首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 74 毫秒
1.
目的 研究昼夜节律的改变对视网膜感光视蛋白melanopsin表达的影响.方法 出生14 d (P14)C57BL/6J小鼠随机分为实验组和正常对照组,实验组每天给予24 h持续光照,对照组模拟正常昼夜节律每天给予12 h光照、12 h黑暗环境,运用免疫荧光染色结合RT-PCR技术,分别检测实验组和对照组小鼠在光照1周后和8周后视网膜感光视蛋白melanopsin的表达情况.结果 免疫荧光染色结果显示感光视蛋白melanopsin主要位于视网膜神经节细胞层,少部分位于内核层.小鼠光照1周后melanopsin阳性细胞的表达数目实验组少于对照组;RT-PCR结果示小鼠光照1周和8周时melanopsin的mRNA含量实验组均少于各自的对照组,两者具有统计学意义(P<0.01).结论 持续光照可以减少视网膜感光视蛋白melanopsin的表达,提示melanopsin阳性神经节细胞为光敏感性细胞,其表达可能对维持正常的昼夜节律有重要作用.  相似文献   

2.
视网膜中的自主感光神经节细胞   总被引:2,自引:0,他引:2  
视网膜中少数神经节细胞能够合成感光蛋白--黑视素(melanopsin),因此具备了自主感光的能力,被称为自主感光神经节细胞(intrinsically photosensitive retinal ganglion cells,ipRGCs).ipRGCs可根据树突形态和分层位置的差异分为五个不同的亚型,其轴突主要投...  相似文献   

3.
目的:通过构建体外共培养体系,探讨神经干细胞(NSCs)对脂多糖(LPS)活化后的视网膜小胶质细胞(RMG)生物学功能的影响及TIMP1/MMP9途径在其中的可能作用。方法:采用振荡分离法获取C57/BL6小鼠原代RMG,通过免疫荧光技术检测细胞Iba1的表达对其进行鉴定。采用含有LPS的培养基(终浓度为1μg·mL~(-1))刺激RMG 24h后,将其分为LPS对照组、NSCs组、TB-NSCs组,其中NSCs组将RMG与NSCs共培养24 h,TB-NSCs组将RMG与用中和性抗体封闭TIMP1的NSCs共培养24h;同时,未予以LPS刺激的RMG作为空白对照组。采用免疫荧光技术检测各组RMG的Ki67表达情况,观察其增殖能力;TUNEL技术检测各组RMG凋亡情况;ELISA方法检测各组RMG上清液中TNF-α、IL~(-1)β的蛋白质量浓度。结果:采用振荡分离法获取的原代RMG经免疫荧光染色鉴定Iba1呈阳性。NSCs组Ki67阳性率较LPS对照组降低(P0.05),而TB-NSCs组Ki67阳性率较NSCs组升高(P0.05)。NSCs组TUNEL阳性率较LPS对照组明显升高(P0.05),而TB-NSCs组TUNEL阳性率与NSCs组间差异无统计学意义(P0.05)。空白对照组、LPS对照组、NSCs组、TB-NSCs组RMG上清液中TNF-α蛋白质量浓度分别为(2.10±0.65)、(25.69±2.01)、(20.01±1.63)、(23.76±1.45)ng·mL~(-1),总体比较差异显著(FTNF-α=302.65,PTNF-α0.05);IL~(-1)β蛋白质量浓度分别为(1.77±0.74)、(15.38±1.18)、(10.88±0.95)、(13.45±1.41)ng·mL~(-1),总体比较差异非常显著(FIL~(-1)β=179.84,PIL~(-1)β0.05);其中,NSCs组TNF-α及IL~(-1)β蛋白质量浓度均较LPS对照组显著降低(P0.05),TB-NSCs组TNF-α及IL~(-1)β蛋白质量浓度较NSCs组明显升高(P0.05)。结论:体外共培养模式下,NSCs可抑制RMG增殖能力,提高其凋亡水平,并抑制其分泌促炎因子TNF-α及IL~(-1)β,该效应可能与调控TIMP1/MMP9相关。  相似文献   

4.
Liu Y  Li WQ  Wang Y 《生理科学进展》2010,41(2):117-120
神经型钙粘素(N-cadherin)作为经典钙粘素家族的一员,是钙离子依赖的细胞连接中的一种重要跨膜成分,而其作为神经突触的粘附受体不仅为跨突触的细胞骨架提供了形式上的连接,还成为了功能上沟通突触前后膜的桥梁,传递粘附信号并调节突触的发育和成熟突触的可塑性。本文主要就后者讨论N-cadherin参与的成熟突触形态和功能的变化及调节中的新近进展,并试从粘附作用与信号传递两方面,分别从粘附作用的建立和调节,跨膜、跨突触,以及胞内信号传递,来分析N-cadherin对成熟突触的作用。可以看出,粘附是基础,信号传递是建立在其上的功能,并受粘附的调节。二者相互联系,协调作用。粘附的建立需通过信号传递与细胞骨架沟通,而粘附反过来又成为信号传递通路的起始信号,从而共同介导突触的形态和功能的变化及重塑。  相似文献   

