首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of -aspartate racemase purified from Scapharca broughtonii has been found to depend markedly on some nucleotides. Purine nucleoside monophosphates enhanced the enzyme activity, which was, on the contrary, lowered by purine nucleoside triphosphates and not affected by pyrimidine nucleotides. AMP produced the highest increase of seven-fold in the enzyme activity at 6 mM and a half-maximum increase at approximately 3.8 mM. ATP caused a half-maximum decrease in the activity at approximately 1.4 mM and the remaining activity was lower than 7% at saturating ATP concentrations. AMP and ATP both brought about changes in Vmax and not in Km. Analysis of the effect of AMP and ATP suggests that each of them has its own primary binding site, which is different from the substrate-binding site. In view of these effects of the nucleotides, the roles of the racemase and -aspartate in energy metabolism under anoxic conditions are discussed.  相似文献   

2.
Glutamate racemase of Pediococcus pentosaceus catalyzes the α,β-elimination of L-serine O-sulfate to produce a pyruvate concomitantly with an irreversible inactivation of the enzyme. α,β-Elimination and inactivation reactions proceed through a common intermediate. L-Serine O-sulfate serves as a suicide substrate of the enzyme.  相似文献   

3.
Free -alanine was detected in a cell extract of the fruit-body of an edible basidiomycetous mushroom, Lentinus edodes (Shiitake), by means of reverse-phase high performance liquid chromatography. We also found an amino acid racemase activity in L. edodes fruit-body, and purified the enzyme. The enzyme has a molecular weight of approximately 86,000, and consists of two subunits of identical molecular weight (44,000). The optimal pH of the enzyme activity is around pH 9.5 for both -to- and -to- alanine racemization. The enzyme requires pyridoxal 5′-phosphate as a cofactor. Km and Vmax values for -alanine were 37.3 mM and 520 nmol/min/mg, respectively; for -alanine, they were 9.21 mM and 141 nmol/min/mg, respectively. The equilibrium constant was calculated to be 1.10, which is consistent with the theoretical value for the racemase reaction. The ability of the enzyme to catalyze the racemization of various -amino acids was investigated. The enzyme catalyzes the racemization of -serine (relative reaction rate, 144% of rate for -alanine), -alanine (100%), -homoserine (17.1%), -2-aminobutyrate (5.6%), -glutamate (4.5%), and -asparagine (3.2%). To the best of our knowledge, this is the first report of an amino acid racemase produced by a basidiomycetous mushroom.  相似文献   

4.
A cDNA encoding a homolog of mammalian serine racemase, a unique enzyme in eukaryotes, was isolated from Arabidopsis thaliana and expressed in Escherichia coli cells. The gene product, of which the amino acid residues for binding pyridoxal 5'-phosphate (PLP) are conserved in this as well as mammalian serine racemases, catalyzes not only serine racemization but also dehydration of serine to pyruvate. The enzyme is a homodimer and requires PLP and divalent cations, Ca2+, Mg2+, Mn2+, Fe2+, or Ni2+, at alkaline pH for both activities. The racemization process is highly specific toward L-serine, whereas L-alanine, L-arginine, and L-glutamine were poor substrates. The Vmax/Km values for racemase activity of L- and D-serine are 2.0 and 1.4 nmol/mg/min/mM, respectively, and those values for L- and D-serine on dehydratase activity are 13 and 5.3 nmol/mg/min/mM, i.e. consistent with the theory of racemization reaction and the specificity of dehydration toward L-serine. Hybridization analysis showed that the serine racemase gene was expressed in various organs of A. thaliana.  相似文献   

5.
Several d-amino acids have been identified in plants. However, the biosynthetic pathway to them is unclear. In this study, we cloned and sequenced a cDNA encoding a serine racemase from barley which contained an open reading frame encoding 337 amino acid residues. The deduced amino acid sequence showed significant identity to plant and mammalian serine racemases and contained conserved pyridoxal 5-phosphate (PLP)-binding lysine and PLP-interacting amino acid residues. The purified gene product catalyzed not only racemization of serine but also dehydration of serine to pyruvate. The enzyme requires PLP and divalent cations such as Ca(2+), Mg(2+), or Mn(2+), but not ATP, whereas mammalian serine racemase activity is increased by ATP. In addition to the results regarding the effect of ATP on enzyme activity and the phylogenetic analysis of eukaryotic serine racemases, the antiserum against Arabidopsis serine racemase did not form a precipitate with barley and rice serine racemases. This suggests that plant serine racemases represent a distinct group in the eukaryotic serine racemase family and can be clustered into monocot and dicot types.  相似文献   

