首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postpneumonectomy compensatory lung response and normal lung growth in the early postnatal period were studied in male and female rats. Four-week-old litter-matched male and female Sprague-Dawley rats were subjected to left pneumonectomy or sham operation and followed for 3 wk. In both sexes after pneumonectomy, lung weight (WL), lung volume (VL), alveolar surface area (Sw), total alveolar number (N(at)), and the amount of DNA and protein increased significantly. In both males and females, WL, VL, and Sw matched those of both lungs of the sham-operated group, but N(at) and the amount of DNA and protein did not. Female pneumonectomy and sham-operated rats were smaller in body weight than males. Absolute WL, VL, Sw, N(at), and the amount of DNA and protein were significantly lower, but specific parameters (per unit body weight) were significantly greater in females than in males. After pneumonectomy, the postcaval lobe increased most in volume (70 and 73% in males and females, respectively). Mean linear intercept and mean chord length of alveoli increased, and the number of alveoli per unit volume decreased more in the postcaval and middle lobes than in upper and lower lobes in both sexes. Postpneumonectomy, loss of elastic lung recoil was observed in females. We conclude that, in certain aspects (WL, VL), compensatory growth matched both lungs of controls, but in others (biochemical, morphometric) it did not. There was evidence of alveolar multiplication, but the dominant effect was enlargement of air spaces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Salamanders possess a pair of lungs for active air breathing, but the lung respiration is fully operational only during the late stage of development, particularly after metamorphosis. Larval salamanders mainly exchange air through the gills and skin, thus sparing the developing lungs. Salamanders can repair their lungs after injury, but a comparative analysis of regenerative responses between the lungs of young and adult animals is lacking. In this study, lung resections were performed in both larval and adult newts (Pleurodeles waltl). The cellular dynamics, tissue morphology and organ function during lung regeneration were examined and the Yap mutants were produced with CRISPR tools. We found that salamander switches the regenerative strategies from morphological replication through the blastema formation to compensatory growth via resident epithelial cells proliferation upon pulmonary resection injury as it transitions beyond metamorphosis. The larval animals achieve lung regeneration by forming a transient blastema‐like structure and regrowing full‐sized developing lungs, albeit unventilated. The adults repair injured lungs via massive proliferating epithelial cells and by expanding the existing alveolar epithelium without neo‐alveolarization. Yap signalling promotes epithelial cell proliferation and prevents epithelial‐to‐mesenchymal transition to restore functional respiration. The salamanders have evolved distinct regenerative strategies for lung repair during different phases of life. Our results demonstrate a novel strategy for functional lung recovery by inducing epithelial cell proliferation to strengthen the remaining alveoli without rebuilding new alveoli.

Larval newts repair lungs via blastema formation and morphological replication, but adult newts restore the function of the lungs by compensatory growth. The robust activation and proliferation of alveolar epithelial cells occur, but without epithelial‐to‐mesenchymal transition (EMT). Yap promotes epithelial cell proliferation and blocks EMT and fibrosis.  相似文献   

3.
To study the influence of blood flow on postpneumonectomy lung growth, we banded the left caudal lobe pulmonary artery of eight ferrets in such a way that blood flow to the caudal lobe did not increase when the right lung was excised 1 wk later. The fraction of the cardiac output received by the right lung before pneumonectomy was therefore directed entirely to the left cranial lobe. Three weeks after pneumonectomy the weight, volume, and protein and DNA contents of the two lobes of the left lung were measured and compared with those of five unoperated animals and eight animals after right pneumonectomy alone. Although its perfusion did not increase after pneumonectomy, the left caudal lobe of banded animals participated in compensatory growth, increasing in weight and protein and DNA contents. Although the cranial lobe of banded animals received 25% more of the cardiac output than the same lobe in pneumonectomized animals, cranial lobe volume and protein and DNA contents in the two groups were similar. Caudal lobes were smaller in banded than in simple pneumonectomized animals and tended to contain less protein, whereas the cranial lobes tended to be heavier. We conclude that increased pulmonary perfusion is not necessary for compensatory lung growth in adult ferrets, but it may modify this response.  相似文献   

