首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Correct pairing, synapsis and recombination between homologous chromosomes are essential for normal meiosis. All these events are strongly regulated, and our knowledge of the mechanisms involved in this regulation is increasing rapidly. Chromosomal rearrangements are known to disturb these processes. In the present paper, synapsis and recombination (number and distribution of MLH1 foci) were studied in three boars (Sus scrofa domestica) carrying different chromosomal rearrangements. One (T34he) was heterozygote for the t(3;4)(p1.3;q1.5) reciprocal translocation, one (T34ho) was homozygote for that translocation, while the third (T34Inv) was heterozygote for both the translocation and a pericentric inversion inv(4)(p1.4;q2.3). All three boars were normal for synapsis and sperm production. This particular situation allowed us to rigorously study the impact of rearrangements on recombination. Overall, the rearrangements induced only minor modifications of the number of MLH1 foci (per spermatocyte or per chromosome) and of the length of synaptonemal complexes for chromosomes 3 and 4. The distribution of MLH1 foci in T34he was comparable to that of the controls. Conversely, the distributions of MLH1 foci on chromosome 4 were strongly modified in boar T34Inv (lack of crossover in the heterosynaptic region of the quadrivalent, and crossover displaced to the chromosome extremities), and also in boar T34ho (two recombination peaks on the q-arms compared with one of higher magnitude in the controls). Analyses of boars T34he and T34Inv showed that the interference was propagated through the breakpoints. A different result was obtained for boar T34ho, in which the breakpoints (transition between SSC3 and SSC4 chromatin on the bivalents) seemed to alter the transmission of the interference signal. Our results suggest that the number of crossovers and crossover interference could be regulated by partially different mechanisms.  相似文献   

2.
3.
Heterozygous tandem duplications formed in conjugational matings in Escherichia coliprovides a convenient model system for studying the evolution of bacterial chromosome. Heterozygous duplications segregate various classes of haploid and diploid recombinants that appear as a result of unequal crossing over between sister chromosomes. In this work, an extended tandem duplication in the deooperon of E. colicarrying deoA deoB::Tn5/deoC deoD thr::Tn9alleles was examined. Recombination between homologous DNA repeats in the duplication was studied in strains carrying different combinations of recBC, sbcBC, recB::Tn10, recQ::Tn3and recF::Tn3mutations. The frequency of recombination between homologous DNA repeats was very high in all strains and did not decrease when the RecBCD and RecF recombinational pathways were simultaneously damaged in strains with the recB sbcBC recQ(or recF) genotype. It is assumed that unequal crossing over between direct DNA repeats in duplications may proceed through a particular pathway of adaptive recombination.  相似文献   

4.
The available data on rearrangements (recombinations, deletions, and insertions) of picornavirus genomes fit the replicative template switch model postulating that an incomplete nascent minus RNA strand leaves the template and resumes its synthesis on another template (or another locus of the original template). The nascent strand dissociation is believed to be facilitated by the elongation pausing caused by secondary structure elements or nucleotide misincorporations. Rearrangements may involve (nearly) identical or completely dissimilar pairs of parting and anchoring sites. Rearrangements contribute to both conservation and variation of the picornaviral genomes.  相似文献   

5.
Chromosomal Recombination in HAEMOPHILUS INFLUENZAE   总被引:3,自引:0,他引:3       下载免费PDF全文
Haemophilus influenzae cultures doubly lysogenic for defective phage HP1, with a prophage marker sequence +b+/a+c, always contained some free wild-type phage. Single ultraviolet-irradiated cells produced either no wild-type phage or large numbers of them. This suggested that the phage was not released by the original double lysogen but by internal recombinants, i.e., by double lysogens with altered prophage marker sequence such as +++/abc or +b+/++c. Thirty-one wild-type phage-producing clones have been isolated independently from cultures of this double lysogen and identified. They fell in five classes. Two classes, still possessing all three prophage markers, can be explained by Campbell's (1963) prophage recombination model. The other classes had lost one or more markers. They can be explained by interchromosomal double-strand DNA breakage and rejoining. A single-DNA-strand gene conversion model is discussed in view of the fact that genetic transformation involves single-DNA-strand exchanges. A number of potentially interesting mutants has been analyzed of which only the derivatives of rec1 mutant DB117 (obtained from Dr. J. Setlow) were incapable of internal recombination.  相似文献   