6.
The silkworm Bombyx mori contains high concentrations of free d-serine, an optical isomer of l-serine. To elucidate its function, we first investigated the localization of d-serine in various organs of silkworm larvae, pupae, and adult moths. Using immunohistochemical analysis with an anti-d-serine antibody, we found d-serine in the microvilli of midgut goblet and cylindrical cells and in peripheral matrix components of testicular and ovarian cells. By spectrophotometric analysis, d-serine was also found in the hemolymph and fat body. d-Alanine was not detected in the various organs by immunohistochemistry. Serine racemase, which catalyzes the inter-conversion of l- and d-serine, was found to co-localize with d-serine, and d-serine production from l-serine by intrinsic serine racemase was suggested. O-Phospho-l-serine is an inhibitor of serine racemase, and it was administered to the larvae to reduce the d-serine level. This reagent decreased the midgut caspase-3 level and caused a delay in spermatogenesis and oogenesis. The reagent also decreased mature sperm and egg numbers, suggesting d-serine participation in these processes. d-Serine administration induced an increase in pyruvate levels in testis, midgut, and fat body, indicating conversion of d-serine to pyruvate. On the basis of these results, together with our previous investigation of ATP biosynthesis in testis, we consider the possible involvement of d-serine in ATP synthesis for metamorphosis and reproduction.  相似文献   

7.
Bifidobacterium bifidum is a useful probiotic agent exhibiting health-promoting properties, and its peptidoglycans have the potential for applications in the fields of food science and medicine. We investigated the bifidobacterial alanine racemase, which is essential in the synthesis of -alanine as an essential component of the peptidoglycans. Alanine racemase was purified to homogeneity from a crude extract of B. bifidum NBRC 14252. It consisted of two identical subunits with a molecular mass of 50 kDa. The enzyme required pyridoxal 5′-phosphate (PLP) as a coenzyme. The activity was lost in the presence of a thiol-modifying agent. The enzyme almost exclusively catalyzed the alanine racemization; other amino acids tested, except for serine, were inactive as substrates. The kinetic parameters of the enzyme suggested that the B. bifidum alanine racemase possesses comparatively low affinities for both the coenzyme (9.1 μM for PLP) and substrates (44.3 mM for -alanine; 74.3 mM for -alanine). The alr gene encoding the alanine racemase was cloned and sequenced. The alr gene complemented the -alanine auxotrophy of Escherichia coli MB2795, and an abundant amount of the enzyme was produced in cells of the E. coli MB2795 clone. The enzymologic and kinetic properties of the purified recombinant enzyme were almost the same as those of the alanine racemase from B. bifidum NBRC 14252.  相似文献   

8.
Eukaryotic serine racemase (SR) is a pyridoxal 5′-phosphate enzyme belonging to the Fold-type II group, which catalyzes serine racemization and is responsible for the synthesis of D-Ser, a co-agonist of the N-methyl-d-aspartate receptor. In addition to racemization, SR catalyzes the dehydration of D- and L-Ser to pyruvate and ammonia. The bifuctionality of SR is thought to be important for D-Ser homeostasis. SR catalyzes the racemization of D- and L-Ser with almost the same efficiency. In contrast, the rate of L-Ser dehydration catalyzed by SR is much higher than that of D-Ser dehydration. This has caused the argument that SR does not catalyze the direct D-Ser dehydration and that D-Ser is first converted to L-Ser, then dehydrated. In this study, we investigated the substrate and solvent isotope effect of dehydration of D- and L-Ser catalyzed by SR from Dictyostelium discoideum (DdSR) and demonstrated that the enzyme catalyzes direct D-Ser dehydration. Kinetic studies of dehydration of four Thr isomers catalyzed by D. discoideum and mouse SRs suggest that SR discriminates the substrate configuration at C3 but not at C2. This is probably the reason for the difference in efficiency between L- and D-Ser dehydration catalyzed by SR.  相似文献   

