首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adhesion G-protein-coupled receptors (GPCRs) (also termed LN-7TM or EGF-7TM receptors) are membrane-bound proteins with long N-termini containing multiple domains. Here, 2 new human adhesion-GPCRs, termed GPR133 and GPR144, have been found by searches done in the human genome databases. Both GPR133 and GPR144 have a GPS domain in their N-termini, while GPR144 also has a pentraxin domain. The phylogenetic analyses of the 2 new human receptors show that they group together without close relationship to the other adhesion-GPCRs. In addition to the human genes, mouse orthologues to those 2 and 15 other mouse orthologues to human were identified (GPR110, GPR111, GPR112, GPR113, GPR114, GPR115, GPR116, GPR123, GPR124, GPR125, GPR126, GPR128, LEC1, LEC2, and LEC3). Currently the total number of human adhesion-GPCRs is 33. The mouse and human sequences show a clear one-to-one relationship, with the exception of EMR2 and EMR3, which do not seem to have orthologues in mouse. EST expression charts for the entire repertoire of adhesion-GPCRs in human and mouse were established. Over 1600 ESTs were found for these receptors, showing widespread distribution in both central and peripheral tissues. The expression patterns are highly variable between different receptors, indicating that they participate in a number of physiological processes.  相似文献   

2.
3.
Food intake is detected by the chemical senses of taste and smell and subsequently by chemosensory cells?in the gastrointestinal tract that link the composition of ingested foods to feedback circuits controlling gut motility/secretion, appetite, and peripheral nutrient disposal. G-protein-coupled receptors responsive to?a range of nutrients and other food components have been identified, and many are localized to intestinal chemosensory cells, eliciting hormonal and neuronal signaling to the brain and periphery. This review examines the role of G-protein-coupled receptors as signaling molecules in the gut, with a particular focus on pathways relevant to appetite and glucose homeostasis.  相似文献   

4.

Background

Adhesion G protein-coupled receptors (aGPCRs) are the second largest of the five GPCR families and are essential for a wide variety of physiological processes. Zebrafish have proven to be a very effective model for studying the biological functions of aGPCRs in both developmental and adult contexts. However, aGPCR repertoires have not been defined in any fish species, nor are aGPCR expression profiles in adult tissues known. Additionally, the expression profiles of the aGPCR family have never been extensively characterized over a developmental time-course in any species.

Results

Here, we report that there are at least 59 aGPCRs in zebrafish that represent homologs of 24 of the 33 aGPCRs found in humans; compared to humans, zebrafish lack clear homologs of GPR110, GPR111, GPR114, GPR115, GPR116, EMR1, EMR2, EMR3, and EMR4. We find that several aGPCRs in zebrafish have multiple paralogs, in line with the teleost-specific genome duplication. Phylogenetic analysis suggests that most zebrafish aGPCRs cluster closely with their mammalian homologs, with the exception of three zebrafish-specific expansion events in Groups II, VI, and VIII. Using quantitative real-time PCR, we have defined the expression profiles of 59 zebrafish aGPCRs at 12 developmental time points and 10 adult tissues representing every major organ system. Importantly, expression profiles of zebrafish aGPCRs in adult tissues are similar to those previously reported in mouse, rat, and human, underscoring the evolutionary conservation of this family, and therefore the utility of the zebrafish for studying aGPCR biology.

Conclusions

Our results support the notion that zebrafish are a potentially useful model to study the biology of aGPCRs from a functional perspective. The zebrafish aGPCR repertoire, classification, and nomenclature, together with their expression profiles during development and in adult tissues, provides a crucial foundation for elucidating aGPCR functions and pursuing aGPCRs as therapeutic targets.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1296-8) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
G-protein-coupled receptors play a key role in cellular signaling networks that regulate various physiological processes, such as vision, smell, taste, neurotransmission, secretion, inflammatory, immune responses, cellular metabolism, and cellular growth. These proteins are very important for understanding human physiology and disease. Many efforts in pharmaceutical research have been aimed at understanding their structure and function. Unfortunately, because they are difficult to crystallize and most of them will not dissolve in normal solvents, so far very few G-protein-coupled receptor structures have been determined. In contrast, more than 1000 G-protein-coupled receptor sequences are known, and many more are expected to become known soon. In view of the extremely unbalanced state, it would be very useful to develop a fast sequence-based method to identify their different types. This would no doubt have practical value for both basic research and drug discovery because the function or binding specificity of a G-protein coupled receptor is determined by the particular type it belongs to. To realize this, a statistical analysis has been performed for 566 G-protein-coupled receptors classified into seven different types. The results indicate that the types of G-protein-coupled receptors are predictable to a considerable accurate extent if a good training data set can be established for such a goal.  相似文献   

