首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first hypervariable segment of the human mtDNA control region contains a homopolymeric tract of cytosines between nt 16184 and 16193, interrupted at position 16189 by a thymine, according to the Cambridge reference sequence. A variant commonly found in population screening is a T-to-C transition at nt 16189, resulting in an uninterrupted homopolymeric tract. Direct sequencing of individuals with this variant produces a characteristic blurred sequence in nucleotides beyond the tract. Sequencing clones from these individuals revealed that this is caused by high levels of length heteroplasmy in the homopolymeric tract and low levels of length heteroplasmy in the four adenines following the tract. We have developed a rapid method involving densitometry of sequencing gels to quantify the relative proportions of different length variants present in an individual. We have used this to study the proportions of length variants in individuals from three twin pairs and two maternal lineages. While unrelated individuals usually have different proportions of length variants, all maternally related individuals studied have the same proportions, even if they are only distantly related. It is not obvious how identical heteroplasmic profiles are maintained in maternally related individuals, but some possible mechanisms are suggested.  相似文献   

2.
While mtDNA polymorphisms at single base positions are common, the overwhelming majority of the mitochondrial genomes within a single individual are usually identical. When there is a point-mutation difference between a mother and her offspring, there may be a complete switching of mtDNA type within a single generation. It is generally assumed that there is a genetic bottleneck whereby a single or small number of founder mtDNA(s) populate the organism, but it is not known at which stages the restriction/amplification of mtDNA subtype(s) occur, and this uncertainty impedes antenatal diagnosis for mtDNA disorders. Length polymorphisms in homopolymeric tracts have been demonstrated in the large noncoding region of mtDNA. We have developed a new method, T-PCR (trimmed PCR), to quantitate heteroplasmy for two of these tracts (D310 and D16189). D310 variation is sufficient to indicate clonal origins of tissues and single oocytes. Tissues from normal individuals often possessed more than one length variant (heteroplasmy). However, there was no difference in the pattern of the length variants between somatic tissues in any control individual when bulk samples were taken. Oocytes from normal women undergoing in vitro fertilization were frequently heteroplasmic for length variants, and in two cases the modal length of the D310 tract differed in individual oocytes from the same woman. These data suggest that a restriction/amplification event, which we attribute to clonal expansion of founder mtDNA(s), has occurred by the time oocytes are mature, although further segregation may occur at a later stage. In contrast to controls, the length distribution of the D310 tract varied between tissues in a patient with heteroplasmic mtDNA rearrangements, suggesting that these mutants influence segregation. These findings have important implications for the genetic counselling of patients with pathogenic mtDNA mutations.  相似文献   

3.
For identification of somatic mitochondrial DNA (mtDNA) mutations, the mtDNA major noncoding region (D-loop) sequence in blood samples and carotid atherosclerosis plaques from patients with atherosclerosis was analyzed. Five point heteroplasmic positions were observed in 4 of 23 individuals (17%). Only in two cases could heteroplasmy have resulted from somatic mutation, whereas three heteroplasmic positions were found in both vascular tissue and blood. In addition, length heteroplasmy in a polycytosine stretches was registered at nucleotide positions 303–315 in 16 individuals, and also in the 16184–16193 region in four patients. The results suggest that somatic mtDNA mutations can occur during atherosclerosis, but some heteroplasmic mutations may appear in all tissues, possibly being inherited.  相似文献   

4.
Several studies reported that there were the associations between the genetic polymorphisms in the mitochondrial DNA (mtDNA) and some blood iron markers. Thus, we tried to investigate the relationship between two genetic polymorphisms (5178C/A and 16189T/C) in the mtDNA and several blood iron markers in Korean men. A total of unrelated 131 Korean men were participated in this study. Two genetic polymorphisms in the mtDNA was determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) method, and hematological or biochemical assay performed by autoanalyzer. Although the 16189T/C polymorphism was not significantly associated with any iron parameters measured in this study, we found that the 5178C/A polymorphism was significantly associated with red blood cell (RBC) count and hematocrit (HCT) value in Korean men (P < 0.05). Therefore, our data suggest that the 5178C/A polymorphism in the mtDNA might be useful as a genetic marker with respect to blood iron metabolism.  相似文献   

