首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylanase production by a new alkali-tolerant isolate of Bacillus   总被引:4,自引:0,他引:4  
The xylanolytic system of an alkali-tolerant Bacillus sp. consists of several xylanases ranging from 22 to 120 kDa and pI values from 7.0 to 9.0. Crude xylanase retained 72% of initial activity after 5 h at pH 9.0 and 45°C. Xylanase production was induced by xylose and xylan and was maximum at 42°C and pH 7.8. Crude xylanase released xylotriose and xylotetraose as main products of xylan hydrolysis. Xylose was not detected. © Rapid Science Ltd. 1998  相似文献   

2.
To investigate the synthesis of two extracellular endoxylanases, xylan-binding and unbound xylanases from an alkaliphilic Bacillus firmus, washed cells were incubated in alkaline mineral salt media containing various carbon sources. The 23 kDa xylan-binding endoxylanase (XBE), which hydrolyses insoluble xylan, was produced before the 45 kDa, unbound endoxylanase. All the carbon sources tested at 5 mg ml–1, including glucose, induced production of XBE but the unbound xylanase was totally repressed by glucose. The production of XBE increased when glucose concentration increased but was not synthesized until the glucose in the medium was less than 1 mg ml–1.  相似文献   

3.
Melanocarpus albomyces, a thermophilic fungus isolated from compost by enrichment culture in a liquid medium containing sugarcane bagasse, produced cellulase-free xylanase in culture medium. The fungus was unusual in that xylanase activity was inducible not only by hemicellulosic material but also by the monomeric pentosan unit of xylan but not by glucose. Concentration of bagasse-grown culture filtrate protein followed by size-exclusion and anion-exchange chromatography separated four xylanase activities. Under identical conditions of protein purification, xylanase I was absent in the xylose-grown culture filtrate. Two xylanase activities, a minor xylanase IA and a major xylanase IIIA, were purified to apparent homogeneity from bagasse-grown cultures. Both xylanases were specific forβ-1,4 xylose-rich polymer, optimally active, respectively, at pH 6.6 and 5.6, and at 65°C. The xylanases were stable between pH 5 to 10 at 50°C for 24 h. Xylanases released xylobiose, xylotriose and higher oligomers from xylans from different sources. Xylanase IA had a Mr of 38 kDa and contained 7% carbohydrate whereas xylanase IIIA had a Mr of 24 kDa and no detectable carbohydrate. The Km for larchwood xylan (mg ml−1) and Vmax (μmol xylose min−1 mg−1 protein) of xylanase IA were 0.33 and 311, and of xylanase IIIA 1.69 and 500, respectively. Xylanases IA, II and IIIA showed no synergism in the hydrolysis of larchwood glucuronoxylan or oat spelt and sugarcane bagasse arabinoxylans. They had different reactivity on untreated and delignified bagasse. The xylanases were more reactive than cellulase on delignified bagasse. Simultaneous treatment of delignified bagasse by xylanase and cellulase released more sugar than individual enzyme treatments. By contrast, the primary cell walls of a plant, particularly from the region of elongation, were more susceptible to the action of cellulase than xylanase. The effects of xylanase and cellulase on plant cell walls were consistent with the view that hemicellulose surrounds cellulose in plant cell walls.  相似文献   

4.
Multiple xylanolytic enzymes of Streptomyces thermonitrificans NTU-88 were induced by oat-spelt xylan and separated by two-dimensional polyacrylamide and zymogram gels. Nineteen clear spots differed in pI and molecular weight values were found on the zymogram, and only spot one was seen on the corresponding silver-stained gel. These results revealed that multiple xylanases were secreted when S. thermonitrificans NTU-88 was induced and the spot (STXF10), identified as being a glycosyl hydrolase family 10 xylanase, was the predominant one among xylanases. STXF10 showed a tolerance for high temperatures and broad pH ranges and high affinity and hydrolysis efficiency for xylans. Furthermore, it also featured the minor ability to degrade different lignocellulosic substrates. Although S. thermonitrificans NTU-88 possesses multiple xylanases, our results suggest that the major form of xylanase might be selectively and specifically induced depending on the type of substrate to which the microorganism is exposed.  相似文献   

