首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The copper-transporting P(1B)-type ATPases (Cu-ATPases) ATP7A and ATP7B are key regulators of physiological copper levels. They function to maintain intracellular copper homeostasis by delivering copper to secretory compartments and by trafficking toward the cell periphery to export excess copper. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and toxicity disorders, Menkes and Wilson diseases, respectively. This report describes the interaction between the Cu-ATPases and clusterin and demonstrates a chaperone-like role for clusterin in facilitating their degradation. Clusterin interacted with both ATP7A and ATP7B in mammalian cells. This interaction increased under conditions of oxidative stress and with mutations in ATP7B that led to its misfolding and mislocalization. A Wilson disease patient mutation (G85V) led to enhanced ATP7B turnover, which was further exacerbated when cells overexpressed clusterin. We demonstrated that clusterin-facilitated degradation of mutant ATP7B is likely to involve the lysosomal pathway. The knockdown and overexpression of clusterin increased and decreased, respectively, the Cu-ATPase-mediated copper export capacity of cells. These results highlight a new role for intracellular clusterin in mediating Cu-ATPase quality control and hence in the normal maintenance of copper homeostasis, and in promoting cell survival in the context of disease. Based on our findings, it is possible that variations in clusterin expression and function could contribute to the variable clinical expression of Menkes and Wilson diseases.  相似文献   

2.
Copper-transporting ATPase ATP7B (Wilson disease protein) is a member of the P-type ATPase family with characteristic domain structure and distinct ATP-binding site. ATP7B plays a central role in the regulation of copper homeostasis in the liver by delivering copper to the secretory pathway and mediating export of excess copper into the bile. The dual function of ATP7B in hepatocytes is coupled with copper-dependent intracellular relocalization of the transporter. The final destination of ATP7B in hepatocytes during the copper-induced trafficking process is still under debate. We show the results of immunocytochemistry experiments in polarized HepG2 cells that support the model in which elevated copper induces trafficking of ATP7B to sub-apical vesicles, and transiently to the canalicular membrane. In Atp7b -/- mice, an animal model of Wilson disease, both copper delivery to the trans-Golgi network and copper export into the bile are disrupted despite large accumulation of copper in the cytosol. We review the biochemical and physiological changes associated with Atp7b inactivation in mouse liver and discuss the pleiotropic consequences of the common Wilson disease mutation, His1069Gln.  相似文献   

3.
Human Cu-ATPases ATP7A and ATP7B maintain copper homeostasis through regulated trafficking between intracellular compartments. Inactivation of these transporters causes Menkes disease and Wilson disease, respectively. In Menkes disease, copper accumulates in kidneys and causes tubular damage, indicating that the renal ATP7B does not compensate for the loss of ATP7A function. We show that this is likely due to a kidney-specific regulation of ATP7B. Unlike ATP7A (or hepatic ATP7B) which traffics from the TGN to export copper, renal ATP7B does not traffic and therefore is unlikely to mediate copper export. The lack of ATP7B trafficking is not on account of the loss of a kinase-mediated phosphorylation or simultaneous presence of ATP7A in renal cells. Rather, the renal ATP7B appears 2–3 kDa smaller than hepatic ATP7B. Recombinant ATP7B expressed in renal cells is similar to hepatic protein in size and trafficking. The analysis of ATP7B mRNA revealed a complex behavior of exon 1 upon amplification, suggesting that it could be inefficiently translated. Recombinant ATP7B lacking exon 1 traffics differently in renal and hepatic cells, but does not fully recapitulate the endogenous phenotype. We discuss factors that may contribute to cell-specific behavior of ATP7B and propose a role for renal ATP7B in intracellular copper storage.  相似文献   

4.
Living organisms have developed refined and geneticaly controlled mechanisms of the copper metabolism and transport. ATP7A and ATP7B proteins play the key role in copper homeostasis in the organism. Both proteins are P-type Cu-transporting ATPases and use the energy of ATP hydrolysis to transfer the copper ions across the cellular membranes. Both proteins are localised in Golgi aparatus and involved in regulation of overall copper status in the body and their function is the export of excess copper from the cells and delivery of copper ions to Cu-dependent enzymes. Moreover in organism Cu-transporting ATPases are involved in absorption of dietary copper, Cu removal with the bile, placental copper transport and its secretion to the milk during lactation. Moreover it is known that Cu-transporting ATPases play a role in generation of anti-cancer drug resistance. Disturbances of ATP7A and ATP7B function caused by mutations lead to severe metabolic diseases Menkes and Wilson diseases, respectively.  相似文献   