5.
Bentzen P  Leggett WC  Brown GG 《Genetics》1988,118(3):509-518
Restriction endonuclease analysis was used to assess mitochondrial DNA (mtDNA) variation in American shad (Alosa sapidissima) collected from 14 rivers ranging from Florida to Quebec. Two types of heteroplasmy were observed, one involving a major length polymorphism and the other a single restriction site. Shad mtDNA occurred in two principal size classes, 18.3 and 19.8 kb. Of 244 shad examined, 30 were heteroplasmic and carried both size classes of mtDNA in varying proportions; the remainder were homoplasmic for the smaller size class of mtDNA. The large mtDNA variant occurred most frequently at the southern end of the range, and except for two individuals from Nova Scotia, was not detected among shad from rivers north of the Delaware. In contrast, ten shad heteroplasmic for a SalI restriction site originated from rivers ranging from South Carolina to Nova Scotia. DNA mapping and hybridization experiments indicated that the length polymorphism is in the D-loop-containing region and consists of a tandemly repeated 1.5-kb DNA sequence occurring in two and three copies, respectively, in the two major size classes of shad mtDNA. Continuous length variation up to approximately 40 bp occurs among copies of the repeat both within and among individuals. Restriction site data support the conclusion that both forms of heteroplasmy in shad mtDNA have originated more than once.  相似文献   

6.
The mitochondrial DNA (mtDNA) substitution rate and segregation of heteroplasmy were studied for the non-coding control region (D-loop) and 500 bp of the coding region between nucleotide positions 5550 and 6050, by sequence analysis of blood samples from 194 individuals, representing 33 maternal lineages. No homoplasmic nucleotide substitutions were detected in a total of 292 transmissions. The estimated substitution rate per nucleotide per million years for the control region (micro>0.21, 95% CI 0-0.6) was not significantly different from that for the coding region (micro>0.54, 95% CI 0-1.0). Variation in the length of homopolymeric C streches was observed at three sites in the control region (positions 65, 309 and 16,189), all of which were in the heteroplasmic state. Segregation of heteroplasmic genotypes between generations was observed in several maternal pedigrees. At position 309, a longer poly C tract length was strongly associated with a higher probability for heteroplasmy and rapid segregation between generations. The length heteroplasmy at positions 65 and 16,189 was found at low frequency and was confined to a few families.  相似文献   

7.
The presence of multiple mitochondrial genotypes (heteroplasmy) has been studied in normal individuals. Six multigenerational normal families were screened for heteroplasmy by PCR of the mitochondrial control region and the cytochrome c oxidase intergenic regions. Two individuals from different families exhibited multiple length polymorphisms in a homopolymeric tract at positions 16 184–16 193 and a grandmother in a third family was heteroplasmic for both cytosine and thymidine at position 15 945. Although the 15 945 T variant comprised 28% of the grandmother’s mitochondrial DNA, this sequence was not present in any of her descendants. Heteroplasmy was detected in 2.5% of the 96 mother-offspring pairs, consistent with the possibility that it may not be rare. Received: 18 August 1997 / Accepted: 10 November 1997  相似文献   

8.
This study was designed to investigate the possibility that mtDNA mutations might arise in inflammatory or chronically damaged nasal polyp tissue from 23 patients. Thirteen patients (57%) displayed nasal polyp tissue-specific mtDNA mutations in the hypervariable segment of the control region and cytochrome b gene, which were not found in the corresponding blood cells and/or adjacent normal tissue. Nasal polyp tissue-specific length heteroplasmic mutations were also detected in nucleotide position (np) 303–315 homopolymeric poly C track (39%), np 514–523 CA repeats (17%) and np 16184–16193 poly C track (30%). The average mtDNA copy number was about three times higher in nasal polyp tissue than in the corresponding peripheral blood cells and adjacent non-polyp tissues. The level of reactive oxygen species (ROS) was significantly higher in the nasal polyp tissues compared to those from the corresponding samples. High level of ROS in nasal polyp tissue may contribute to development of mtDNA mutations, which may play a crucial role in the vicious cycle of pathophysiology of nasal polyps.  相似文献   