4.
Growth of the lung involves unique structure-function interactions not seen in solid organs. Mechanical feedback between the lung and thorax constitutes a major signal that sustains developmental as well as compensatory lung growth. After the loss of lung units as by pneumonectomy (PNX), increased mechanical stress and strain on the remaining units induce adaptive responses to augment oxygen transport, including 1) recruitment of alveolar-capillary reserves, 2) remodeling of existing tissue, and 3) regenerative growth of acinar tissue when strain exceeds a critical threshold. Alveolar hypoxia, hormones, and growth factors may feed into the mechanical feedback system to modify an existing growth response but are unlikely to initiate compensatory growth in the absence of sufficient mechanical signals. Whereas endogenous post-PNX alveolar growth preserves normal structure-function relationships, experimental manipulation of selected metabolic pathways can distort these relationships. Finally, PNX widens the disparity between the rapidly adapting acini and slowly adapting conducting airways and blood vessels, leading to disproportionate airflow and hemodynamic dysfunction and secondary hypertrophy of the right ventricle and respiratory muscles that limits overall organ function despite regeneration of gas exchange tissue. These are key concepts to consider when formulating approaches to stimulate or augment compensatory growth in chronic lung disease.  相似文献   

5.
6.
7.
Left pneumonectomy or left nephrectomy was performed on 10-wk-old littermate male New Zealand White rabbits, and they were killed at 30 wk of age. Thirty-week-old male littermates served as controls. Nephrectomy was done to produce major tissue loss and trauma and to assess blood somatomedin C. At the end of the experiment, the right lungs of the pneumonectomy animals had a greater lung volume, weight, gas-exchanging surface area, and alveolar number than the nephrectomy animals and the controls, and their air spaces were the same size. When compared with both lungs of the nephrectomy group and the controls, lung weight was the same; lung volume, alveolar number, and protein were not significantly less in the pneumonectomy group, but gas-exchanging area (compared with controls only), DNA, and RNA were. After left nephrectomy, the right kidney increased in weight; nephrectomy had no effect on lung size or structure. We conclude that pneumonectomy at age 10 wk in male rabbits results in significant compensatory lung growth, including alveolar multiplication, and this persists to age 30 wk. Compensatory lung growth, however, was incomplete; that is, it did not reconstitute (equal) in all respects that of both lungs of the nephrectomy animals or the controls.  相似文献   

8.
Studies in animal models have shown that, following lobectomy (LBX), there is compensatory growth in the remaining lung. The vascular growth response following right LBX (R-LBX) is poorly understood. To test the hypothesis that arterial growth and remodeling occur in response to LBX, in proportion to the amount of right lung tissue removed, two (24% of lung mass; R-LBX2 group) or three right lobes (52% of lung mass; R-LBX3 group) were removed via thoracotomy from adult rats. Sham control animals underwent thoracotomy only. Arteriograms were generated 3 wk after surgery. The areas of the left lung arteriogram, arterial branching, length of arterial branches, arterial density, and arterial-to-alveolar ratios were measured. To determine whether R-LBX causes vascular remodeling and pulmonary hypertension, muscularization of arterioles and right ventricular hypertrophy were assessed. Lung weight and volume indexes were greater in R-LBX3. Arterial area of the left lung increased 26% in R-LBX2 and 47% in R-LBX3. The length of large arteries increased in R-LBX3 and to a lesser extent in R-LBX2. The ratio of distal pulmonary arteries to alveoli was similar after R-LBX2 compared with sham but was 30% lower in R-LBX3. Muscularization of arterioles increased after R-LBX3, but not in R-LBX2. Right ventricular hypertrophy increased 50-70% in R-LBX3, but not in R-LBX2. Whereas removal of three right lung lobes induced arterial growth in the left lungs of adult rats, which was proportionate to the number of lobes removed, the ratio of distal pulmonary arteries to alveoli was not normal, and vascular remodeling and pulmonary hypertension developed.  相似文献   

9.
10.
Circulating erythropoietin (EPO) stimulates erythrocytosis, whereas organ-specific local EPO receptor (EPOR) expression has been linked to angiogenesis, tissue growth, and development. On the basis of the observation of concurrent enhancement of lung growth and erythrocyte production during exposure to chronic hypoxia, we hypothesized that a paracrine EPO system is involved in mediating lung growth. We analyzed EPOR protein expression in normal dog lung tissue during postnatal maturation and during compensatory lung growth after right pneumonectomy (PNX). Membrane-bound EPOR was significantly more abundant in the immature lung compared with mature lung and in the remaining lung 3 wk after PNX compared with matched sham controls. COOH-terminal cytosolic EPOR peptides, which were even more abundant than membrane-bound EPOR, were also upregulated in immature lung but differentially processed after PNX. Apoptosis was enhanced during both types of lung growth in direct relationship to cellular proliferation and EPOR expression. We conclude that both developmental and compensatory lung growth involve paracrine EPO signaling with parallel upregulation but differential processing of EPOR.  相似文献   