5.
Paenibacillus curdlanolyticus B-6 showed effective degradation activities for xylan and cellulose and produced an extracellular multienzyme complex (approximately 1,450 kDa) containing several xylanases and cellulases. To characterize the multienzyme complex, we purified the complex from culture supernatants by four kind of chromatography. The purified multienzyme complex was composed of a 280-kDa protein with xylanase activity, a 260-kDa protein that was a truncated form on the C-terminal side of the 280-kDa protein, two xylanases of 40 and 48 kDa, and 60 and 65 kDa proteins having both xylanase and carboxymethyl cellulase activities. The 280-kDa protein resembled the scaffolding proteins of cellulosomes based on its migratory behavior in polyacrylamide gels and as a glycoprotein. Cloning of the 40-kDa major xylanase subunit named Xyn11A revealed that Xyn11A contained two functional domains which belonged to glycosyl hydrolase family-11 and to carbohydrate-binding module family-36, respectively, and a glycine- and asparagine-rich linker. However, an amino acid sequence similar to a dockerin domain, which is crucial to cellulosome assembly, was not found in Xyn11A. These results suggest that the multienzyme complex produced by P. curdlanolyticus B-6 should assemble by a mechanism distinct from the cohesin-dockerin interactions known in cellulosomes.  相似文献   

6.
The cellulolytic rumen bacteriumRuminococcus flavefaciens 17 was found to produce multiple xylanases ranging in apparent molecular weight from 55 to 200 kDa. A 55 kDa xylanase showed constitutive synthesis, but formation of the larger enzymes was increased in cultures grown with avicel, straw, or xylan, compared with cellobiose, as the energy source. At least six xylanases were detected in cultures grown with oat straw or oat xylan. Polyclonal antibodies were raised against the amino (A) or carboxy terminal (C) domains of the bifunctional XYNA product of the clonedR. flavefaciens xynA gene. Both antibody preparations recognized several xylanases larger than 80 kDa fromR. flavefaciens cells grown with avicel, straw, or xylan, indicating the production of multiple, antigenically related enzymes during growth on these substrates. Neither antibody preparation recognized the constitutive 55-kDa xylanase.  相似文献   

7.
Two distinct xylanases from Pseudozyma hubeiensis NCIM 3574 were purified to homogeneity. The molecular masses of two native xylanases were 33.3 kDa (PhX33) and 20.1 kDa (PhX20). PhX33 is predominant with α-helix and PhX20 contained predominantly β-sheets. Xylanase, PhX33, possesses three tryptophan and one carboxyl residues at the active site. The active site of PhX20 comprises one residue each of tryptophan, carboxyl and histidine. Carboxyl residue is mainly involved in catalysis and tryptophane residues are solely involved in substrate binding. Histidine residue present at the active site of PhX20 appeared to have a role in substrate binding. Both the xylanases produced only xylooligosaccharides (XOS) with degree of polymerization (DP) 3–7 without formation of xylose and xylobiose. These XOS could be used in functional foods or as prebiotics. Lc ms-ms ion search of tryptic digestion of these xylanases revealed that there is no significant homology of peptides with known fungal xylanase sequences which indicate that these xylanases appear to be new.  相似文献   

8.
AnAspergillus sp., isolated from a rubbish dump, produced 10.6 IU ml-1 xylanase activity. Two xylanases were recognized and each was purified to homogeneity by two-stage chromatography on DEAE-and CM-Sepharose. Xylanase I had a pI of 7.2 and anM r of 26 kDa whereas xylanase II had a pI of 4.7 and anM r of 21 kDa. At 50°C, xylanase I was stable for 2.5 h but xylanase II was only stable for 1 h.P. Khanna is with the National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020, India. S. Sivakami Sundari and N. Jothi Kumar are with the National Environmental Engineering Research Institute, Madras Zonal Laboratory, CSIR Madras Complex, Taramani 600 113, India.  相似文献   

