首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New methodology for identifying and locating crosslinkages in peptides is described. Pepsin is used to cleave insulin and B-chain dimers of insulin into fragments under conditions which retain the original peptide crosslinkages. After partial separation by HPLC, the peptides are analyzed by fast atom bombardment mass spectrometry (FABMS) to determine their molecular weights. The molecular weights of peptide fragments expected from the pepsin digests of human insulin and related model compounds are calculated from the amino acid sequence of the intact peptide. Digestion products are identified by matching their molecular weights, as determined by FABMS, with calculated molecular weights. Locations of interchain crosslinkages are deduced after the peptide fragments have been assigned to specific segments of the parent peptide. The validity of the method has been established by correctly identifying structurally important products in the pepsin digests of model compounds such as human, bovine, and porcine insulins. Procedures developed with the model compounds were used to identify crosslinkages in peptides of unknown structure isolated from an insulin A-chain/B-chain combination reaction mixture. Evidence is presented for formation of three different types of crosslinkages, disulfide, lanthionine, and sulfoxide.  相似文献   

2.
Controlled limited proteolysis of human plasma albumin (0.3 mM; 37 degrees C; 15 min; pH 3.7) with pepsin [pepsin/albumin, 1:1000 (w/w)] in the presence of octanoic acid (4.2 mM) yields at least 14 fragments in the range of 5000--56000 Da. By utilizing a combination of conventional and affinity-chromatographic procedures, two fragments with mol. wts. 25000 and 27000 were purified to more than 99% homogeneity. The larger fragment consists of a continuous polypeptide chain and has been shown to contain the primary bilirubin-binding site. The small fragment contains an internal cleavage site. On the basis of amino acid compositions, N-terminal sequences, C-terminal sequences, molecular weights and other internal markers the locations of these fragments within the known sequence of human albumin were determined to be residues 49--308 for the 27000 Da peptide and 309--585 for the 25000 Da peptide. Peptide 309--585 contains an internal cleavage site and appears to be missing residues 408--423. These non-overlapping fragments should be useful for investigations of individual ligand-binding sites and for the determination of antigenic sites.  相似文献   

3.
MDNCF is a human monocyte-derived, 72-residue chemotactic peptide, which has sequence similarity with members of a family of pro-inflammatory cytokines. The peptide was synthesized by the solid-phase method, and is identical to the natural peptide in amino acid composition, sequence and chemotactic potency. MDNCF forms two loops via a neighboring pair of disulfide bridges, the probable locations of which are residues 7-34 and 9-50. Reduction and alkylation eliminated chemotactic activity. MDNCF fragments 7-37, 30-72 and 17-72 were all biologically inactive. The data suggest that the region of the clustered pair of disulfide bridges is important for biological activity.  相似文献   

4.
Utilizing a combination of conventional and affinity-chromatographic procedures, we have purified four fragments of human albumin that were generated by controlled limited proteolysis with pepsin [0.3 mM albumin; 37°C; 10 min; pH 3.51; 4.2 mM octanoate; pepsin/albumin, 1:1000 (w/w)]. These fragments have a molecular weight range of 9200-17,000 Da. Amino acid compositions, N- and C-terminal sequences, molecular weights, and other internal markers were used to determine the location of these fragments within the parent molecule. All of the fragments were shown to be derived from the C-terminal half of human albumin. The presence of multiple pepsin-sensitive bonds near the C terminus of each fragment complicated the assignment of specific residue numbers to each fragment. Two pairs of similar peptides were identified: (A) those corresponding to a single-loop structure (residues 309–380 and 309–387) and (B) those containing multiple loops and intraloop cleavages [residues 309–(491–495) with 408–423 deleted]. Purification of these fragments without disulfide bond reduction confirms portions of the loop structure of human albumin and demonstrates increased susceptibility of two specific regions of the C-terminal half of the molecule to peptic digestion.  相似文献   