9.
In this work, we present the results of the screening of human mitochondrial DNA (mtDNA) heteroplasmy in the control region of mtDNA from 210 unrelated Spanish individuals. Both hypervariable regions of mtDNA were amplified and sequenced in order to identify and quantify point and length heteroplasmy. Of the 210 individuals analyzed, 30% were fully homoplasmic and the remaining presented point and/or length heteroplasmy. The prevalent form of heteroplasmy was length heteroplasmy in the poly(C) tract of the hypervariable region II (HVRII), followed by length heteroplasmy in the poly(C) tract of hypervariable region I (HVRI) and, finally, point heteroplasmy, which was found in 3.81% of the individuals analyzed. Moreover, no significant differences were found in the proportions of the different kinds of heteroplasmy in the population when blood and buccal cell samples were compared. The pattern of heteroplasmy in HVRI and HVRII presents important differences. Moreover, the mutational profile in heteroplasmy seems to be different from the mutational pattern detected in population. The results suggest that a considerable number of mutations and, particularly, transitions that appear in heteroplasmy are probably eliminated by drift and/or by selection acting at different mtDNA levels of organization. Taking as a whole the results reported in this work, it is mandatory to perform a broad-scale screening of heteroplasmy to better establish the heteroplasmy profile which would be important for medical, evolutionary, and forensic proposes.  相似文献   

10.
A common mitochondrial (mt)DNA variant that is maternally inherited, the 16189 variant, is associated with type 2 diabetes and thinness at birth. To elucidate the association of the variant with thinness, we studied the 16189 variant in a well-characterized Australian cohort (n = 161) who were followed up from birth to age 20 yr. PCR analysis and mtDNA haplotyping was carried out on DNA from 161 offspring from consecutive, normal, singleton pregnancies followed from birth to age 20 yr. The 16189 mtDNA variant was present in 14 of the 161 20 yr olds (8.7%). Both the mothers with the 16189 variant and their 20-yr-old offspring were thinner than those without. Median (interquartile range) BMI was 21.9 kg/m(2) (20.4 to 22.9) in mothers with the variant compared with 23.5 (21.4 to 26.6) in those without (P = 0.013) and 22.2 (21.1 to 23.8) in 20 yr olds with the variant compared with 22.7 (20.8 to 25.6) in those without (P = 0.019). The 16189 variant was also associated with a high placental weight and high placental-to-birth weight ratio (P = 0.051 and P = 0.0024, respectively). Insulin sensitivity was normal in 20 yr olds with the 16189 variant. This contrasts with 20 yr olds who did not have the variant but who had been thin or small at birth and who had normal BMI and normal placental-to-birth weight ratio, but were insulin resistant. This study suggests that the 16189 mtDNA variant is associated with maternally inherited thinness in young adults. This may be mediated by effects on mtDNA replication and, thence, placental function. Further research is required to confirm these hypotheses.  相似文献   

11.
In a longitudinal, retrospective study, we monitored the level of heteroplasmy at nucleotide position (nt) 309 and nt 16189 of the control region of human mtDNA. As a unique source of DNA, we analyzed multiple cervical-cell samples collected, during 1 or 2 decades, from four women with heteroplasmy at either nt 309 or nt 16189. According to accurate, quantitative analysis by solid-phase minisequencing, the level of heteroplasmy remained stable in the cervical-cell samples from all four women during the time studied. We also analyzed autopsy samples from several different tissues, all containing nt 309 in heteroplasmic form, of one of the women, who was deceased. On the basis of our results, heteroplasmy in the control region of mtDNA seems to be inherited and is not the result of somatic age-related accumulation.  相似文献   

12.
The mtDNA 1555A>G mutation was considered to be one of the most common causes of aminoglycoside-induced and non-syndromic hearing loss. However, this mutation was always found in homoplasmy with high phenotypic heterogeneity. Recently this mutation in heteroplasmy has been reported in several studies. In the present study, we have collected a large Chinese family harboring heteroplasmic mtDNA 1555A>G mutation with diverse clinical phenotypes. To investigate the relationship between the mutation load and the severity of hearing loss under Eastern Asian background, we performed clinical, molecular, genetic and phylogenic analysis. This pedigree was characterized by coexistence of eight subjects with homoplasmic mutation and ten subjects with various degrees of heteroplasmy, and the results suggested that there was a strong correlation between the mutation load and the severity/age-onset of hearing loss (r=0.758, p<0.001). We noticed that the mutation level of offspring was associated with their mothers' in this pedigree, which indicated that maybe exist a regular pattern during the process of the heteroplasmic transmission. In addition, analysis of the complete mtDNA genome of this family revealed that it belonged to Eastern Asian haplogroup B4C1. In addition, a rare homoplasmic mtDNA 9128T>C variant was identified, it located at a strictly conserved site of mtDNA ATP6 gene.  相似文献   

