首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
V Bruss  K Vieluf 《Journal of virology》1995,69(11):6652-6657
The large hepatitis B virus (HBV) surface protein (L) forms two isomers which display their N-terminal pre-S domain at the internal and external side of the viral envelope, respectively. The external pre-S domain has been implicated in binding to a virus receptor. To investigate functions of the internal pre-S domain, a secretion signal sequence was fused to the N terminus of L (sigL), causing exclusive expression of external pre-S domains. A fusion construct with a nonfunctional signal (s25L), which corresponds in its primary sequence to sigL cleaved by signal peptidase, was used as a control. SigL was N glycosylated in transfected COS cells at both potential sites in pre-S in contrast to s25L or wild-type L, confirming the expected transmembrane topologies of sigL and s25L. Phenotypic characterization revealed the following points. (i) SigL lost the inhibitory effect of L or s25L on secretion of subviral hepatitis B surface antigen particles, suggesting that the retention signal mapped to the N terminus of L is recognized in the cytosol and not in the lumen of the endoplasmic reticulum. (ii) SigL was secreted into the culture medium even in the absence of the major HBV surface protein (S), while release of an L mutant lacking the retention signal was still dependent on S coexpression. (iii) s25L but not sigL could complement an L-negative HBV genome defective for virion secretion in cotransfections. This suggests that the cytosolic pre-S domain, like a matrix protein, is involved in the interaction of the viral envelope with preformed cytosolic nucleocapsids during virion assembly.  相似文献   

2.
3.
4.
To better define the molecules involved in the initial interaction between hepadnaviruses and hepatocytes, we performed binding and infectivity studies with the duck hepatitis B virus (DHBV) and cultured primary duck hepatocytes. In competition experiments with naturally occurring subviral particles containing DHBV surface proteins, these DNA-free particles were found to interfere with viral infectivity if used at sufficiently high concentrations. In direct binding saturation experiments with radiolabelled subviral particles, a biphasic titration curve containing a saturable component was obtained. Quantitative evaluation of both the binding and the infectivity data indicates that the duck hepatocyte presents about 10(4) high-affinity binding sites for viral and subviral particles. Binding to these productive sites may be preceded by reversible virus attachment to a large number of less specific, nonsaturable primary binding sites. To identify which of the viral envelope proteins is responsible for hepatocyte-specific attachment, subviral particles containing only one of the two DHBV surface proteins were produced in Saccharomyces cerevisiae. In infectivity competition experiments, only particles containing the large pre-S/S protein were found to markedly reduce the efficiency of DHBV infection, while particles containing the small S protein had only a minor effect. Similarly, physical binding of radiolabelled serum-derived subviral particles to primary duck hepatocytes was inhibited well only by the yeast-derived pre-S/S particles. Together, these results strongly support the notion that hepadnaviral infection is initiated by specific attachment of the pre-S domain of the large DHBV envelope protein to a limited number of hepatocellular binding sites.  相似文献   

5.
During the life cycle of hepatitis B virus (HBV), the large envelope protein (L) plays a pivotal role. Indeed, this polypeptide is essential for viral assembly and probably for the infection process. By performing mutagenesis experiments, we have previously excluded a putative involvement of the pre-S2 domain of the L protein in viral infectivity. In the present study, we have evaluated the role of the pre-S1 region in HBV infection. For this purpose, 21 mutants of the L protein were created. The entire pre-S1 domain was covered by contiguous deletions of 5 amino acids. First, after transfection into HepG2 cells, the efficient expression of both glycosylated and unglycosylated L mutant proteins was verified. The secretion rate of envelope proteins was modified positively or negatively by deletions, indicating that the pre-S1 domain contains several regulating sequences able to influence the surface protein secretion. The ability of mutant proteins to support the production of virions was then studied. Only the four C-terminal deletions, covering the 17 amino acids suspected to interact with the cytoplasmic nucleocapsids, inhibited virion release. Finally, the presence of the modified pre-S1 domain at the external side of all secreted virions was confirmed, and their infectivity was assayed on normal human hepatocytes in primary culture. Only a short sequence including amino acids 78 to 87 tolerates internal deletions without affecting viral infectivity. These results confirm the involvement of the L protein in the infection step and demonstrate that the sequence between amino acids 3 and 77 is involved in this process.  相似文献   