5.
卢奎  胡斌  黎捷  刘中华  周敏  吴文军 《生物磁学》2013,(35):6806-6809
目的:研究神经调节素及基质金属蛋白酶-9对于小鼠大脑缺血再灌注损伤后炎症反应的抑制作用和机制。方法:选取100只成年雄性大鼠,随机分成对照和治疗组。采用线栓方法由颈内到颈外进行插线处理,造成大脑中动脉处于闭塞状态的再灌注动物模型。治疗组颈动脉进行注射少量NRG-1β干预性治疗,通过氯化三苯基四氮唑(TTC)检查脑梗塞范围,细胞凋亡采用原住脱氧核糖核苷酸末端转移酶介导缺口末端进行标记,采用免疫组织化学、免疫荧光双标记法及免疫印迹法观察脑组织基质金属蛋白酶-9(MMP-9)表达。结果:脑缺血再灌注损伤后,随时间延长及缺氧,对照组大鼠大脑皮质和纹状体区脑组织细胞凋亡,并且胶质细胞MMP-9蛋白表达逐渐增加。治疗组大鼠经注射NRG-1β干预性治疗后,缺血脑组织梗死范围及其细胞凋亡数量相对呈明显下降趋势。胶质细胞MMP-9表达呈降低趋势。结论:大鼠脑缺血再灌注损伤后体内NRG-1β抑制胶质细胞MMP-9的表达,控制缺血脑组织梗死的范围并抑制正常细胞的凋亡,发挥了重要的抗炎作用,可作为对于大脑缺血再灌注损伤的研究新靶点。  相似文献   

6.
Circadian clocks synchronize the physiology and behavior of most animals with the day to night cycle. A fundamental property of the molecular pacemakers generating circadian rhythms is their self-sustained nature: they keep oscillating even under constant conditions, with a period close to, but not exactly, 24 h. However, circadian pacemakers have to be sensitive to environmental cues to be beneficial. They need to be reset every day to keep a proper phase relationship with the day to night cycle, and they have to be able to adjust to seasonal changes in day length and temperature. Here, we review our current knowledge of the molecular and neural mechanisms contributing to the plasticity of Drosophila circadian rhythms, which are proving to be remarkably sophisticated and complex.  相似文献   

7.
生物钟机制研究进展   总被引:6,自引:0,他引:6  
黄耀伟  于涟  周继勇 《生命科学》2000,12(1):10-13,29
由生物体内源性生物钟所产生的昼夜节律是近年来生命科学的研究热点之一。几种模型生物(蓝细菌、脉孢菌、拟南芥、果蝇、小鼠)的生物钟相关基因相继被克隆和鉴定,为理解昼夜节律的分子机制奠定了基础。振荡器蛋白对其编码基因的负反馈调控可能是不同生物的生物运作普遍机制,在此基础上,不同生物有不尽相同的调控方式;隐色素可能是高等生物的共同生物钟光受体。  相似文献   

8.
9.
During a 7-10 day span, circadian rhythms of sleep-wake, self-rated fatigue and mood, oral temperature, eye-hand skill and right and left hand grip strength were investigated in eight subjects: five males (21-28 years of age), members of the French sabre fencing team selected for the 1984 Olympic Games in Los Angeles, and three females (19-26 years of age) practicing fleuret (foil) fencing as a sports activity. On the average six measurements/day/variable/subject were performed. The single cosinor method showed that a circadian rhythm was detectable for only 26 out of the 56 time series (46.4%). Power spectrum analysis gave almost the same figure (19 out of 48: 39.5%) with regard to rhythms with τ=24hr indicating that with one exception (subject JFL) rhythms were internally desynchronized including differences τ between right and left hand grip strength rhythms for three subjects. Results suggest: (a) a physiologic synchronization of circadian rhythms may be a predictor of good performance; (b) however, internal desynchronization as shown previously may be a trivial phenomenon and thus does not imply in itself alterations of either health or performance; (c) chronobiologic methods should be recommended for a better understanding of changes in performance by those participating in competitive and other sports.  相似文献   