13.
Based on sequencing data and results obtained from applying a tailored mismatch polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, we report that the G allele of the mitochondrial DNA (mtDNA) polymorphism at nucleotide position 11719 is associated with the European mtDNA haplogroup cluster HV, and that 11719A is therefore the ancestral allele.  相似文献   

14.
The animal mitochondrial DNA (mtDNA) length polymorphism and heteroplasmy are accepted to be universal. Here we report the lack of structural variation but the presence of length polymorphism as well as heteroplasmy in mtDNA control region of an endangered avian species – the Crested Ibis (Nipponia nippon). The complete control region was directly sequenced while the distribution pattern and inheritance of the length variations were examined using both direct sequencing and genotyping of the PCR fragments from captive birds with pedigrees, wild birds and a historical specimen. Our results demonstrated that there was no structural variation in the control region, however, different numbers of short tandem repeats with an identical motif of CA3CA2CA3 at the 3′-end of the control region determined the length polymorphisms among and heteroplasmy within individual birds. There were one to three predominant fragments in every bird; nevertheless multiple minor fragments coexist in all birds. These extremely high polymorphisms were suggested to have derived from the ‘replication slippage’ of a perfect microsatellite evolution following the step-wise mutational model. The patterns of heteroplasmy were found to be shifted between generations and among siblings but rather stable between blood and feather samples. This study provides the first evidence of a very extensive mtDNA length polymorphism and heteroplasmy in the highly inbred Crested Ibis which carries an mtDNA genome lack of structural genetic diversity. The analysis of pedigreed samples also sheds light on the transmission of mtDNA length heteroplasmy in birds following the genetic bottleneck theory. Further research focusing on the generation and transmission of particular mtDNA heteroplasmy patterns in single germ line of Crested Ibis is encouraged by this study.  相似文献   

15.
The MRL/MpJ mouse is an inbred laboratory strain of Mus musculus, known to exhibit enhanced autoimmunity, increased wound healing, and increased regeneration properties. We report the full-length mitochondrial DNA (mtDNA) sequence of the MRL mouse (Accession # EU450583), and characterize the discovery of two naturally occurring heteroplasmic sites. The first is a T3900C substitution in the TPsiC loop of the tRNA methionine gene (tRNA-Met; mt-Tm). The second is a heteroplasmic insertion of 1-6 adenine nucleotides in the A-tract of the tRNA arginine gene (tRNA-Arg; mt-Tr) at positions 9821-9826. The level of heteroplasmy varied independently at these two sites in MRL individuals. The length of the tRNA-Arg A-tract increased with age, but heteroplasmy at the tRNA-Met site did not change with age. The finding of naturally occurring mtDNA heteroplasmy in an inbred strain of mouse makes the MRL mouse a powerful new experimental model for studies designed to explore therapeutic measures to alter the cellular burden of heteroplasmy.  相似文献   

16.
Because energy production involves oxidative phosphorylation, mitochondria are major sources of reactive oxygen species in the cell. Recent findings indicate that mitochondrial DNA (mtDNA) variants may play a role in the etiology of certain autoimmune and chronic inflammatory diseases. The aim of this study was to investigate the possible association between mtDNA polymorphisms and susceptibility to endometriosis. This study included 198 patients with histologically confirmed endometriosis and 167 patients without endometriosis as controls. Common variants of mtDNA at nt10398 (A/G transition), nt13708 (G/A transition), and nt16189 (T/C transition) were detected using polymerase chain reaction. An association study was performed with a chi-square test and logistic regression analysis. The prevalence of the mtDNA nt16189 variant was higher in patients with endometriosis (46.0%, 91 of 198) than in controls (34.7%, 58 of 167) (p=0.030) with odds ratio (OR) of 1.98 (95% confidence interval [CI]: 1.04-3.78). A combination of the 10398 and 16189 variants was also associated with increased risk for endometriosis (OR=1.90, 95% CI: 1.13-3.18, p=0.015). These associations remained significant even after adjusting for age and body mass index. Our data strongly suggest that the mtDNA 16189 variants and the combination of mtDNA 16189 and 10398 variants increase susceptibility to endometriosis.  相似文献   