6.
The mechanism by which viral glycoproteins are incorporated into virus envelopes during budding from host membranes is a major question of virus assembly. Evidence is presented here that the envelope glycoprotein (G protein) of vesicular stomatitis virus binds to the viral matrix protein (M protein) in vitro with the specificity, reversibility, and affinity necessary to account for virus assembly in vivo. The assay for the interaction is based on the ability of M protein to stabilize the interaction of G protein subunits, which exist as trimers of identical subunits in the virus envelope. The interaction with M protein was shown by using G proteins labeled with fluorescent probes capable of detecting subunit dissociation and reassociation in vitro. The results show that the M protein isolated from virions either as purified soluble protein or as nucleocapsid-M protein complexes interacts with the G protein in vitro and that the reaction is reversible. The interaction between the G and M proteins was not serotype specific, but no interaction between the vesicular stomatitis virus M protein and the influenza virus hemagglutinin could be detected. These results support the conclusion that the interactions described here are the ones that govern assembly of G protein into virus envelopes in vivo.  相似文献   

7.
8.
9.
Semliki Forest virus (SFV) envelope proteins function as proton pores under mildly acidic conditions and translocate protons across the viral membrane [Schlegel, A., Omar, A., Jentsch, P., Morell, A. and Kemp, F. C. (1991) Biosci. Rep. 11, 243–255]. As a consequence, during uptake of SFV by cells via receptor-mediated endocytosis the nucleocapsid is supposed to be exposed to protons. In this paper the effects of mildly acidic pH on SFV nucleocapsids were examined. A partial proteolytic fragmentation of core proteins was observed when nucleocapsids were exposed to mildly acidic pH. A similar proteolytic event was detected when intact SFV virions were exposed to identical conditions. Protease protection assays with exogenous bromelain provided evidence that the capsid protein degradation was due to an endogenous proteolytic activity and not to a proteolytic contamination. Detergent solubilization of virus particles containing degraded nucleocapsids followed by sucrose gradient centrifugation led to a separation of capsid protein fragments and remaining nucleocapsids. These data are discussed in terms of a putative biological significance, namely that the core protein fragmentation may play a role in nucleocapsid disassembly.  相似文献   

10.
Hepadnaviruses are enveloped viruses, each with a DNA genome packaged in an icosahedral nucleocapsid, which is the site of viral DNA synthesis. In the presence of envelope proteins, DNA-containing nucleocapsids are assembled into virions and secreted, but in the absence of these proteins, nucleocapsids deliver viral DNA into the cell nucleus. Presumably, this step is identical to the delivery of viral DNA during the initiation of an infection. Unfortunately, the mechanisms triggering the disintegration of subviral core particles and delivery of viral DNA into the nucleus are not yet understood. We now report the identification of a sequence motif resembling a serine- or threonine-proline kinase recognition site in the core protein at a location that is required for the assembly of core polypeptides into capsids. Using duck hepatitis B virus, we demonstrated that mutations at this sequence motif can have profound consequences for RNA packaging, DNA replication, and core protein stability. Furthermore, we found a mutant with a conditional phenotype that depended on the cell type used for virus replication. Our results support the hypothesis predicting that this motif plays a role in assembly and disassembly of viral capsids.  相似文献   

11.
Togavirus nucleocapsids have a characteristic icosahedral structure and are composed of multiple copies of a capsid protein complexed with genomic RNA. The assembly of rubella virus nucleocapsids is unique among togaviruses in that the process occurs late in virus assembly and in association with intracellular membranes. The goal of this study was to identify host cell proteins which may be involved in regulating rubella virus nucleocapsid assembly through their interactions with the capsid protein. Capsid was used as bait to screen a CV1 cDNA library using the yeast two-hybrid system. One protein that interacted strongly with capsid was p32, a cellular protein which is known to interact with other viral proteins. The interaction between capsid and p32 was confirmed using a number of different in vitro and in vivo methods, and the site of interaction between these two proteins was shown to be at the mitochondria. Interestingly, overexpression of the rubella virus structural proteins resulted in clustering of the mitochondria in the perinuclear region. The p32-binding site in capsid is a potentially phosphorylated region that overlaps the viral RNA-binding domain of capsid. Our results are consistent with the possibility that the interaction of p32 with capsid plays a role in the regulation of nucleocapsid assembly and/or virus-host interactions.  相似文献   