9.
Alanine racemase activity was detected in the muscle and hepatopancreas of six macruran species. Optimal pH was around 8.5 irrespective of species and tissues. Apparent Michaelis constants ranged from 48 to 157 mM for muscle enzyme and 35 to 239 mM for hepatopancreas enzyme. The enzyme specifically catalyzed the racemization of d- and l-alanine. The enzyme did not require pyridoxal 5′-phosphate as well as FAD as a cofactor. Pyruvate and l-alanine showed strong inhibition in the direction of d to l.During seawater acclimation of crayfish Procambarus clarkii, alanine racemase activity increased about twice in muscle and 1.5 times in hepatopancreas. Michaelis constant, on the other hand, decreased 33% for muscle enzyme and 65% for hepatopancreas enzyme, suggesting the increase of substrate affinity during seawater acclimation. The activity in the physiological pH range (6.5–7.5) also increased with increasing salinity.  相似文献   

10.
It has been recently established that in various brain regions D-serine, the product of serine racemase, occupies the so-called 'glycine site' within N-methyl D-aspartate receptors. Mammalian brain serine racemase is a pyridoxal-5' phosphate-containing enzyme that catalyzes the racemization of L-serine to D-serine. It has also been shown to catalyze the alpha,beta-elimination of water from L-serine or D-serine to form pyruvate and ammonia. Serine racemase is included within the group of type II-fold pyridoxal-5' phosphate enzymes, together with many other racemases and dehydratases. Serine racemase was first purified from rat brain homogenates and later recombinantly expressed in mammalian and insect cells as well as in Escherichia coli. It has been shown that serine racemase is activated by divalent cations like calcium, magnesium and manganese, as well as by nucleotides like ATP, ADP or GTP. In turn, serine racemase is also strongly inhibited by reagents that react with free sulfhydryl groups such as glutathione. Several yeast two-hybrid screens for interaction partners identified the proteins glutamate receptor interacting protein, protein interacting with C kinase 1 and Golga3 to bind to serine racemase, having different effects on its catalytic activity or stability. In addition, it has also been proposed that serine racemase is regulated by phosphorylation. Thus, d-serine production in the brain is tightly regulated by various factors pointing at its physiologic importance. In this minireview, we will focus on the regulation of brain serine racemase and d-serine synthesis by the factors mentioned above.  相似文献   

11.
The distribution of amino acid racemase activities was investigated in the cell-free extracts of various strains of bacteria. Alanine racemase activity was exclusively found in all the strains tested. However, the cell-free extract of Strain 25-3, which has been identified as Pseudomonas striata, possessed the high activity catalyzing the racemization of alanine, α-aminobutyrate, leucine and methionine. The new and sensitive assay method of amino acid racemase with d-amino acid oxidase and 3-methyl-2-benzothiazolone hydrazone hydrochloride was established.

A new amino acid racemase catalyzing the conversion of either d or l enantiomorph of leucine and α-aminobutyrate to the racemates, was partially purified from the cell-free extract of Pseudomonas striata. Both the racemase reactions are suggested to be catalyzed by a single enzyme because of the constant ratio between the activities during the purification, and of their very resemble behavior to pH, temperature and heating the enzyme. Pyridoxal phosphate functions as the coenzyme for this racemase.  相似文献   

12.
The eukaryotic serine racemase from Dictyostelium discoideum is a fold-type II pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes racemization and dehydration of both isomers of serine. In the present study, the catalytic mechanism and role of the active site residues of the enzyme were examined by site-directed mutagenesis. Mutation of the PLP-binding lysine (K56) to alanine abolished both serine racemase and dehydrase activities. Incubation of d- and l-serine with the resultant mutant enzyme, K56A, resulted in the accumulation of PLP-serine external aldimine, while less amounts of pyruvate, α-aminoacrylate, antipodal serine and quinonoid intermediate were formed. An alanine mutation of Ser81 (S81) located on the opposite side of K56 against the PLP plane converted the enzyme from serine racemase to l-serine dehydrase; S81A showed no racemase activity and had significantly reduced d-serine dehydrase activity, but it completely retained its l-serine dehydrase activity. Water molecule(s) at the active site of the S81A mutant enzyme probably drove d-serine dehydration by abstracting the α-hydrogen in d-serine. Our data suggest that the abstraction and addition of α-hydrogen to l- and d-serine are conducted by K56 and S81 at the si- and re-sides, respectively, of PLP.  相似文献   