5.
Copper plays an essential role in human physiology and is indispensable for normal growth and development. Enzymes that are involved in connective tissue formation, neurotransmitter biosynthesis, iron transport, and others essential physiological processes require copper as a cofactor to mediate their reactions. The biosynthetic incorporation of copper into these enzymes takes places within the secretory pathway and is critically dependent on the activity of copper-transporting ATPases ATP7A or ATP7B. In addition, ATP7A and ATP7B regulate intracellular copper concentration by removing excess copper from the cell. These two transporters belong to the family of P1-type ATPases, share significant sequence similarity, utilize the same general mechanism for their function, and show partial colocalization in some cells. However, the distinct biochemical characteristics and dissimilar trafficking properties of ATP7A and ATP7B in cells, in which they are co-expressed, indicate that specific functions of these two copper-transporting ATPases are not identical. Immuno-detection studies in cells and tissues have begun to suggest specific roles for ATP7A and ATP7B. These experiments also revealed technical challenges associated with quantitative detection of copper-transporting ATPases in tissues, as illustrated here by comparing the results of ATP7A and ATP7B immunodetection in mouse cerebellum. This work was supported by the National Institute of Health grants PO1 GM 067166–01 and DK R01 DK071865 to S.L.  相似文献   

6.
The copper-transporting ATPase ATP7B has a dual intracellular localization: the trans-Golgi network (TGN) and cytosolic vesicles. Changes in copper levels, kinase-mediated phosphorylation, and mutations associated with Wilson disease alter the steady-state distribution of ATP7B between these compartments. To identify a primary molecular event that triggers ATP7B exit from the TGN, we characterized the folding, activity, and trafficking of the ATP7B variants with mutations within the regulatory N-terminal domain (N-ATP7B). We found that structural changes disrupting the inter-domain contacts facilitate ATP7B exit from the TGN. Mutating Ser-340/341 in the N-ATP7B individually or together to Ala, Gly, Thr, or Asp produced active protein and shifted the steady-state localization of ATP7B to vesicles, independently of copper levels. The Ser340/341G mutant had a lower kinase-mediated phosphorylation under basal conditions and no copper-dependent phosphorylation. Thus, negative charges introduced by copper-dependent phosphorylation are not obligatory for ATP7B trafficking from the TGN. The Ser340/341A mutation did not alter the overall fold of N-ATP7B, but significantly decreased interactions with the nucleotide-binding domain, mimicking consequences of copper binding to N-ATP7B. We propose that structural changes that specifically alter the inter-domain contacts initiate exit of ATP7B from the TGN, whereas increased phosphorylation may be needed to maintain an open interface between the domains.  相似文献   

7.
The P-type ATPases affected in Menkes and Wilson diseases, ATP7A and ATP7B, respectively, are key copper transporters that regulate copper homeostasis. The N termini of these proteins are critical in regulating their function and activity, and contain six copper-binding motifs MxCxxC. In this study, we describe the identification of glutaredoxin (GRX1) as an interacting partner of both ATP7A and ATP7B, confirmed by yeast two-hybrid technology and by co-immunoprecipitation from mammalian cells. The interaction required the presence of copper and intact metal-binding motifs. In addition, the interaction was related to the number of metal-binding domains available. GRX1 catalyses the reduction of disulphide bridges and reverses the glutathionylation of proteins to regulate and/or protect protein activity. We propose that GRX1 is essential for ATPase function and catalyses either the reduction of intramolecular disulphide bonds or the deglutathionylation of the cysteine residues within the CxxC motifs to facilitate copper-binding for subsequent transport.  相似文献   

8.
The Menkes copper-translocating P-type ATPase (ATP7A; MNK) is a ubiquitous protein that regulates the absorption of copper in the gastrointestinal tract. Inside cells the protein has a dual function: it delivers copper to cuproenzymes in the Golgi compartment and effluxes excess copper. The latter property is achieved through copper-dependent vesicular trafficking of the Menkes protein to the plasma membrane of the cell. The trafficking mechanism and catalytic activity combine to facilitate absorption and intercellular transport of copper. The mechanism of catalysis and copper-dependent trafficking of the Menkes protein are the subjects of this review. Menkes disease, a systemic copper deficiency disorder, is caused by mutations in the gene encoding the Menkes protein. The effect of these mutations on the catalytic cycle and the cell biology of the Menkes protein, as well as predictions of the effect of particular mutant MNKs on observed Menkes disease symptoms will also be discussed.  相似文献   