9.
The extracellular xylanase and cellulase components of Butyrivibrio fibrisolvens H17c were investigated. Two major peaks of enzyme activity were eluted by hydroxylapatite chromatography and designated complex A (CA), having cellulase activity, and complex B (CB) having predominantly xylanase activity but with some activity on carboxymethyl cellulose (CMC). CB was further purified on a DE-52 column and subjected to gel filtration. The xylanase and CMCase activities eluted in a single peak with an apparent molecular mass greater than thyroglobulin (Mr 669,000). CMC xymograms of polyacrylamide gels electrophoresed under non-denaturing conditions indicated the presence of five bands with CMCase activity from CA and eight from CB. Xylan xymograms under the same conditions indicated the presence of four bands of activity in CB. Under mild denaturing conditions the xylanase activity in CB was found in 11 bands with molecular mass ranging from 45 to 180 and the CMCase activity in three bands with molecular mass ranging from 45 kDa to 60 kDa. This indicates that CB exists as a multi-subunit protein aggregate of xylanases, some of which also have cellulase activity.  相似文献   

10.
Aeromonas caviae W-61 produces multiple extracellular xylanases, the xylanases 1, 2, 3, 4, and 5 [Nguyen, V. D. et al., Biosci. Biotechnol. Biochem., 56, 1708-1712 (1993)]. Here we purified and characterized high-molecular-weight xylanases, the xylanases 4 and 5 from the culture fluids of the bacterium. The purified xylanases 4 and 5, which had molecular masses of 120 and 140 kDa, respectively, were endo-beta-1,4-xylanases with similar enzymatic properties except for trans-xylosidase activity. The xylanase 4 showed a prominent transxylosidase activity when xylotriose and xylotetraose were used as the substrates, while the xylanase 5 had little transxylosidase activity under the same conditions. Protein sequencing indicated that the xylanase 4 was a C-terminally-truncated xylanase 5, suggesting that the C-terminal truncation of the xylanase 5 may endow the enzyme with transxylosidase activity.  相似文献   

11.
We report the purification and characterization of two thermophilic xylanases from the mesophilic bacteria Cellulomonas flavigena grown on sugarcane bagasse (SCB) as the only carbon source. Extracellular xylanase activity produced by C. flavigena was found both free in the culture supernatant and associated with residual SCB. To identify some of the molecules responsible for the xylanase activity in the substrate-bound fraction, residual SCB was treated with 3 M guanidine hydrochloride and then with 6 M urea. Further analysis of the eluted material led to the identification of two xylanases Xyl36 (36 kDa) and Xyl53 (53 kDa). The pI for Xyl36 was 5.0, while the pI for Xyl53 was 4.5. Xyl36 had a K m value of 1.95 mg/ml, while Xyl53 had a K m value of 0.78 mg/ml. In addition to SCB, Xyl36 and Xyl53 were also able to bind to insoluble oat spelt xylan and Avicel, as shown by substrate-binding assays. Xyl36 and Xyl53 showed optimal activity at pH 6.5, and at optimal temperature 65 and 55°C, respectively. Xyl36 and Xyl53 retained 24 and 35%, respectively, of their original activity after 8 h of incubation at their optimal temperature. As far as we know, this is the first study on the thermostability properties of purified xylanases from microorganisms belonging to the genus Cellulomonas.  相似文献   

12.
The hydrolysis of five xylan substrates was examined using combinations of two pairs of xylanases from two species of Trichoderma. Antisynergy was observed in acetylated xylan isolated from aspen when the maximum hydrolysis achieved by certain xylanase combinations was significantly lower than that achieved by the most effective enzyme in the combination. Cooperative interactions among xylanases were observed in pine holocellulose where xylanase combinations were more effective than single xylanases.  相似文献   