13.
Pyruvate kinase (ATP: pyruvate phosphotransferase (EC 2.7.1.40) was partially purified from both autotrophically and heterotrophycally grown Paracoccus denitrificans. The organism grown under heterotrophic conditions contains four times more pyruvate kinase than under autotrophic conditions. The enzyme isolated from both sources exhibited sigmoidal kinetics for both phosphoenolpyruvate (PEP) and ADP. The apparent M m for ADP and PEP in the autotrophic enzyme were 0.63 mM ADP and 0.25 mM PEP. The effect of several low molecular weight metabolites on the pyruvate kinase activity was investigated. Ribose-5-phosphate, glucose-6-phosphate and AMP stimulated the reaction at low ADP levels; this stimulation was brought about by an alteration in the apparent K m for ADP. The pyruvate kinases differ in their response to adenine nucleotides, but both preparations seem to be under adenylate control. The results are discussed in relation to the role of pyruvate kinase as a regulatory enzyme in P. denitrificans grown under both autotrophic and heterotrophic conditions.Non-Common Abbreviations PEP phosphoenolpyruvate - R-5-P ribose-5-phosphate - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate  相似文献   

14.
The results with Corynebacterium glycinophilum AJ-3170 and various mutants from AJ-3170 indicated that l-serine production was almost inversely proportional to l-serine degrading activity. The crude extract of the parental strain, AJ-3170, showed l-serine and l-threonine degrading activities. The 2 activities were completely separated from each other by gel-filtration, indicating that each activity comes from a different enzyme. The l-serine degrading enzyme, l-serine dehydratase (SD), was purified 30-fold from AJ-3170. Molecular weight of SD was 130,000. The enzyme was specific for l-serine, activated slightly by FeCl2 and inhibited by MnCl2. The double reciprocal plots of SD rate against substrate concentration gave an upwards-curved line. The value of [S]0.5 was 35 mM.  相似文献   

15.
Summary Pyruvate kinases from flight muscle and fat body of the cockroach,Periplaneta americana, were purified to homogeneity. The two tissues contained different forms of the enzyme which were separable by starch gel electrophoresis and isoelectric focusing (pI=5.75 for flight muscle and 6.15 for fat body). Both enzymes had molecular weights of 235,000±20,000.Flight muscle pyruvate kinase displayed Michaelis-Menten kinetics with respect to both ADP and P-enolpyruvate withK m values of 0.27 and 0.04 mM, respectively.K m for Mg2+ was 0.60 mM andK a for K+ was 15 mM. The enzyme was weakly inhibitied by four compounds, ATP, arginine-P,l-alanine and citrate with apparentK i values of 3.5, 15, 20 and 24 mM, respectively. Competitive inhibition by 3 mM ATP or 10 mM arginine-P raised theK m for P-enolpyruvate to 0.067 or 0.057 mM. Fructose-1,6-P2 did not activate the enzyme but reversed inhibitions by ATP and arginine-P.Fat body pyruvate kinase showed sigmoidal kinetics with respect to P-enolpyruvate with S0.5=0.32 mM andn H=1.43.K m values for ADP and Mg2+ were 0.30 and 0.80 mM, respectively with aK a for K+ of 10 mM. ATP andl-alanine were inhibitors of the enzyme; 2 mM ATP raised S0.5 for P-enolpyruvate to 0.48 mM while 3 mMl-alanine increased S0.5 to 0.84 mM. Neither citrate nor arginine-P inhibited the enzyme but citrate affected the enzyme by reversingl-alanine inhibition. Fat body pyruvate kinase was strongly activated by fructose-1,6-P2 with an apparentK a of 1.5 M. Fructose-1,6-P2 at 0.1 mM reduced S0.5 for P-enolpyruvate to 0.05 mM andn H to 1.0.Flight muscle and fat body pyruvate kinases from the cockroach show properties analogous to those of the muscle and liver forms of mammalian pyruvate kinase. Fat body pyruvate kinase is suited for on-off function in a tissue with a gluconeogenic capacity. Strong allosteric control with a feed-forward activation by fructose-1,6-P2 is key to coordinating enzyme function with glycolytic rate. The function of flight muscle pyruvate kinase in energy production during flight is aided by a lowK m for P-enolpyruvate, weak inhibitor effects by high energy phosphates and deinhibition of these effects by fructose-1,6-P2.  相似文献   