9.
The Wilson protein (ATP7B) is a copper-translocating P-type ATPase that mediates the excretion of excess copper from hepatocytes into bile. Excess copper causes the protein to traffic from the TGN (trans-Golgi network) to subapical vesicles. Using site-directed mutagenesis, mutations known or predicted to abrogate catalytic activity (copper translocation) were introduced into ATP7B and the effect of these mutations on the intracellular trafficking of the protein was investigated. Mutation of the critical aspartic acid residue in the phosphorylation domain (DKTGTIT) blocked copper-induced redistribution of ATP7B from the TGN, whereas mutation of the phosphatase domain [TGE (Thr-Gly-Glu)] trapped ATP7B at cytosolic vesicular compartments. Our findings demonstrate that ATP7B trafficking is regulated with its copper-translocation cycle, with cytosolic vesicular localization associated with the acyl-phosphate intermediate. In addition, mutation of the six N-terminal metal-binding sites and/or the trans-membrane CPC (Cys-Pro-Cys) motif did not suppress the constitutive vesicular localization of the ATP7B phosphatase domain mutant. These results suggested that copper co-ordination by these sites is not essential for trafficking. Importantly, copper-chelation studies with these mutants clearly demonstrated a requirement for copper in ATP7B trafficking, suggesting the presence of an additional copper-binding site(s) within the protein. The results presented in this report significantly advance our understanding of the regulatory mechanism that links copper-translocation activity with copper-induced intracellular trafficking of ATP7B, which is central to hepatic and hence systemic copper homoeostasis.  相似文献   

10.
The Menkes protein (ATP7A; MNK) is a ubiquitous human copper-translocating P-type ATPase and it has a key role in regulating copper homeostasis. Previously we characterised fundamental steps in the catalytic cycle of the Menkes protein. In this study we analysed the role of several conserved regions of the Menkes protein, particularly within the putative cytosolic ATP-binding domain. The results of catalytic studies have indicated an important role of 1086His in catalysis. Our findings provide a biochemical explanation for the most common Wilson disease-causing mutation (H1069Q in the homologous Wilson copper-translocating P-type ATPase). Furthermore, we have identified a unique role of 1230Asp, within the DxxK motif, in coupling ATP binding and acylphosphorylation with copper translocation. Finally, we found that the Menkes protein mutants with significantly reduced catalytic activity can still undergo copper-regulated exocytosis, suggesting that only the complete loss of catalytic activity prevents copper-regulated trafficking of the Menkes protein.  相似文献   

11.
Copper homeostasis is crucial for cellular physiology and development, and its dysregulation leads to disease. The Menkes ATPase ATP7A plays a key role in copper efflux, by trafficking from the Golgi to the plasma membrane upon cell exposure to elevated copper, but the mechanisms that target ATP7A to the cell periphery are poorly understood. PDZD11 interacts with the C-terminus of ATP7A, which contains sequences involved in ATP7A trafficking, but the role of PDZD11 in ATP7A localization is unknown. Here we identify PLEKHA5 and PLEKHA6 as new interactors of PDZD11 that bind to the PDZD11 N-terminus through their WW domains similarly to the junctional protein PLEKHA7. Using CRISPR-KO kidney epithelial cells, we show by immunofluorescence microscopy that WW-PLEKHAs (PLEKHA5, PLEKHA6, PLEKHA7) recruit PDZD11 to distinct plasma membrane localizations and that they are required for the efficient anterograde targeting of ATP7A to the cell periphery in elevated copper conditions. Pull-down experiments show that WW-PLEKHAs promote PDZD11 interaction with the C-terminus of ATP7A. However, WW-PLEKHAs and PDZD11 are not necessary for ATP7A Golgi localization in basal copper, ATP7A copper-induced exit from the Golgi, and ATP7A retrograde trafficking to the Golgi. Finally, measuring bioavailable and total cellular copper, metallothionein-1 expression, and cell viability shows that WW-PLEKHAs and PDZD11 are required for maintaining low intracellular copper levels when cells are exposed to elevated copper. These data indicate that WW-PLEKHAs-PDZD11 complexes regulate the localization and function of ATP7A to promote copper extrusion in elevated copper.  相似文献   