6.
We show by whole genome sequence analysis that loss of RNase H2 activity increases loss of heterozygosity (LOH) in Saccharomyces cerevisiae diploid strains harboring the pol2-M644G allele encoding a mutant version of DNA polymerase ε that increases ribonucleotide incorporation. This led us to analyze the effects of loss of RNase H2 on LOH and on nonallelic homologous recombination (NAHR) in mutant diploid strains with deletions of genes encoding RNase H2 subunits (rnh201Δ, rnh202Δ, and rnh203Δ), topoisomerase 1 (TOP1Δ), and/or carrying mutant alleles of DNA polymerases ε, α, and δ. We observed an ∼7-fold elevation of the LOH rate in RNase H2 mutants encoding wild-type DNA polymerases. Strains carrying the pol2-M644G allele displayed a 7-fold elevation in the LOH rate, and synergistic 23-fold elevation in combination with rnh201Δ. In comparison, strains carrying the pol2-M644L mutation that decreases ribonucleotide incorporation displayed lower LOH rates. The LOH rate was not elevated in strains carrying the pol1-L868M or pol3-L612M alleles that result in increased incorporation of ribonucleotides during DNA synthesis by polymerases α and δ, respectively. A similar trend was observed in an NAHR assay, albeit with smaller phenotypic differentials. The ribonucleotide-mediated increases in the LOH and NAHR rates were strongly dependent on TOP1. These data add to recent reports on the asymmetric mutagenicity of ribonucleotides caused by topoisomerase 1 processing of ribonucleotides incorporated during DNA replication.  相似文献   

7.
8.
We have used a new genetic strategy based on the Cre-loxP recombination system to generate large chromosomal rearrangements in Lactococcus lactis. Two loxP sites were sequentially integrated in inverse order into the chromosome either at random locations by transposition or at fixed points by homologous recombination. The recombination between the two chromosomal loxP sites was highly efficient (approximately 1 × 10−1/cell) when the Cre recombinase was provided in trans, and parental- or inverted-type chromosomal structures were isolated after removal of the Cre recombinase. The usefulness of this approach was demonstrated by creating three large inversions of 500, 1,115, and 1,160 kb in size that modified the lactococcal genome organization to different extents. The Cre-loxP recombination system described can potentially be used for other gram-positive bacteria without further modification.  相似文献   

9.
10.
K. R. Haack  J. R. Roth 《Genetics》1995,141(4):1245-1252
Spontaneous tandem chromosomal duplications are common in populations of Escherichia coli and Salmonella typhimurium. They range in frequency for a given locus from 10(-2) to 10(-4) and probably form by RecA-dependent unequal sister strand exchanges between repetitive sequences in direct order. Certain duplications have been observed previously to confer a growth advantage under specific selective conditions. Tandem chromosomal duplications are unstable and are lost at high frequencies, representing a readily reversible source of genomic variation. Six copies of a small mobile genetic element IS200 are evenly distributed around the chromosome of S. typhimurium strain LT2. A survey of 120 independent chromosomal duplications (20 for each of six loci) revealed that recombination between IS200 elements accounted for the majority of the duplications isolated for three of the loci tested. Duplications of the his operon were almost exclusively due to recombination between repeated IS200 elements. These data add further support to the idea that mobile genetic elements provide sequence repeats that play an important role in recombinational chromosome rearrangements, which may contribute to adaptation of bacteria to stressful conditions.  相似文献   

11.
12.
13.
In this exciting era of “next-gen cytogenetics”, the use of novel molecular methods such as comparative genome hybridization and whole genome and whole exome sequencing becomes more and more common in clinics. This results in generation of large amounts of high-resolution patient-specific data and challenges the development of new approaches for interpretation of obtained information. Usually, interpretation of chromosomal rearrangements is focused on alterations of linear genome sequence, underestimating the role of spatial chromatin organization. In this article, we describe the main features of 3-dimentional genome organization, emphasizing their role in normal and pathological development. We highlight some tips to help physicians estimating the impact of chromosomal rearrangements on the patient phenotype. A separate section describes available tools that can be used to visualize and analyze human genome architecture.  相似文献   