16.
17.
Pyrobaculum islandicum is an anaerobic hyperthermophilic archaeon that is most active at 100 degrees C. A pyridoxal 5'-phosphate-dependent serine racemase called Srr was purified from the organism. The corresponding srr gene was cloned, and recombinant Srr was purified from Escherichia coli. It showed the highest racemase activity toward L-serine, followed by L-threonine, D-serine, and D-threonine. Like rodent and plant serine racemases, Srr is bifunctional, showing high L-serine/L-threonine dehydratase activity. The sequence of Srr is 87% similar to that of Pyrobaculum aerophilum IlvA (a putative threonine dehydratase) but less than 32% similar to any other serine racemases and threonine dehydratases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration analyses revealed that Srr is a homotrimer of a 44,000-molecular-weight subunit. Both racemase and dehydratase activities were highest at 95 degrees C, while racemization and dehydration were maximum at pH 8.2 and 7.8, respectively. Unlike other, related Ilv enzymes, Srr showed no allosteric properties: neither of these enzymatic activities was affected by either L-amino acids (isoleucine and valine) or most of the metal ions. Only Fe2+ and Cu2+ caused 20 to 30% inhibition and 30 to 40% stimulation of both enzyme activities, respectively. ATP inhibited racemase activity by 10 to 20%. The Km and Vmax values of the racemase activity of Srr for L-serine were 185 mM and 20.1 micromol/min/mg, respectively, while the corresponding values of the dehydratase activity of L-serine were 2.2 mM and 80.4 micromol/min/mg, respectively.  相似文献   

18.
The application of enantioseparation methods alone can only yield up to 50% of the desired chiral product. Thus enantioseparation becomes more attractive when accompanied by the racemization of the counter‐enantiomer. Here we present first results of dynamic kinetic resolution of L ‐asparagine (L ‐Asn) via preferential crystallization and enzymatic racemization from a racemic, supersaturated solution on a 20 mL scale. An enzyme lyophilisate (WT amino acid racemase from P. putida KT2440 (E.C. 5.1.1.10), overexpressed in E. coli BL21(DE3)) was used for in situ racemization (enzyme concentrations varying from 0 to 1 mg/mL). When preferential crystallization was applied without any enzyme, a total of 31 mg of L ‐Asn monohydrate could be crystallized, before crystal formation of d ‐Asn started. Crystallization experiments accompanied by enzymatic racemization led to a significant increase of crystallized L ‐Asn (198 mg L ‐Asn monohydrate; >92%ee) giving the first experimental proof for this new process concept of dynamic kinetic resolution via preferential crystallization and enzymatic racemization. Measurements of the racemase activity before and after the crystallization process showed no significant differences, which would allow for enzyme recovery and recycling. Biotechnol. Bioeng. 2009; 104: 1235–1239. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
Mandelate racemase [EC 5.1.2.2] from Pseudomonas putida ATCC 12336 was efficiently immobilized through ionic binding onto DEAE- and TEAE 23-cellulose. The activity of the immobilized enzyme was significantly enhanced as compared to the native protein, i.e., 2.7- and 2.5-fold, respectively. DEAE-cellulose-immobilized mandelate racemase could be efficiently used in repeated batch reactions for the racemization of (R)-mandelic acid under mild conditions.  相似文献   

20.
Summary d-(–)-Lactate dehydrogenase (LDH) was purified to homogeneity from a cell-free extract ofLactobacillus helveticus CNRZ 32. The native enzyme was determined to have a molecular weight of 152 000 and consisted of four identical subunits of 38 000. This enzyme was NAD dependent fructose 1,6-diphosphate (FDP) and ATP independent. It was most active on pyruvate followed by -hydroxypyruvate as substrates. TheK m values for pyruvate andd-(–)-lactate were 0.64 and 68.42 mM respectively, indicating that the enzyme has a higher affinity for pyruvate. The enzyme activity was completely inhibited byp-chloromercuribenzoate (1 mM) and partially by iodoacetate, suggesting the involvement of the sulfhydryl group (-SH) in catalysis. Optima for activity by the purified enzyme were pH 4.0 and 50–60°C. Limited inhibition ofd-(–)-LDH was observed with several divalent cations. Additionally, HgCl2 was observed to strongly inhibit enzyme activity. The purified enzyme was not affected by dithiothreitol or any of the metal chelating agents examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号