12.
ATP7A and ATP7B are copper-transporting P-type ATPases that are essential to eukaryotic copper homeostasis and must traffic between intracellular compartments to carry out their functions. Previously, we identified a nine-amino acid sequence (F37-E45) in the NH(2) terminus of ATP7B that is required to retain the protein in the Golgi when copper levels are low and target it apically in polarized hepatic cells when copper levels rise. To understand further the mechanisms regulating the intracellular dynamics of ATP7B, using multiple functional assays, we characterized the protein phenotypes of 10 engineered and Wilson disease-associated mutations in the ATP7B COOH terminus in polarized hepatic cells and fibroblasts. We also examined the behavior of a chimera between ATP7B and ATP7A. Our results clearly demonstrate the importance of the COOH terminus of ATP7B in the protein's copper-responsive apical trafficking. L1373 at the end of transmembrane domain 8 is required for protein stability and Golgi retention in low copper, the trileucine motif (L1454-L1456) is required for retrograde trafficking, and the COOH terminus of ATP7B exhibits a higher sensitivity to copper than does ATP7A. Importantly, our results demonstrating that four Wilson disease-associated missense mutations behaved in a wild-type manner in all our assays, together with current information in the literature, raise the possibility that several may not be disease-causing mutations.  相似文献   

13.
The Menkes protein (MNK; ATP7A) is a copper-transporting P-type ATPase that is defective in the copper deficiency disorder, Menkes disease. MNK is localized in the trans-Golgi network and transports copper to enzymes synthesized within secretory compartments. However, in cells exposed to excessive copper, MNK traffics to the plasma membrane where it functions in copper efflux. A conserved feature of all P-type ATPases is the formation of an acyl-phosphate intermediate, which occurs as part of the catalytic cycle during cation transport. In this study we investigated the effect of mutations within conserved catalytic regions of MNK on intracellular localization and trafficking from the trans-Golgi network (TGN). Our findings suggest that mutations that block formation of the phosphorylated catalytic intermediate also prevent copper-induced relocalization of MNK from the TGN. Furthermore, mutations in the phosphatase domain, which resulted in hyperphosphorylation of MNK, caused constitutive trafficking from the TGN to the plasma membrane. A similar effect on trafficking was observed with a phosphatase mutation in the closely related copper ATPase, ATP7B, affected in Wilson disease. These findings suggest that the copper-induced trafficking of the Menkes and Wilson disease copper ATPases is associated with the phosphorylated intermediate that is formed during the catalysis of these pumps. Our findings describe a novel mechanism for regulating the subcellular location of a transport protein involving the recognition of intermediate conformations during catalysis.  相似文献   

14.
ATP7A and ATP7B are copper-transporting P(1B)-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and COMMD1 were previously identified as interacting partners of these Cu-ATPases. In this study, we confirmed that clusterin and COMMD1 interact to down-regulate both ATP7A and ATP7B. Overexpression and knockdown of clusterin/COMMD1 decreased and increased, respectively, endogenous levels of ATP7A and ATP7B, consistent with a role in facilitating Cu-ATPase degradation. We demonstrate that whereas the clusterin/ATP7B interaction was enhanced by oxidative stress or mutation of ATP7B, the COMMD1/ATP7B interaction did not change under oxidative stress conditions, and only increased with ATP7B mutations that led to its misfolding. Clusterin and COMMD1 facilitated the degradation of ATP7B containing the same Wilson disease-causing C-terminal mutations via different degradation pathways, clusterin via the lysosomal pathway and COMMD1 via the proteasomal pathway. Furthermore, endogenous ATP7B existed in a complex with clusterin and COMMD1, but these interactions were neither competitive nor cooperative and occurred independently of each other. Together these data indicate that clusterin and COMMD1 represent alternative and independent systems regulating Cu-ATPase quality control, and consequently contributing to the maintenance of copper homeostasis.  相似文献   