11.
Pulmonary blood volume and edema in postpneumonectomy lung growth in rats   总被引:2,自引:0,他引:2  
After pneumonectomy in young animals, the contralateral lung undergoes compensatory growth and generally attains the same weight and air space volume as both lungs in age-matched controls. In this study, we determined the contribution of lung edema and increased blood volume to the weight gain in rats. Three weeks after pneumonectomy (n = 18) or sham pneumonectomy (n = 17), the pulmonary blood volume and the extravascular water and albumin were evaluated by use of 51Cr-labeled erythrocytes and 125I-labeled albumin. The air space volume, blood-free lung weights, and DNA and protein content were also compared. The data show that the total pulmonary blood volumes and the blood volume per gram of blood-free dry lung were similar in pneumonectomized and age-matched sham controls. The total extravascular albumin and the extravascular albumin per gram of blood-free dry lung were also similar as well as the extravascular lung water, wet-to-dry weight ratios, DNA and protein content, and air space volumes. These data indicate that the increased weight of the postpneumonectomy lung was due to cellular and stromal proliferation. The blood volume and interstitial fluid increased in proportion to the increase in lung parenchyma. Neither vascular congestion nor increased extravascular protein and water contributed to the observed weight gain.  相似文献   

12.
13.
14.
Recent thymic emigrants, the youngest T cells in the lymphoid periphery, undergo a 3 week-long period of functional and phenotypic maturation before being incorporated into the pool of mature, na?ve T cells. Previous studies indicate that this maturation requires T cell exit from the thymus and access to secondary lymphoid organs, but is MHC-independent. We now show that post-thymic T cell maturation is independent of homeostatic and costimulatory pathways, requiring neither signals delivered by IL-7 nor CD80/86. Furthermore, while CCR7/CCL19,21-regulated homing of recent thymic emigrants to the T cell zones within the secondary lymphoid organs is not required for post-thymic T cell maturation, an intact dendritic cell compartment modulates this process. It is thus clear that, unlike T cell development and homeostasis, post-thymic maturation is focused not on interrogating the T cell receptor or the cell's responsiveness to homeostatic or costimulatory signals, but on some as yet unrecognized property.  相似文献   

15.
We hypothesize that compensatory lung growth after unilateral pneumonectomy in a murine model is, in part, angiogenesis dependent and can be altered using angiogenic agents, possibly through regulation of endothelial cell proliferation and apoptosis. Left pneumonectomy was performed in mice. Mice were then treated with proangiogenic factors [vascular endothelial growth factor (VEGF); basic fibroblast growth factor (bFGF)], VEGF receptor antibodies (MF-1, DC101), and VEGF receptor small molecule chemical inhibitors. Lung volume and mass were measured. The lungs were analyzed using immunohistochemistry by CD31 staining, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, type II pneumocytes staining, and proliferating cell nuclear antigen. Compensatory lung growth was complete by postoperative day 10 and was associated with diffuse apoptosis of endothelial cells and pneumocytes. This process was accelerated by VEGF, such that growth was complete by postoperative day 4 with similar associated apoptosis. bFGF had no effect on lung growth. MF-1 and DC101 had no effect. The VEGF receptor small molecule chemical inhibitors also had no effect. VEGF, but not bFGF, accelerates growth. VEGF receptor inhibitors do not block growth, suggesting that other proangiogenic factors play a role or can compensate for VEGF receptor blockade. Diffuse apoptosis, endothelial cell and pneumocyte, occurs at cessation of both normal compensatory and VEGF-accelerated growth. Angiogenesis modulators may control growth via regulation of endothelial cell proliferation and apoptosis, although the exact relationship between endothelial cells and pneumocytes has yet to be determined. The fact that bFGF did not accelerate growth in our model when it did accelerate regeneration in the liver model suggests that angiogenesis during organ regeneration is regulated in an organ-specific manner.  相似文献   