12.
Chaperones involved in hepatitis B virus morphogenesis   总被引:3,自引:0,他引:3  
Little is known about host cell factors necessary for hepatitis B virus (HBV) assembly which involves envelopment of cytosolic nucleocapsids by the S, M and L transmembrane viral envelope proteins and subsequent budding into intraluminal cisternae. Central to virogenesis is the L protein that mediates hepatocyte receptor binding and envelopment of capsids. To serve these topologically conflicting roles, L protein exhibits an unusual dual membrane topology, disposing its N-terminal preS domain inside and outside of the virion lipid envelope. The mixed topology is achieved by posttranslational preS translocation of about half of the L protein molecules across a post-endoplasmic reticulum membrane. Here we identify and characterize a preS-specific sequence that confers the suppression of cotranslational translocation even of a model reporter. This cytosolic anchorage sequence specifically binds the cognate heat shock protein Hsc70, thus indicating chaperone participitation in HBV morphogenesis. Conversely, the M envelope protein needs the assistance of the chaperone calnexin for proper folding and trafficking. Calnexin selectively binds to the N-glycan, specific for M, rather than to the N-glycan, common to all three envelope proteins. As inhibition of the calnexin-M interaction blocks the secretion of viral envelopes, we propose an essential role for calnexin, as well as for Hsc70, in chaperoning HBV assembly.  相似文献   

13.
Cho DY  Yang GH  Ryu CJ  Hong HJ 《Journal of virology》2003,77(4):2784-2788
The proper folding and assembly of viral envelope proteins are mediated by host chaperones. In this study, we demonstrated that an endoplasmic reticulum luminal chaperone GRP78/BiP bound specifically to the pre-S1 domain of the L protein in vitro and in vivo where complete viral particles were secreted, suggesting that GRP78/BiP plays an essential role in the proper folding of the L protein and/or assembly of viral envelope proteins.  相似文献   

14.
Ghildyal R  Ho A  Wagstaff KM  Dias MM  Barton CL  Jans P  Bardin P  Jans DA 《Biochemistry》2005,44(38):12887-12895
The matrix (M) protein of respiratory syncytial virus (RSV) plays an important role in virus assembly through specific interactions with RSV nucleocapsids and envelope glycoproteins in the cytoplasm as well as with the host cell membrane. We have previously shown that M localizes to the nucleus of infected cells at an early stage in the RSV infection cycle, where it may be instrumental in inhibiting host cell processes. The present study uses transient expression of M as well as a truncated green fluorescent protein (GFP) fusion derivative to show for the first time that M is able to localize in the nucleus in the absence of other RSV gene products, through the action of amino acids 110-183, encompassing the nucleic acid binding regions of the protein, that are sufficient to target GFP to the nucleus. Using native PAGE, ELISA-based binding assays, a novel Alphascreen assay, and an in vitro nuclear transport assay, we show that M is recognized directly by the importin beta1 nuclear import receptor, which mediates its nuclear import in concert with the guanine nucleotide-binding protein Ran. Retention of M in the nucleus through binding to nuclear components, probably mediated by the putative zinc finger domain of M, also contributes to M nuclear accumulation. This is the first report of the importin binding and nuclear import properties of a gene product from a negative sense RNA virus, with implications for the function of RSV M and possibly other viral M proteins in the nucleus of infected cells.  相似文献   

15.
A cell surface protein that binds avian hepatitis B virus particles.   总被引:16,自引:10,他引:6       下载免费PDF全文
K Kuroki  R Cheung  P L Marion    D Ganem 《Journal of virology》1994,68(4):2091-2096
We have identified a 180-kDa cellular glycoprotein (gp180) that binds with high affinity to duck hepatitis B virus (DHBV) particles. The protein was detected by coprecipitating labeled duck hepatocyte proteins with virions or recombinant DHBV envelope proteins, using nonneutralizing monoclonal antibodies to the virion envelope. Binding of gp180 requires only the pre-S region of the viral large envelope protein, since recombinant fusion proteins bearing only this region efficiently coprecipitate gp180. The DHBV-gp180 interaction is blocked by two independent neutralizing monoclonal antibodies. The protein is found on both internal and surface membranes of the cell, and the species distribution of gp180 binding activity mirrors the known host range of DHBV infection. Functional gp180 is expressed in a wide variety of tissues in susceptible ducks.  相似文献   