15.
Biochemical basis of regulation of human copper-transporting ATPases   总被引:2,自引:0,他引:2  
Copper is essential for cell metabolism as a cofactor of key metabolic enzymes. The biosynthetic incorporation of copper into secreted and plasma membrane-bound proteins requires activity of the copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B. The Cu-ATPases also export excess copper from the cell and thus critically contribute to the homeostatic control of copper. The trafficking of Cu-ATPases from the trans-Golgi network to endocytic vesicles in response to various signals allows for the balance between the biosynthetic and copper exporting functions of these transporters. Although significant progress has been made towards understanding the biochemical characteristics of human Cu-ATPase, the mechanisms that control their function and intracellular localization remain poorly understood. In this review, we summarize current information on structural features and functional properties of ATP7A and ATP7B. We also describe sequence motifs unique for each Cu-ATPase and speculate about their role in regulating ATP7A and ATP7B activity and trafficking.  相似文献   

16.
Defects in the mammalian Menkes and Wilson copper transporting P-type ATPases cause severe copper homeostasis disease phenotypes in humans. Here, we find that DmATP7, the sole Drosophila orthologue of the Menkes and Wilson genes, is vital for uptake of copper in vivo. Analysis of a DmATP7 loss-of-function allele shows that DmATP7 is essential in embryogenesis, early larval development, and adult pigmentation and is probably required for copper uptake from the diet. These phenotypes are analogous to those caused by mutation in the mouse and human Menkes genes, suggesting that like Menkes, DmATP7 plays at least two roles at the cellular level: delivering copper to cuproenzymes required for pigmentation and neuronal function and removing excess cellular copper via facilitated efflux. DmATP7 displays a dynamic and unexpected expression pattern in the developing embryo, implying novel functions for this copper pump and the lethality observed in DmATP7 mutant flies is the earliest seen for any copper homeostasis gene.  相似文献   

17.
In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.  相似文献   

18.
A role for the copper transporter, ATP7B, in secretion of copper from the human breast into milk has previously not been reported, although it is known that the murine ortholog of ATP7B facilitates copper secretion in the mouse mammary gland. We show here that ATP7B is expressed in luminal epithelial cells in both the resting and lactating human breast, where it has a perinuclear localization in resting epithelial cells and a diffuse location in lactating tissue. ATP7B protein was present in a different subset of vesicles from those containing milk proteins and did not overlap with Menkes ATPase, ATP-7A, except in the perinuclear region of cells. In the cultured human mammary line, PMC42-LA, treatment with lactational hormones induced a redistribution of ATP7B from a perinuclear region to a region adjacent, but not coincident with, the apical plasma membrane. Trafficking of ATP7B was copper dependent, suggesting that the hormone-induced redistribution of ATP7A was mediated through an increase in intracellular copper. Radioactive copper ((64)Cu) studies using polarized PMC42-LA cells that overexpressed mAtp7B protein showed that this transporter facilitates copper efflux from the apical surface of the cells. In summary, our results are consistent with an important function of ATP7B in the secretion of copper from the human mammary gland.  相似文献   

19.
The Wilson disease gene, a copper transporting ATPase (Atp7b), is responsible for the sequestration of Cu into secretory vesicles, and this function is exhibited by the orthologous Ccc2p in the yeast. In this study, we aimed to characterize clinically relevant new mutations of human ATP7B (p.T788I, p.V1036I and p.R1038G-fsX83) in yeast lacking the CCC2 gene. Expression of human wild type ATP7B gene in ccc2Δ mutant yeast restored the growth deficiency and copper transport activity; however, expression of the mutant forms did not restore the copper transport functions and only partially supported the cell growth. Our data support that p.T788I, p.V1036I and p.R1038G-fsX83 mutations cause functional deficiency in ATP7B functions and suggest that these residues are important for normal ATP7B function.  相似文献   

20.
Menkes disease is a fatal disease that can be induced by various mutations in the ATP7A gene, leading to unpaired uptake of dietary copper. The ATP7A gene encodes a copper(I)-translocating ATPase. Here the disease-causing A629P mutation, which occurs in the last of the six copper(I)-binding soluble domains of the ATPase (hereafter MNK6), was investigated. To understand why this apparently minor amino acid replacement is pathogenic, the solution structures and dynamics on various time-scales of wild-type and A629P-MNK6 were determined both in the apo- and copper(I)-loaded forms. The interaction in vitro with the physiological ATP7A copper(I)-donor (HAH1) was additionally studied. The A629P mutation makes the protein beta-sheet more solvent accessible, possibly resulting in an enhanced susceptibility of ATP7A to proteolytic cleavage and/or in reduced capability of copper(I)-translocation. A small reduction of the affinity for copper(I) is also observed. Both effects could concur to pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号