14.
The effect of deficiencies on recombination was studied in Caenorhabditis elegans. Heterozygous deficiencies in the left half of linkage group V [LGV(left)] were shown to inhibit recombination to their right. Fourteen deficiencies, all to the left of unc-46, were analyzed for their effect on recombination along LGV. The deficiencies fell into two groups: 10 "major inhibitors" which reduce recombination to less than 11% of the expected rate between themselves and unc-46; and four "minor inhibitors" which reduce recombination, but to a much lesser extent. All four minor inhibitors delete the left-most known gene on the chromosome, while six of the ten major inhibitors do not (i.e., these are "internal" deficiencies). Where recombination could be measured on both sides of a deficiency, recombination was inhibited to the right but not to the left. In order to explain these results we have erected a model for the manner in which pairing for recombination takes place. In doing so, we identify a new region of LGV, near the left terminus, that is important for the pairing process.  相似文献   

15.
In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSP011-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors ofAtspoll-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSP011-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck pM and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd~2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.  相似文献   

16.
Cryptococcus neoformans is a major human pathogenic fungus that can cause meningoencephalitis in immunocompromised hosts. It contains two divergent varieties, var. grubii (serotype A) and var. neoformans (serotype D), as well as hybrids (serotype AD) between these two varieties. In this study, we investigated the extent of chromosomal rearrangements between the two varieties, estimated the effects of chromosomal rearrangements on recombination frequencies, and surveyed the potential polymorphisms of the rearrangements among natural strains of the three serotypes. Through the analyses of two sequenced genomes from strains H99 (representing var. grubii) and JEC21 (representing var. neoformans), we revealed a total of 32 unambiguous chromosome rearrangements, including five translocations, nine simple inversions, and 18 complex rearrangements. Our analyses identified that overall, rearranged regions had recombination frequencies about half of those around syntenic regions. Using a direct PCR screening strategy, we examined the potential polymorphisms of 11 rearrangements among 64 natural C. neoformans strains from five countries. We found no polymorphism within var. neoformans and very limited polymorphism within var. grubii. However, strains of serotype AD showed significant polymorphism, consistent with their hybrid origins coupled with differential loss of heterozygosity. We discuss the implications of these results on the genome structure, ecology, and evolution of C. neoformans.  相似文献   

17.
18.
C. Hoogland  C. Biemont 《Genetics》1996,144(1):197-204
Data of insertion site localization and site occupancy frequency of P, hobo, I, copia, mdg1, mdg3, 412, 297, and roo transposable elements (TEs) on the polytene chromosomes of Drosophila melanogaster were extracted from the literature. We show that TE insertion site number per chromosomal division was significantly correlated with the amount of DNA. The insertion site number weighted by DNA content was not correlated with recombination rate for all TEs except hobo, for which a positive correlation was detected. No global tendency emerged in the relationship between TE site occupancy frequency, weighted by DNA content, and recombination rate; a strong negative correlation was, however, found for the 3L arm. A possible dominant deleterious effect of chromosomal rearrangements due to recombination between TE insertions is thus not the main factor explaining the dynamics of TEs, since this hypothesis implies a negative relationship between recombination rate and both TE insertion site number and site occupancy frequency. The alternative hypothesis of selection against deleterious effects of insertional mutations is discussed.  相似文献   

19.
20.
T. Galitski  J. R. Roth 《Genetics》1997,146(3):751-767
Homologous recombination pathways probably evolved primarily to accomplish chromosomal repair and the formation and resolution of duplications by sister-chromosome exchanges. Various DNA lesions initiate these events. Classical recombination assays, involving bacterial sex, focus attention on double-strand ends of DNA. Sexual exchanges, initiated at these ends, depend on the RecBCD pathway. In the absence of RecBCD function, mutation of the sbcB and sbcC genes activates the apparently cryptic RecF pathway. To provide a more general view of recombination, we describe an assay in which endogenous DNA damage initiates recombination between chromosomal direct repeats. The repeats flank markers conferring lactose utilization (Lac(+)) and ampicillin resistance (Ap(R)); recombination generates Lac(-) Ap(S) segregants. In this assay, the RecF pathway is not cryptic; it plays a major role without sbcBC mutations. Others have proposed that single-strand gaps are the natural substrate for RecF-dependent recombination. Supporting this view, recombination stimulated by a double-strand break (DSB) in a chromosomal repeat depended on RecB function, not RecF function. Without RecBCD function, sbcBC mutations modified the RecF pathway and allowed it to catalyze DSB-stimulated recombination. Sexual recombination assays overestimate the importance of RecBCD and DSBs, and underestimate the importance of the RecF pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号