13.
The catalytic domain encoded by an adenine–thymine (AT)-rich xylanase gene (xynA) of the anaerobic fungus Orpinomyces was expressed in Hypocrea jecorina under the control of the cel7A promoter and terminator. No XynA protein was detected in H. jecorina culture supernatants when the original sequence was fused to the H. jecorina cel5A region coding for its signal peptide, carbohydrate-binding module, and hinge. Replacing the xynA (56% AT content) with a synthetic sequence containing lower AT content (39%) supported the extracellular production (150 mg l−1) of the fusion xylanase by H. jecorina. Northern analysis revealed that successful production after the decrease in AT content was related to higher levels of the xylanase-specific mRNA. Another construct with an RDKR-coding sequence inserted between the cel5A linker and the xynA catalytic domain allowed production of the fully processed active xylanase catalytic domain. Both the fusion (40 kDa) and the fully processed (28 kDa) forms displayed enzymatic properties of family 11 xylanases. Both the R and the Kex2-like KR sites were recognized during secretion, resulting in a mixture of two amino termini for the 28-kDa xylanase. The work demonstrated for the first time that glycoside hydrolases derived from anaerobic fungi can be produced by H. jecorina. The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned.  相似文献   

14.
A new xylanase from a Trichoderma harzianum strain   总被引:1,自引:0,他引:1  
A new xylanase (XYL2) was purified from solid-state cultures of Trichoderma harzianum strain C by ultrafiltration and gel filtration. SDS-PAGE of the xylanase showed an apparent homogeneity and molecular weight of 18 kDa. It had the highest activity at pH 5.0 and 45°C and was stable at 50°C and pH 5.0 up to 4 h xylanase. XYL2 had a low K m with insoluble oat spelt xylan as substrate. Compared to the amino acid composition of xylanases from Trichoderma spp, xylanase XYL2 presented a high content of glutamate/glutamine, phenylalanine and cysteine, and a low content of serine. Xylanase XYL2 improved the delignification and selectivity of unbleached hardwood kraft pulp. Received 02 February 1999/ Accepted in revised form 17 April 1999  相似文献   

15.
Although several xylanases have been studied, only few xylanases from marine micro-organisms have been reported. We report here a novel halotolerant xylanase from marine bacterium Bacillus subtilis cho40 isolated from Chorao island of mandovi estuary Goa, India. Extracellular xylanase was produced by using agricultural residue such as wheat bran as carbon source under solid-state fermentation (SSF). The optimal pH and temperature of xylanase were reported to be 6.0 and 60°C, respectively. Xyn40 was highly salt-tolerant, and showed highest activity at 0.5M NaCl. Xylanase activity was greatly induced (140%) when pre-incubated with 0.5M NaCl for 4h. The xylanase gene, xyn40, from marine bacterium B. subtilis cho40 was cloned, and expressed in Escherichia coli. The xylanase gene was 645 bp long and had a 215 amino acid ORF protein with a molecular mass of 22.9 kDa. It had all features of xylanase enzyme and showed homology to xylanases reported from B. subtilis. It differs from the earlier reported xylanase sequences by the presence of more serine residues compared to threonine and also by the presence of polar (hydrophilic) amino acids in higher abundance (61%) than non-polar amino acids (39%). The novel xylanase, reported in this study is a halotolerant enzyme from marine isolate and can play a very important role in bioethanol production from marine seaweeds.  相似文献   

16.
The ability of xylanolytic enzymes produced by Aspergillus fumigatus RP04 and Aspergillus niveus RP05 to promote the biobleaching of cellulose pulp was investigated. Both fungi grew for 4–5 days in liquid medium at 40°C, under static conditions. Xylanase production was tested using different carbon sources, including some types of xylans. A. fumigatus produced high levels of xylanase on agricultural residues (corncob or wheat bran), whereas A. niveus produced more xylanase on birchwood xylan. The optimum temperature of the xylanases from A. fumigatus and A. niveus was around 60–70°C. The enzymes were stable for 30 min at 60°C, maintaining 95–98% of the initial activity. After 1 h at this temperature, the xylanase from A. niveus still retained 85% of initial activity, while the xylanase from A. fumigatus was only 40% active. The pH optimum of the xylanases was acidic (4.5–5.5). The pH stability for the xylanase from A. fumigatus was higher at pH 6.0–8.0, while the enzyme from A. niveus was more stable at pH 4.5–6.5. Crude enzymatic extracts were used to clarify cellulose pulp and the best result was obtained with the A. niveus preparation, showing kappa efficiency around 39.6% as compared to only 11.7% for that of A. fumigatus.  相似文献   