7.
Bai M 《Cellular signalling》2004,16(2):175-186
Recently, many G-protein-coupled receptors (GPCRs) have been demonstrated to form constitutive dimers consisting of identical or distinct monomeric subunits. The discovery of GPCR dimerization has revealed a new level of molecular cross-talk between signalling molecules and may define a general mechanism that modulates the function of GPCRs under both physiological and pathological conditions. The heterodimerization between distinct GPCRs could be responsible for the generation of pharmacologically defined receptors for which no gene has been identified so far. Elucidating the role of dimerization in the activation processes of GPCRs will lead us to develop novel pharmaceutical agents that allosterically promote activation or inhibition of GPCR signalling.  相似文献   

8.
Examples of G-protein-coupled receptors that can be biochemically detected in homo- or heteromeric complexes are emerging at an accelerated rate. Biophysical approaches have confirmed the existence of several such complexes in living cells and there is strong evidence to support the idea that dimerization is important in different aspects of receptor biogenesis and function. While the existence of G-protein-coupled-receptor homodimers raises fundamental questions about the molecular mechanisms involved in transmitter recognition and signal transduction, the formation of heterodimers raises fascinating combinatorial possibilities that could underlie an unexpected level of pharmacological diversity, and contribute to cross-talk regulation between transmission systems. Because G-protein-coupled receptors are major pharmacological targets, the existence of dimers could have important implications for the development and screening of new drugs. Here, we review the evidence supporting the existence of G-protein-coupled-receptor dimerization and discuss its functional importance.  相似文献   

9.
Current developments in G-protein-coupled receptors.   总被引:2,自引:0,他引:2  
The rate at which receptors have been cloned has recently increased dramatically--existing families have been extended and new families created. The rapid cloning by homology of 'orphan receptors' has also stimulated the development of a new reverse pharmacology.  相似文献   

10.
GPCRs (G-protein-coupled receptors) are seven-transmembrane helix proteins that transduce exogenous and endogenous signals to modulate the activity of downstream effectors inside the cell. Despite the relevance of these proteins in human physiology and pharmaceutical research, we only recently started to understand the structural basis of their activation mechanism. In the period 2008-2011, nine active-like structures of GPCRs were solved. Among them, we have determined the structure of light-activated rhodopsin with all the features of the active metarhodopsin-II, which represents so far the most native-like model of an active GPCR. This structure, together with the structures of other inactive, intermediate and active states of rhodopsin constitutes a unique structural framework on which to understand the conserved aspects of the activation mechanism of GPCRs. This mechanism can be summarized as follows: retinal isomerization triggers a series of local structural changes in the binding site that are amplified into three intramolecular activation pathways through TM (transmembrane helix) 5/TM3, TM6 and TM7/TM2. Sequence analysis strongly suggests that these pathways are conserved in other GPCRs. Differential activation of these pathways by ligands could be translated into the stabilization of different active states of the receptor with specific signalling properties.  相似文献   

11.
Summary With the use of the binmap method, 154 G-protein-coupled peptide receptors are classified. The binmap coordinates are obtained by using the number of residues between the conserved N residue in TM1 and C in the TM4-TM5 loop, between this C and the conserved P in TM6, and between this P and the last residue of the sequence. The binmap suggests that the cloned fMLP receptor in rabbit belongs in fact to the IL8 receptor type.  相似文献   

12.
There is increasing evidence to suggest that 'cross-talk' occurs between G-protein-coupled receptors and their intracellular second messenger pathways. Cross-talk between different pathways may occur at the level of receptors, G-proteins, effectors or second messengers and may serve to fine-tune cell signalling. There is a growing body of evidence to suggest that cellular compartmentalization may play a crucial role in regulating these cross-talk interactions. Understanding the mechanisms of cross-talk may therefore be the key to the design and application of future therapeutics and the development of drug specificity.  相似文献   

13.
Tomura H  Mogi C  Sato K  Okajima F 《Cellular signalling》2005,17(12):1466-1476
OGR1, GPR4, G2A, and TDAG8 share 40% to 50% homology with each other and seem to form a family of GPCRs. They have been described as receptors for lipid molecules such as sphingosylphosphorylcholine, lysophosphatidylcholine, and psychosine. Recent studies, however, have revealed that these receptors also sense extracellular protons or pH through histidine residues of receptors and stimulate a variety of intracellular signaling pathways through several species of hetero-trimeric G-proteins, including Gs, Gi, Gq, and G12/13. Thus, this family of GPCR seems to recognize both lipid molecules and protons as ligands. Although our knowledge of proton-sensing and lysolipid-sensitive GPCRs is preliminary, the receptor levels and ligand levels especially protons are both sensitively modulated in response to a variety of microenvironmental changes. These results suggest a multiple role of proton-sensing GPCRs in a variety of physiological and pathophysiological states.  相似文献   

