 48 to 72 h), coinciding with pulses of CO2 generated from soil rewetting. Second, we examined shifts in the bacterial composition of grassland soils following rewetting, using H2(18)O-SIP and bar-coded pyrosequencing of 16S rRNA genes. For some groups of soil bacteria, we observed coherent responses at a relatively course taxonomic resolution. Following rewetting, the relative recovery of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria increased, while the relative recovery of Chloroflexi and Deltaproteobacteria decreased. Together, our results suggest that H2(18)O-SIP is effective at identifying metabolically active bacteria that influence soil carbon dynamics. Our results contribute to the ecological classification of soil bacteria while providing insight into some of the functional traits that influence the structure and function of microbial communities under dynamic soil moisture regimes.  相似文献   

10.
  1. Download : Download high-res image (190KB)
  2. Download : Download full-size image
  相似文献   

11.
The purpose of this study was to investigate the diversity of denitrifier community during agricultural waste composting. The diversity and dynamics of the denitrifying genes (nirK and nirS) were determined using polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE). Relationships between physico-chemical parameters and denitrifying genes structures were simultaneously evaluated by redundancy analysis (RDA). Phylogenetic analysis indicated that nirK clones grouped into six clusters and nirS clones into two major clusters, respectively. The results showed a very high diversity of nir gene sequences within composting samples. RDA showed that the nirK and nirS gene structures were significantly related to pH and pile temperature (P?<?0.05). Significant amounts of the variation (49.2 and 38.3 % for nirK and nirS genes, respectively) were explained by pH and pile temperature, suggesting that those two parameters were the most likely ones to influence, or be influenced by the denitrifiers harboring nirK and nirS genes.  相似文献   

12.
Inferences about which microorganisms degrade polycyclic aromatic hydrocarbons in contaminated soils have largely been obtained using culture-based techniques, despite the low percentage of microorganisms in soil that are believed to be culturable. We used a substrate-responsive direct viable count method to identify and quantify potential polycyclic aromatic hydrocarbon-degrading bacteria in a soil containing petroleum wastes. Bacteria were extracted and their response to substrates determined in the presence of DNA gyrase inhibitors, which cause viable and active cells to elongate. When yeast extract, a widely used carbon source, was added as a growth substrate, together with nalidixic acid, piromidic acid and ciprofloxacin, a significant increase in elongated cells to 47%, 37% and 22%, respectively, was observed within 24 h. With pyrene as the main substrate, 10 mg L(-1) of nalidixic acid or piromidic acid caused 18-22% and 8-12%, respectively, of the cells to elongate within 24 h; whereas the effect of 0.5 mg L(-1) ciprofloxacin was not significant until 53 h later. Enlarged cells were identified and enumerated by fluorescent in situ hybridization, using Alpha-, Beta- and Gammaproteobacteria, and domain Bacteria-specific probes. The Bacteria-specific probe detected 35-71% of the total microorganisms detected by the DNA-binding dye 4,6-diamidino-2-phenylindole. Initially, 44%, 13% and 5% of the total bacteria in the soil extract were Alpha-, Beta- and Gammaproteobacteria, respectively. Without pyrene or a gyrase inhibitor, these subgroups decreased to 30% of the total population but were predominant with piromidic acid or unchanged with ciprofloxacin when pyrene was the main substrate. The proportion of elongated Alpha- and Betaproteobacteria (potential pyrene degraders) increased significantly (P<0.05). This approach links phylogenetic information with physiological function in situ without the conventional cultivation of bacteria and can be used to probe and enumerate degradative groups at even a finer level of discrimination.  相似文献   

13.
辛雨菡  崔丽 《微生物学报》2020,60(9):1772-1783
生物固氮是指固氮微生物将大气中氮气还原为生物可利用氨的过程,是环境中新氮的主要来源,调控初级生产力并影响氮储库的收支平衡。由于环境中大部分固氮微生物不可纯培养,不依赖培养且具有高空间分辨率水平的单细胞技术,成为研究固氮微生物的有力手段。~(15)N_2稳定同位素标记技术,以微生物对~(15)N的同化量或速率为依据,是表征微生物固氮活性的最直接手段。本文对~(15)N_2稳定同位素标记结合两种单细胞技术,即纳米二次离子质谱(Nano SIMS)和单细胞拉曼光谱,用于固氮微生物研究的最新进展进行了综述,内容包括揭示环境中高活性固氮微生物、空间分布、与其他生物的共生关系、细胞生理状态等,并进一步对近期发展的基于单细胞拉曼光谱的固氮微生物研究进行了展望。  相似文献   