5.
The disulfide structure of mouse lysosome-associated membrane protein 1   总被引:1,自引:0,他引:1  
The disulfide structure of mouse lysosome-associated membrane protein 1 has been determined by reverse-phase isolation and sequence analysis of the cysteine-containing tryptic fragments of the reduced and non-reduced deglycosylated protein. Half-cystines were distinguished (a) by their localization within tryptic or chymotryptic peptides that formed reverse-phase peaks unique to the reduced digests and (b) by their 3H-carboxymethylation only after reduction of the protein. The disulfide arrangement of the cysteines was assigned after isolation of disulfide-linked peptide pairs. Each pair chromatographed as a peak present in the nonreduced (but not the corresponding reduced) tryptic digest. NH2-terminal sequencing as well as reduction, alkylation, and rechromatography of the disulfide-linked fragments led to the following assignment of disulfide bonds: Cys11 and Cys50, Cys125 and Cys161, Cys198 and Cys235, and Cys303 and Cys340. This structure creates four 36-38-residue loops that are symmetrically placed within the two halves of the protein's intraluminal domain. The loops formed by the Cys11-Cys50 and Cys198-Cys235 bridges are homologous, and the Cys125-Cys161 and Cys303-cys340 loops form a second set of homologous domains. The conservation of cysteine residues among lysosome-associated membrane proteins 1 and 2 suggests that this disulfide arrangement is common to both members of this family of lysosomal membrane glycoproteins.  相似文献   

6.
The presence of laminin in authentic basement membranes was examined at the level of a large pepsin-resistant fragment P1. This strongly antigenic fragment has been recently isolated from a mouse tumour basement membrane. By using antibodies to mouse laminin P1 for identification it was possible to isolate a homologous fragment P1 (Mr about 250 000) and a related component Pa (Mr about 70 000--90 000) from pepsin digests of human placenta and kidney. The fragments were in half-cystine (90--130 residues/1000) and carbohydrate and showed strong binding to concanavalin A. Reduction of disulphide bonds produced several smaller peptide chains, indicating a complex pepsin cleavage. Immunological assays demonstrated partial antigenic identity between laminin fragments obtained from mouse and human tissue, and suggested that fragment Pa may originate from a protein not completely identical with laminin. The results showed that laminin is an abundant component of tissue rich in basement membranes, which has been previously suggested by immunohistological studies.  相似文献   

7.
Proteases play a well recognized role in the emergence of highly aggregation-prone protein fragments in vivo, whereas in vitro limited proteolysis is often employed to probe different phases of amyloidogenic pathways. Here, we show that addition of moderate amounts of pepsin to acidified bovine insulin at close to physiological temperature results in an abrupt self-assembly of amyloid-like fibrils from partially digested insulin fragments. Biochemical analysis of the pepsin-induced fibrils implicates peptide fragments (named H) consisting of the 13 or 15 N-terminal residues of the A-chain and 11 or 13 N-terminal residues of the B-chain linked by the disulfide bond between Cys-7A–Cys-7B as the main constituents. There are up to eight pepsin-cleavage sites remaining within the double chain peptide, which become protected upon fast fibrillation unless concentration of the enzyme is increased resulting in complete digestion of insulin. Controlled re-association of H-peptides leads to “explosive” fibrillation only under nonreducing conditions implying the key role of the disulfide bond in their amyloidogenicity. Such re-assembled amyloid is similar in terms of morphology and infrared features to typical bovine insulin fibrils, although it lacks the ability to seed the intact protein.  相似文献   