16.
Plant cells do not properly recognize animal gene polyadenylation signals   总被引:4,自引:0,他引:4  
Summary We have introduced chimeric genes containing polyadenylation signals from a human gene and two animal virus genes into tobacco cells. We see, in all three cases, inefficient and aberrant utilization of the foreign polyadenylation signals. We find that a chimeric gene carrying the polyadenylation site of the human growth hormone gene is polyadenylated at three sites in the vicinity of the site that is polyadenylated in human cells. A chimeric gene containing the polyadenylation site from the adenovirus 5 E1A gene is polyadenylated at a site 11 bases downstream from that reported in animal cells. A gene carrying the polyadenylation site from the SV40 early region is polyadenylated some 80 bases upstream from the site that is polyadenylated in animal cells. In all three cases, related mRNAs ending at flanking authentic plant polyadenylation sites can be detected, indicating that the foreign polyadenylation signals are inefficiently utilized in tobacco cells.  相似文献   

17.
Standard metabolic rate ( R s) and critical swimming speed ( U crit) were used to assess the aspects of physiological status (stamina) of rainbow trout Oncorhynchus mykiss . Fish were fed either 1·5% body mass daily, 1·5% body mass cyclically (3 weeks of food deprivation followed by 3 weeks of refeeding), a ration based on Stauffer's formula (a maximum temperature-specific ration level) daily or on Stauffer's ration cyclically for 18 weeks. It was hypothesized that if cyclic feeding had no impact on the status of the fish, R s and U crit would not cycle with the feeding regime. This hypothesis was supported. No significant difference was found between the mean mass and the fork length of the four groups at the end of the experiment ( P > 0·05). Feeding had no effect on changes in R s among the four groups, which were significantly different throughout the experiment ( P ≤ 0·05). No significant difference in U crit was found ( P > 0·05) until at week 12 between groups fed 1·5% body mass ration cyclically and Stauffer's ration daily ( P ≤ 0·05). For groups fed a 1·5% body mass ration cyclically and daily, significant differences occurred at week 15 ( P ≤ 0·05) but no significant difference was found by week 18 ( P > 0·05), suggesting that cyclic feeding does not affect the aspects of physiological status (stamina) of the fish.  相似文献   

18.
19.
We tested the hypothesis that 1) prostaglandins (PGs) contribute to compensatory vasodilation in contracting human forearm subjected to acute hypoperfusion, and 2) the combined inhibition of PGs and nitric oxide would attenuate the compensatory vasodilation more than PG inhibition alone. In separate protocols, subjects performed forearm exercise (20% of maximum) during hypoperfusion evoked by intra-arterial balloon inflation. Each trial included baseline, exercise before inflation, exercise with inflation, and exercise after deflation. Forearm blood flow (FBF; ultrasound) and local (brachial artery) and systemic arterial pressure [mean arterial pressure (MAP); Finometer] were measured. In protocol 1 (n = 8), exercise was repeated during cyclooxygenase (COX) inhibition (Ketorolac) alone and during Ketorolac-NOS inhibition [N(G)-monomethyl-l-arginine (l-NMMA)]. In protocol 2 (n = 8), exercise was repeated during l-NMMA alone and during l-NMMA-Ketorolac. Forearm vascular conductance (FVC; ml·min(-1)·100 mmHg(-1)) was calculated from FBF (ml/min) and local MAP (mmHg). The percent recovery in FVC during inflation was calculated as (steady-state inflation + exercise value - nadir)/[steady-state exercise (control) value - nadir] × 100. In protocol 1, COX inhibition alone did not reduce the %FVC recovery compared with the control (no drug) trial (92 ± 11 vs. 100 ± 10%, P = 0.83). However, combined COX-nitric oxide synthase (NOS) inhibition caused a substantial reduction in %FVC recovery (54 ± 8%, P < 0.05 vs. Ketorolac alone). In protocol 2, the percent recovery in FVC was attenuated with NOS inhibition alone (69 ± 9 vs. 107 ± 10%, P < 0.01) but not attenuated further during combined NOS-COX inhibition (62 ± 10%, P = 0.74 vs. l-NMMA alone). Our data indicate that PGs are not obligatory to the compensatory dilation observed during forearm exercise with hypoperfusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号