14.
With the use of the binmap method, 154 G-protein-coupled peptide receptors are classified. The binmap coordinates are obtained by using the number of residues between the conserved N residue in TM1 and C in the TM4-TM5 loop, between this C and the conserved P in TM6, and between this P and the last residue of the sequence. The binmap suggests that the cloned fMLP receptor in rabbit belongs in fact to the IL8 receptor type.  相似文献   

15.
Hormones, sensory stimuli, neurotransmitters and chemokines signal by activating G-protein-coupled receptors (GPCRs) [1]. Although GPCRs are thought to function as monomers, they can form SDS-resistant dimers, and coexpression of two non-functional or related GPCRs can result in rescue of activity or modification of function [2-10]. Furthermore, dimerization of peptides corresponding to the third cytoplasmic loops of GPCRs increases their potency as activators of G proteins in vitro [11], and peptide inhibitors of dimerization diminish beta(2)-adrenergic receptor signaling [3]. Nevertheless, it is not known whether GPCRs exist as monomers or oligomers in intact cells and membranes, whether agonist binding regulates monomer-oligomer equilibrium, or whether oligomerization governs GPCR function. Here, we report that the alpha-factor receptor, a GPCR that is the product of the STE2 gene in the yeast Saccharomyces cerevisiae, is oligomeric in intact cells and membranes. Coexpression of receptors tagged with the cyan or yellow fluorescent proteins (CFP or YFP) resulted in efficient fluorescence resonance energy transfer (FRET) due to stable association rather than collisional interaction. Monomer-oligomer equilibrium was unaffected by binding of agonist, antagonist, or G protein heterotrimers. Oligomerization was further demonstrated by rescuing endocytosis-defective receptors with coexpressed wild-type receptors. Dominant-interfering receptor mutants inhibited signaling by interacting with wild-type receptors rather than by sequestering G protein heterotrimers. We suggest that oligomerization is likely to govern GPCR signaling and regulation.  相似文献   

16.
17.
The availability of fully sequenced genomes allows the in silico analysis of whole gene families in a given genome. A particularly large and interesting gene family is the G-protein-coupled receptor family. These receptors detect a variety of extracellular signals and transduce them, generally via heterotrimeric G-proteins, to effector proteins inside the cell and thus elicit a physiological response. G-protein-coupled receptors are found in all eukaryotes and constitute in vertebrates 3-5% of all genes. They are also very important drug targets and approximately 25 of the top 100 selling drugs are directed against these receptors. The Dictyostelium discoideum genome contains a surprisingly high number of 55 such receptors, approximately 0.5% of the encoded genes. Besides the four well-studied cAMP receptors the genome encodes eight additional cAMP receptor-like proteins and one of these is distinguished by a novel domain structure, one secretin-like receptor, 17 GABA(B)-like and 25 Frizzled-like receptors. The existence of the latter three types of receptors in D. discoideum was surprising because they had not been observed outside the animal kingdom before. Their presence suggests unprecedentedly complex and so far unknown signaling activities in this lower eukaryote.  相似文献   

18.
We assessed the disease-causing potential of single nucleotide polymorphisms (SNPs) based on a simple set of sequence-based features. We focused on SNPs from the dbSNP database in G-protein-coupled receptors (GPCRs), a large class of important transmembrane (TM) proteins. Apart from the location of the SNP in the protein, we evaluated the predictive power of three major classes of features to differentiate between disease-causing mutations and neutral changes: (i) properties derived from amino-acid scales, such as volume and hydrophobicity; (ii) position-specific phylogenetic features reflecting evolutionary conservation, such as normalized site entropy, residue frequency and SIFT score; and (iii) substitution-matrix scores, such as those derived from the BLOSUM62, GRANTHAM and PHAT matrices. We validated our approach using a control dataset consisting of known disease-causing mutations and neutral variations. Logistic regression analyses indicated that position-specific phylogenetic features that describe the conservation of an amino acid at a specific site are the best discriminators of disease mutations versus neutral variations, and integration of all our features improves discrimination power. Overall, we identify 115 SNPs in GPCRs from dbSNP that are likely to be associated with disease and thus are good candidates for genotyping in association studies.  相似文献   

19.
20.
The family of genes encoding G-protein-coupled dopamine receptors continues to grow with the recent cloning of a fifth member. The availability of these clones has revolutionized the dopamine receptor field. Expression of individual dopamine receptors is permitting the detailed analysis of their pharmacology and coupling to second messenger systems, while probes based on the receptors' nucleotide sequences are being used to gain new insights into their tissue distribution and genetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号