8.
A combination of reversed-phase high-performance liquid chromatography (RP-HPLC) and capillary zone electrophoresis (CZE) was used for the characterization of peptide maps of swine pepsin after its digestion with α-chymotrypsin. Peptide maps obtained by both methods were compared and five selected chromatographic peaks were identified on an electrophoreogram. The different order of peaks found in RP-HPLC compared to CZE confirmed the complementarity of these two methods. More peptide fragments were resolved by RP-HPLC, which was also found to be less sensitive to salt content in peptide mixtures, than by CZE, but only CZE was able to separate and identify phosphorylated and dephosphorylated peptide fragments of swine pepsin digest. CZE peptides faster separation than RP-HPLC, however, the salts have to be removed by ultrafiltration or by RP-HPLC pre-separation prior to CZE analysis. Combined use of RP-HPLC and CZE for peptide mapping makes it possible to distinguish between the phosphorylated and dephosphorylated forms of swine pepsin. This is important from a diagnostic point of view, because pepsin phosphorylation may be associated with gastric cancer.  相似文献   

9.
Folding of the nascent peptide chain into a biologically active protein   总被引:10,自引:0,他引:10  
C L Tsou 《Biochemistry》1988,27(6):1809-1812
The refolding of denatured proteins with complete sequences may not be fast enough to account for the in vivo folding of growing peptide chains during biosynthesis. As some peptide fragments have secondary structures not unlike those of the corresponding segments in the intact molecules and native disulfide bonds of some proteins can form cotranslationally, it is suggested that the folding of the nascent chain begins early during synthesis. However, further adjustments may be necessary during chain elongation and after posttranslational modifications of the completed peptide chain to generate the native conformation of a biologically active protein.  相似文献   

10.
We prepared two dissected fragments of hen lysozyme and examined whether or not these two fragments associated to form a native-like structure. One (Fragment I) is the peptide fragment Asn59-homoserine-105 containing Cys64-Cys80 and Cys76-Cys94. The other (Fragment II) is the peptide fragment Lys1-homoserine-58 connected by two disulfide bridges, Cys6-Cys127 and Cys30-Cys115, to the peptide fragment Asn106-Leu129. It was found that the Fragment I immobilized in the cuvette formed an equimolar complex with Fragment II (K(d) = 3.3x10(-4) M at pH 8 and 25 degrees C) by means of surface plasmon resonance. Moreover, from analyses by circular dichroism spectroscopy and ion-exchange chromatography of the mixture of Fragments I and II at pH 8 under non-reducing conditions, it was suggested that these fragments associated to give the native-like structure. However, the mutant Fragment I in which Cys64-Cys80 and Cys76-Cys94 are lacking owing to the mutation of Cys to Ala, or the mutant fragment in which Trp62 is mutated to Gly, did not form the native-like species with Fragment II, because the mutant Fragment I derived from mutant lysozymes had no local conformation due to mutations. Considering our previous results where the preferential oxidation of two inside disulfide bonds, Cys64-Cys80 and Cys76-Cys94, occurred in the refolding of the fully reduced Fragment I, we suggest that the peptide region corresponding to Fragment I is an initiation site for hen lysozyme folding.  相似文献   

11.
England PM  Lester HA  Dougherty DA 《Biochemistry》1999,38(43):14409-14415
The site-specific incorporation of alpha-hydroxy acids into proteins using nonsense suppression can provide a powerful probe of protein structure and function. The resulting backbone ester may be selectively hydrolyzed in the presence of the peptide backbone, providing an "orthogonal" chemistry that can be useful both as an analytical tool and as a structural probe. Here we describe in detail a substantial substituent effect on this hydrolysis reaction. Consistent with mechanistic expectations, the steric bulk of the amino acid immediately N-terminal of the hydroxy acid has a large effect on the hydrolysis rate. On the basis of these results, we also describe a simple protocol for identifying disulfide loops in soluble and membrane proteins, exemplified by the alpha subunit of the muscle nicotinic acetylcholine receptor (nAChR). If a backbone ester is incorporated outside a disulfide loop, hydrolysis alone gives two fragments, but if the ester is incorporated within a disulfide loop, both hydrolysis and reduction are required for cleavage. This test could be useful in characterizing the disulfide topology of complex, membrane proteins.  相似文献   