16.
To clarify the binding properties of hepatitis C virus (HCV) core protein and its viral RNA for the encapsidation, morphogenesis, and replication of HCV, the specific interaction of HCV core protein with its genomic RNA synthesized in vitro was examined in an in vivo system. The positive-sense RNA from the 5' end to nucleotide (nt) 2327, which covers the 5' untranslated region (5'UTR) and a part of the coding region of HCV structural proteins, interacted with HCV core protein, while no interaction was observed in the same region of negative-sense RNA and in other regions of viral and antiviral sense RNAs. The internal ribosome entry site (IRES) exists around the 5'UTR of HCV; therefore, the interaction of the core protein with this region of HCV RNA suggests that there is some effect on its cap-independent translation. Cells expressing HCV core protein were transfected with reporter RNAs consisting of nt 1 to 709 of HCV RNA (the 5'UTR of HCV and about two-thirds of the core protein coding regions) followed by a firefly luciferase gene (HCV07Luc RNA). The translation of HCV07Luc RNA was suppressed in cells expressing the core protein, whereas no significant suppression was observed in the case of a reporter RNA possessing the IRES of encephalomyocarditis virus followed by a firefly luciferase. This suppression by the core protein occurred in a dose-dependent manner. The expression of the E1 envelope protein of HCV or beta-galactosidase did not suppress the translation of both HCV and EMCV reporter RNAs. We then examined the regions that are important for suppression of translation by the core protein and found that the region from nt 1 to 344 was enough to exert this suppression. These results suggest that the HCV core protein interacts with viral genomic RNA at a specific region to form nucleocapsids and regulates the expression of HCV by interacting with the 5'UTR.  相似文献   

17.
The hepatitis delta virus (HDV) is coated with large (L), middle (M), and small (S) envelope proteins encoded by coinfecting hepatitis B virus (HBV). To study the role of the HBV envelope proteins in the assembly and infectivity of HDV, we produced three types of recombinant particles in Huh7 cells by transfection with HBV DNA and HDV cDNA: (i) particles with an envelope containing the S HBV envelope protein only, (ii) particles with an envelope containing S and M proteins, and (iii) particles with an envelope containing S, M, and L proteins. Although the resulting S-, SM-, and SML-HDV particles contained both hepatitis delta antigen and HDV RNA, only particles coated with all three envelope proteins (SML) showed evidence of infectivity in an in vitro culture system susceptible to HDV infection. We concluded that the L HBV envelope protein, and more specifically the pre-S1 domain, is important for infectivity of HDV particles and that the M protein, which has been reported to bear a site for binding to polymerized albumin in the pre-S2 domain, is not sufficient for infectivity. Our data also show that the helper HBV is not required for initiation of HDV infection. The mechanism by which the L protein may affect HDV infectivity is discussed herein.  相似文献   

18.
19.
S Tong  J Li    J R Wands 《Journal of virology》1995,69(11):7106-7112
Identification of cell surface viral binding proteins is important for understanding viral attachment and internalization. We have fused the pre-S domain of the duck hepatitis B virus (DHBV) large envelope protein to glutathione S-transferase and demonstrated a 170-kDa binding protein (p170) in [35S]methionine-labeled duck hepatocyte lysates. This glycoprotein was found abundantly in all extrahepatic tissues infectible with DHBV and in some noninfectible tissues, though it is not secreted into the blood. The interaction of pre-S fusion protein with p170 was competitively inhibited by wild-type DHBV in a dose-dependent manner. In addition, infection of hepatocytes with DHBV blocked the binding of pre-S fusion protein to p170, which suggests a biological role for p170 during natural infection. The p170 binding site was mapped to a conserved sequence of 16 amino acid residues (positions 87 to 102) by using 24 pre-S deletion mutants; this binding domain coincides with a major virus-neutralizing antibody epitope. Furthermore, site-directed mutagenesis revealed that an arginine residue at position 97 is critical for p170 binding. p170 was purified by a combination of ion-exchange and affinity chromatographies, and four peptide sequences were obtained. Two peptides showed significant similarities to human and animal carboxypeptides H, M, and N. Taken together, these results raise the possibility that the p170 binding protein is important during the replication cycle of DHBV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号