17.
The transition from A to G at nt 5656 (5656A-->G) in mitochondrial DNA has been suggested to be a pathogenic mutation and, furthermore, a heteroplasmic one. We found that the mutation was present in 14 out of 83 healthy controls from northern Finland and that 5656A-->G was exclusively associated with mtDNA haplogroup U. Interestingly, 5656A-->G appeared to be heteroplasmic in NheI digestion of PCR fragments that were amplified by using a mismatched oligonucleotide primer creating a digestion site in the presence of the mutant variant. However, we did not detect the wild type genome in clones from such a sample and subsequent experiments revealed that the apparent heteroplasmy was due to inhibition of NheI by NaCl. Our results suggest that 5656A-->G is a polymorphism and it may be highly characteristic for Finns. Furthermore, new heteroplasmic mutations identified by restriction fragment analysis should be adequately controlled for any false positive results that may be due to incomplete digestion.  相似文献   

18.
Varying degrees of mitochondrial DNA (mtDNA) heteroplasmy have been observed in nuclear transfer embryos, fetuses, and offspring, but the mechanisms leading to this condition are unknown. We have generated a clone of 12 bovine somatic cell nuclear transfer fetuses, using nuclear donor cells, recipient oocytes, and recipient heifers with defined mtDNA genotypes, to study nuclear-mitochondrial interactions and the origins of mtDNA heteroplasmy. Embryos were reconstructed from granulosa cells with Bos taurus mtDNA type A and recipient oocytes collected from three different maternal lineages with B. taurus mtDNA type B, B. taurus mtDNA type C, or B. indicus mtDNA. Sequence differences in the control region (CR) of B. taurus mtDNAs ranged from 6 to 11 nucleotides and differences between B. taurus and B. indicus CRs from 45 to 50 nucleotides. Fetuses were recovered from recipient heifers with B. taurus mtDNA type B on Day 80 after nuclear transfer (eight B. taurus A/B, two B. taurus A/C, and two B. taurus A/B. indicus). Agarose gel analysis of the CR by polymerase chain reaction-based restriction fragment length polymorphism failed to detect nuclear donor mtDNA in 11 investigated tissues of 10 viable fetuses and in DNA samples of two fetuses in resorption (one B. taurus A/B and one B. taurus A/C). A more sensitive analysis of 1801 plasmid clones with CR inserts derived from tissues of a B. taurus A/B. indicus fetus detected no or very low levels of heteroplasmy (0.5-0.7%). However, the analyses detected considerable amounts ( approximately 2.5% and 5%) of recipient heifer mtDNA in blood samples from two fetuses. Our data do not suggest a replicative advantage of somatic nuclear donor cell mtDNA in bovine transmitochondrial clones produced with oocytes from domestic forms of the same or a different aurochs (B. primigenius) subspecies. Detection of mtDNA from the recipient animal in the circulation of two fetuses points to leakage of the placental barrier, mimicking heteroplasmy.  相似文献   

19.
A 9-bp deletion first described in the mitochondrial DNA (mtDNA) for East Asian, Polynesian or Indian American populations of the B haplogroup is now discovered in Slavs. The Russian family carrying that deletion belongs to a new branch of the T haplogroup as deduced from D-loop sequence and haplogroup-specific restriction fragment length polymorphism analysis. One family member had a Kearns-Sayre syndrome with a 5.5 kb mtDNA deletion. This family also presented a long C-stretch in the D-loop. Whether or not the formation of the 5.5 kb deletion might be related to the 9-bp deletion or to the long C-stretch in the D-loop is discussed.  相似文献   

20.
In the genealogical and phylogenetic analyses that are reported here, we obtained evidence for an unusual pattern of mutation/reversion in the human mitochondrial genome. The cumulative results indicate that, when there is a T-->C polymorphism at nt 16189 and a C-->T substitution at nt 16192, there is an extremely high rate of reversion (hypermutation) at the latter site. The apparent reversion rate is sufficiently high that there is persistent heteroplasmy at nt 16192 in maternal lineages and at the phylogenetic level, a situation that is similar to that observed for the rapid expansion/contraction of simple repeats within the control region. This is the first specific instance in which the mutation frequency at one site in the D-loop is markedly influenced by the local sequence "context." The 16189 T-->C polymorphism lengthens a (C:G)n simple repeat, which then undergoes expansion and contraction, probably through replication slippage. This proclivity toward expansion/contraction is more pronounced when there is a C residue, rather than a T, at nt 16192. The high T-->C reversion frequency at nt 16192 apparently is the result of polymerase misincorporation or slippage during replication, the same mechanism that also causes the expansion/contraction of this simple-repeat sequence. In addition to the first analysis of this mitochondrial hypermutation process, these results also yield mechanistic insights into the expansion/contraction of simple-repeat sequences in mtDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号