12.
Proteolytic digestion of alpha-lactalbumin by pepsin, trypsin and chymotrypsin yielded three polypeptide fragments with bactericidal properties. Two fragments were obtained from the tryptic digestion. One was a pentapeptide with the sequence EQLTK (residues 1-5) and the other, GYGGVSLPEWVCTTF ALCSEK (residues (17-31)S-S(109-114)), was composed of two polypeptide chains held together by a disulfide bridge. Fragmentation of alpha-lactalbumin by chymotrypsin yielded CKDDQNPH ISCDKF (residues (61-68)S-S(75-80)), also a polypeptide composed of two polypeptide chains held together by a disulfide bridge. The three polypeptides were synthesized and found to exert antimicrobial activities. The polypeptides were mostly active against Gram-positive bacteria. Gram-negative bacteria were only poorly susceptible to the bactericidal action of the polypeptides. GYGGVSLPEWVCTTF ALCSEK was most, EQLTK least bactericidal. Replacement of leucine (23) with isoleucine, having a similar chemical structure but higher hydrophobicity, in the sequence GYGGVSLPEWVCTTF ALCSEK significantly reduced the bactericidal capacity of the polypeptide. Digestion of alpha-lactalbumin by pepsin yielded several polypeptide fragments without antibacterial activity. alpha-Lactalbumin in contrast to its polypeptide fragments was not bactericidal against all the bacterial strains tested. Our results suggest a possible antimicrobial function of alpha-lactalbumin after its partial digestion by endopeptidases.  相似文献   

13.
This report documents the feasibility and advantages of integrating hydrogen/deuterium exchange (HDX) methodology with cyanylation (CN)-based methodology to determine the conformation of cystinyl proteins and intermediates during refolding. The CN-based methodology can be used to trap, identify, and preserve the disulfide structure of a given cystinyl protein folding intermediate, while the HDX methodology can be used to assess other conformational features of the intermediate. Specifically, in this study, CN-based methodology was used to trap a 1-disulfide bond and a 2-disulfide intermediate of long Arg(3) insulin-like growth factor-I (LR(3)IGF-I), which was then exposed to HDX using D(2)O at pD 6.8 and subsequently digested with pepsin before analysis by matrix-assisted laser desorption/ionization mass spectrometry. The HDX results show an increasing degree of secondary and tertiary structure as a function of disulfide bond formation. In addition, the HDX results for two overlapping peptic fragments suggest that a segment of the polypeptide exists in two conformations, which can be distinguished by HDX and pepsin. These results from HDX mass spectrometry are in reasonably good agreement with those from nuclear magnetic resonance studies of native LR(3)IGF-I and IGF-I, in which approximately 5000 times more material was used than in our study. Indications are that the integrated use of HDX and CN-based methodologies will be effective in studying the refolding of cystinyl proteins at the subnanomole level.  相似文献   

14.
The complete amino acid sequence of monkey pepsinogen A   总被引:2,自引:0,他引:2  
The complete amino acid sequence of pepsinogen A from the Japanese monkey (Macaca fuscata) was determined. After converting the pepsinogen to pepsin by activation, the pepsin moiety was reduced and carboxymethylated, cleaved by cyanogen bromide, and the amino acid sequences of the major fragments determined. These fragments were aligned with the aid of overlapping peptides isolated from a chymotryptic digest of intact pepsin. Since the sequence of the activation segment had been determined previously (Kageyama, T., and Takahashi, K. (1980) J. Biochem. (Tokyo) 88, 9-16), the 373-residue sequence of monkey pepsinogen A was established, consisting of the pepsin moiety of 326 residues and the activation segment of 47 residues. Three disulfide bridges and 1 phosphoserine residue were found to be present in the pepsinogen molecule. The molecular weight was calculated to be 40,027 including the phosphate group. Monkey pepsinogen A showed high homology with human (94% identity) and porcine (86% identity) pepsinogens A.  相似文献   