17.
Xylanase inhibitor TAXI-I gene was cloned from wheat (Triticum aestivum L.) and then TAXI-I encoding sequence was expressed in Escherichia coli. The recombinant TAXI-I protein inhibited glycoside hydrolase (GH) family 11 xylanases in Aspergillus niger (Anx; a fungal xylanase), and Thermomonospora fusca (Tfx; a bacterial xylanase), and also inhibited hybrid xylanases Atx (a hybrid xylanase whose parents are T. fusca and A. niger) and Btx (a hybrid xylanase whose parents are T. fusca and Bacillus subtilis). Among the tested xylanases, A. niger xylanase was the most inhibited one by wheat xylanase inhibitor TAXI-I, while T. fusca xylanase was the least inhibited one. The profile of TAXI-I gene expression in wheat in response to phytohormones was also investigated. TAXI-I gene expression was drastically induced by methyl jasmonate (MeJa), and hardly detected in gibberellic acid (GA) treatment. Therefore, TAXI-I might be involved in plant defense against fungal and bacteria xylanases.  相似文献   

18.
Xylanase production by seven fungal strains was investigated using concentrated spent sulphite liquor (SSLc), xylan and d-xylose as carbon substrates. An SSLc-based medium induced xylanase production at varying levels in all of these strains, with Aspergillus oryzae NRRL 3485 and Aspergillus phoenicis ATCC 13157 yielding activities of 164 and 146 U ml−1, respectively; these values were higher than those obtained on xylan or d-xylose with the same fungal strains. The highest xylanase activity of 322 U ml−1 was obtained with Aspergillus foetidus ATCC 14916 on xylan. Electrophoretic and zymogram analysis indicated three xylanases from A. oryzae with molecular weights of approximately 32, 22 and 19 kDa, whereas A. phoenicis produced two xylanases with molecular weights of about 25 and 21 kDa. Crude xylanase preparations from these A. oryzae and A. phoenicis strains exhibited optimal activities at pH 6.5 and 5.0 and at 65 and 55°C, respectively. The A. oryzae xylanolytic activity was stable at 50°C over the pH range 4.5–10. The crude xylanase preparations from these A. oryzae and A. phoenicis strains had negligible cellulase activity, and their application in the biobleaching of hardwood pulp reduced chlorine dioxide consumption by 20–30% without sacrificing brightness.  相似文献   

19.
Anaerobic fungi belonging to the family Neocallimastigaceae are native inhabitants in the rumen of the most herbivores, such as cattle, sheep and goats. A member of this unique group, Neocallimastix sp. GMLF2 was isolated from cattle feces and screened for its xylanase encoding gene using polymerase chain reaction. The gene coding for a xylanase (xyn2A) was cloned in Escherichia coli and expression was monitored. To determine the enzyme activity, assays were conducted for both fungal xylanase and cloned xylanase (Xyl2A) for supernatant and cell-associated activities. Optimum pH and temperature of the enzyme were found to be 6.5 and 50°C, respectively. The enzyme was stable at 40°C and 50°C for 20 min but lost most of its activity when temperature reached 60°C for 5-min incubation time. Rumen fungal xylanase was mainly released to the supernatant of culture, while cloned xylanase activity was found as cell-associated. Multiple alignment of the amino acid sequences of Xyl2A with published xylanases from various organisms suggested that Xyl2A belongs to glycoside hydrolase family 11.  相似文献   

20.
A recombinant plasmid construct, pLPX6.5, harbouring a 6.5 kb Hind III fragment of genomic DNA, from an alkalophilic, thermophilic Bacillus NCIM 59 and coding for xylanase activity, was electroporatically transformed into Bacillus subtilis MI 111. The expression of the recombinant xylanases was confirmed by cross-reactivity with antibodies raised against purified xylanase II (M r 15,800) from NCIM 59. However, as there were different xylan hydrolysis products from NCIM 59 and the host B. subtilis, the two xylanases appear to have different modes of action. Xylanase expression in the transformants was 6-fold higher than in the host. There was no significant enhancement in the expression of recombinant xylanases by adding xylan to the growth medium.The authors are with the Division of Biochemical Sciences, National Chemical Laboratory, Pune-411008, India  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号