10.
During a 7-10 day span, circadian rhythms of sleep-wake, self-rated fatigue and mood, oral temperature, eye-hand skill and right and left hand grip strength were investigated in eight subjects: five males (21-28 years of age), members of the French sabre fencing team selected for the 1984 Olympic Games in Los Angeles, and three females (19-26 years of age) practicing fleuret (foil) fencing as a sports activity. On the average six measurements/day/variable/subject were performed. The single cosinor method showed that a circadian rhythm was detectable for only 26 out of the 56 time series (46.4%). Power spectrum analysis gave almost the same figure (19 out of 48: 39.5%) with regard to rhythms with τ=24hr indicating that with one exception (subject JFL) rhythms were internally desynchronized including differences τ between right and left hand grip strength rhythms for three subjects. Results suggest: (a) a physiologic synchronization of circadian rhythms may be a predictor of good performance; (b) however, internal desynchronization as shown previously may be a trivial phenomenon and thus does not imply in itself alterations of either health or performance; (c) chronobiologic methods should be recommended for a better understanding of changes in performance by those participating in competitive and other sports.  相似文献   

11.
ABSTRACT. The circadian locomotor (walking) rhythms of individual forager honeybees ( Apis mellifera ligustica L.) were measured under a variety of conditions. In constant dark the rhythms exhibited endogenous periodicities that were less than 24 h, whereas under constant light the periods tended to be greater than 24 h. Individual honeybees readily entrained to photoperiods, displaying a diurnal pattern of entrainment with most of the activity occurring in late photophase. Evidence is presented which suggests that foraging behaviour and general locomotor behaviour may be governed by two different circadian clock systems.  相似文献   

12.
The vertebrate circadian system that controls most biological rhythms is composed of multiple oscillators with varied hierarchies and complex levels of organization and interaction. The retina plays a key role in the regulation of daily rhythms and light is the main synchronizer of the circadian system. To date, the identity of photoreceptors/photopigments responsible for the entrainment of biological rhythms is still uncertain; however, it is known that phototransduction must occur in the eye because light entrainment is lost with eye removal. The retina is also rhythmic in physiological and metabolic activities as well as in gene expression. Retinal oscillators may act like clocks to induce changes in the visual system according to the phase of the day by predicting environmental changes. These oscillatory and photoreceptive capacities are likely to converge all together on selected retinal cells. The aim of this overview is to present the current knowledge of retinal physiology in relation to the circadian timing system.  相似文献   

13.
《Chronobiology international》2013,30(5-6):383-391
Rats possess a system of circadian oscillators that permit entrainment of circadian activity rhythms independently to 24 hr cycles of light-dark and food access. The nature of interactions between food- and light-entrainable oscillators was examined by observing the generation and persistence of food-entrained circadian rhythms in rats whose light-entrainable rhythms were eliminated by long-term exposure to constant light. Most of these rats showed a delayed generation of food-entrained rhythms and only one of eight animals showed persistence of food associated rhythms during a 4-day food deprivation test. Rats whose light-entrainable rhythms are eliminated by suprachiasmatic nuclei ablation show, in contrast, normal generation and persistence of food-entrained rhythms. The results suggested a disruptive influence of constant light on non-photic entrainment, possibly due to coupling forces between damped light-entrainable oscillators and the food-entrainable oscillators.  相似文献   

14.
Rats possess a system of circadian oscillators that permit entrainment of circadian activity rhythms independently to 24 hr cycles of light-dark and food access. The nature of interactions between food- and light-entrainable oscillators was examined by observing the generation and persistence of food-entrained circadian rhythms in rats whose light-entrainable rhythms were eliminated by long-term exposure to constant light. Most of these rats showed a delayed generation of food-entrained rhythms and only one of eight animals showed persistence of food associated rhythms during a 4-day food deprivation test. Rats whose light-entrainable rhythms are eliminated by suprachiasmatic nuclei ablation show, in contrast, normal generation and persistence of food-entrained rhythms. The results suggested a disruptive influence of constant light on non-photic entrainment, possibly due to coupling forces between damped light-entrainable oscillators and the food-entrainable oscillators.  相似文献   

15.
Melanopsin confers photosensitivity to a subset of retinal ganglion cells and is responsible for many non-image-forming tasks, like the detection of light for circadian entrainment. Recently, two melanopsin genes, Opn4m and Opn4x, were described in non-mammalian vertebrates. However, only one form, Opn4m, has been described in the mammals, although studies to date have been limited to the placentals and have not included the marsupials. We report here the isolation and characterization of an Opn4 gene from an Australian marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata), and present evidence which suggests that the Opn4x gene was lost before the placental/marsupial split. In situ hybridization shows that the expression of Opn4 in the dunnart eye is restricted to a subset of ganglion cells, a pattern previously reported for rodents and primates. These Opn4-positive cells are randomly distributed across the dunnart retina. We also undertook a comparative analysis with the South American marsupial, the grey short-tailed opossum (Monodelphis domestica), and two placental mammals, mouse and human. This approach reveals that the two marsupials show a higher sequence identity than that seen between rodents and primates, despite separating at approximately the same point in time, some 65-85 Myr ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号