14.
15.
Resource availability is a key factor regulating biodiversity and ecosystem functioning, but the relationship between resource availability and diversity has only been rarely investigated in microbial communities. The aim of this study was to determine how diversity and community structure of a functional group of soil bacteria are influenced by resource concentration. To achieve this, we used soil microcosms to investigate degradation of benzoate, which served as a model compound, by soil bacterial communities. Microcosms were supplied with 13C-labelled benzoate at four concentrations and RNA-stable isotope probing followed by molecular fingerprinting analysis of 16S rRNA genes was employed to identify bacteria able to assimilate benzoate at different concentrations. The composition of the benzoate degrader community differed at different concentrations and there was a significant decrease in taxa evenness at the highest substrate concentration. Active organisms could be grouped into generalists, occurring at all substrate concentrations, specialists, active at one particular benzoate concentration only, and taxa that were active at either the two lowest or two highest concentrations. The study comprises the first explicit demonstration that resource availability has an effect on the diversity of a functional group of heterotrophic soil bacteria.  相似文献   

16.
Movile Cave is an unusual groundwater ecosystem that is supported by in situ chemoautotrophic production. The cave atmosphere contains 1-2% methane (CH4), although much higher concentrations are found in gas bubbles that keep microbial mats afloat on the water surface. As previous analyses of stable carbon isotope ratios have suggested that methane oxidation occurs in this environment, we hypothesized that aerobic methane-oxidizing bacteria (methanotrophs) are active in Movile Cave. To identify the active methanotrophs in the water and mat material from Movile Cave, a microcosm was incubated with a 10%13CH4 headspace in a DNA-based stable isotope probing (DNA-SIP) experiment. Using improved centrifugation conditions, a 13C-labelled DNA fraction was collected and used as a template for polymerase chain reaction amplification. Analysis of genes encoding the small-subunit rRNA and key enzymes in the methane oxidation pathway of methanotrophs identified that strains of Methylomonas, Methylococcus and Methylocystis/Methylosinus had assimilated the 13CH4, and that these methanotrophs contain genes encoding both known types of methane monooxygenase (MMO). Sequences of non-methanotrophic bacteria and an alga provided evidence for turnover of CH4 due to possible cross-feeding on 13C-labelled metabolites or biomass. Our results suggest that aerobic methanotrophs actively convert CH4 into complex organic compounds in Movile Cave and thus help to sustain a diverse community of microorganisms in this closed ecosystem.  相似文献   

17.
Planktonic bacteria are abundant in the Bering Sea. However, very little is known about their diversity and the roles of various bacteria in the ocean. Bacterioplankton diversity in the northern Bering Sea was investigated using a combination of molecular and cultivation-based methods. Community fingerprint analysis using polymerase chain reaction-denaturing gradient gel electrophoresis revealed an apparent difference in the bacterioplankton community composition between sampling locations in the area. The bacterial communities were characterized by two 16S rRNA gene clone libraries for surface and bottom water at shallow station NEC5 (<60 m in depth) on the continental shelf. Sequences fell into 21 major lineages of the domain Bacteria, including Proteobacteria (Alpha, Beta, Gamma, and Delta), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Planctomycetes, Verrucomicrobia, Fusobacteria, Chlamydiae, Chloroflexi, Chlorobi, Spirochaetes, Cyanobacteria (or algal chloroplasts), and candidate divisions OP8, OP11, TM6, TM7, and WS3. Significant differences were found between the two clone libraries. Actinobacteria formed the dominant bacterial lineage in both surface and bottom water, and the Alphaproteobacteria was another dominant fraction in surface water. A total of 232 heterotrophic bacterial strains were isolated and 81% showed extracellular proteolytic activity. Phylogenetic analysis revealed that the isolates fell into three bacterial groups, including the Gammaproteobacteria, Actinobacteria, and Firmicutes. The most common genus in both the bacterial isolates and protease-producing bacteria was Pseudoalteromonas. Divergence of bacterial community composition in the northern Bering Sea was mainly characterized by the dominance of Actinobacteria and reflected a bacterial community different from that currently known for marine bacterioplankton communities in other polar regions.  相似文献   

18.
The applicability of order-specific primers in minimizing the possible underestimation of microbial diversity was evaluated via denaturing gradient gel electrophoresis (DGGE) analysis of a lab-scale anaerobic digester. Initially, a population analysis with real-time quantitative PCR demonstrated the existence of three methanogenic orders—Methanobacteriales, Methanomicrobiales, and Methanosarcinales—throughout the reaction period. DGGE analyses with three pairs of order-specific primers yielded eight operational taxonomic units (OTUs), whereas DGGE analysis with two independent Archaea-specific primers identified only five. Moreover, the order-specific primers amplified at least one OTU affiliated with each order, whereas no members of Methanobacteriales or Methanomicrobiales were identified with Archaea-specific primers in most samples. These findings provide evidence that order-specific analysis can detect the diversity of methanogens in greater detail than conventional Archaea-specific analysis.  相似文献   

19.
Nine types of nitrogen-fixing bacterial strains were isolated from 3 rhizosphere soil samples taken from mangrove plants in the Dongzhaigang National Mangrove Nature Reserve of China. Most isolates belonged to Gammaproteobacteria Pseudomonas, showing that these environments constituted favorable niches for such abundant nitrogen-fixing bacteria. New members of the diazotrophs were also found. Using a soil DNA extraction and PCR-cloning-sequencing approach, 135 clones were analyzed by restriction fragment length polymorphism (RFLP) analysis, and 27 unique nifH sequence phylotypes were identified, most of which were closely related to sequences from uncultured bacteria. The diversity of nitrogen-fixing bacteria was assessed by constructing nifH phylogenetic trees from sequences of all isolates and clones in this work, together with related nifH sequences from other mangrove ecosystems in GenBank. The nifH diversity varied among soil samples, with distinct biogeochemical properties within a mangrove ecosystem. When comparing different mangrove ecosystems, the nifH gene sequences from a specific site tended to cluster as individual groups. The results provided interesting data and novel information on our understanding of diazotroph community diversity in the mangrove ecosystems.  相似文献   

20.
The goal of this field study was to provide insight into three distinct populations of microorganisms involved in in situ metabolism of phenol. Our approach measured 13CO2 respired from [13C]phenol and stable isotope probing (SIP) of soil DNA at an agricultural field site. Traditionally, SIP-based investigations have been subject to the uncertainties posed by carbon cross-feeding. By altering our field-based, substrate-dosing methodologies, experiments were designed to look beyond primary degraders to detect trophically related populations in the food chain. Using gas chromatography-mass spectrometry (GC/MS), it was shown that (13)C-labeled biomass, derived from primary phenol degraders in soil, was a suitable growth substrate for other members of the soil microbial community. Next, three dosing regimes were designed to examine active members of the microbial community involved in phenol metabolism in situ: (i) 1 dose of [13C]phenol, (ii) 11 daily doses of unlabeled phenol followed by 1 dose of [13C]phenol, and (iii) 12 daily doses of [13C]phenol. GC/MS analysis demonstrated that prior exposure to phenol boosted 13CO2 evolution by a factor of 10. Furthermore, imaging of 13C-treated soil using secondary ion mass spectrometry (SIMS) verified that individual bacteria incorporated 13C into their biomass. PCR amplification and 16S rRNA gene sequencing of 13C-labeled soil DNA from the 3 dosing regimes revealed three distinct clone libraries: (i) unenriched, primary phenol degraders were most diverse, consisting of alpha-, beta-, and gamma-proteobacteria and high-G+C-content gram-positive bacteria, (ii) enriched primary phenol degraders were dominated by members of the genera Kocuria and Staphylococcus, and (iii) trophically related (carbon cross-feeders) were dominated by members of the genus Pseudomonas. These data show that SIP has the potential to document population shifts caused by substrate preexposure and to follow the flow of carbon through terrestrial microbial food chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号