15.
The attachment protein or G protein of the A2 strain of human respiratory syncytial virus (RSV) was digested with trypsin and the resultant peptides separated by reverse-phase high-performance liquid chromatography (HPLC). One tryptic peptide produced a mass by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) corresponding to residues 152-187 with the four Cys residues of the ectodomain (residues 173, 176, 182, and 186) in disulfide linkage and absence of glycosylation. Sub-digestion of this tryptic peptide with pepsin and thermolysin produced peptides consistent with disulfide bonds between Cys173 and Cys186 and between Cys176 and Cys182. Analysis of ions produced by post-source decay of a peptic peptide during MALDI-TOF-MS revealed fragmentation of peptide bonds with minimal fission of an inter-chain disulfide bond. Ions produced by this unprecedented MALDI-induced post-source fragmentation corroborated the existence of the disulfide arrangement deduced from mass analysis of proteolysis products. These findings indicate that the ectodomain of the G protein has a non-glycosylated subdomain containing a "cystine noose."  相似文献   

16.
Recombinant human osteoprotegerin chimera is a 90-kDa protein containing a human IgG Fc domain fused to human osteoprotegerin. The molecule is a dimer linked by two intermolecular disulfide bonds and contains eleven intramolecular disulfide bonds per monomer. A cysteine-rich region in osteoprotegerin contains nine disulfide bridges homologous to the cysteine-rich signature structure of the tumor necrosis factor receptor/nerve growth factor receptor superfamily. In this report, we have developed peptide mapping procedures suitable to generate disulfide-containing peptides for disulfide structure assignment of the fusion molecule. The methods employed included proteolytic digestion using endoproteinases Glu-C and Lys-C in combination followed by LC-MS analyses. Disulfide linkages of peptide fragments containing a single disulfide bond were assigned by sequence analysis via detection of (phenylthiohydantoinyl) cystine and/or by MS analysis. Disulfide bonds of a large, core fragment containing three peptide sequences linked by four disulfides were assigned after generation of smaller disulfide-linked peptides by a secondary thermolysin digestion. Disulfide structures of peptide fragments containing two disulfide bonds were assigned using matrix-assisted laser desorption ionization mass spectrometry with postsource decay. Both the inter- and intramolecular disulfide linkages of the chimeric dimer were confirmed.  相似文献   

17.
G protein-coupled receptors (GPCRs) control fundamental aspects of human physiology and behaviors. Knowledge of their structures, especially for the loop regions, is limited and has principally been obtained from homology models, mutagenesis data, low resolution structural studies, and high resolution studies of peptide models of receptor segments. We developed an alternate methodology for structurally characterizing GPCR loops, using the human S1P(4) first extracellular loop (E1) as a model system. This methodology uses computational peptide designs based on transmembrane domain (TM) model structures in combination with CD and NMR spectroscopy. The characterized peptides contain segments that mimic the self-assembling extracellular ends of TM 2 and TM 3 separated by E1, including residues R3.28(121) and E3.29(122) that are required for sphingosine 1-phosphate (S1P) binding and receptor activation in the S1P(4) receptor. The S1P(4) loop mimetic peptide interacted specifically with an S1P headgroup analog, O-phosphoethanolamine (PEA), as evidenced by PEA-induced perturbation of disulfide cross-linked coiled-coil first extracellular loop mimetic (CCE1a) (1)H and (15)N backbone amide chemical shifts. CCE1a was capable of weakly binding PEA near biologically relevant residues R29 and E30, which correspond to R3.28 and E3.29 in the full-length S1P(4) receptor, confirming that it has adopted a biologically relevant conformation. We propose that the combination of coiled-coil TM replacement and conformational stabilization with an interhelical disulfide bond is a general design strategy that promotes native-like structure for loops derived from GPCRs.  相似文献   

18.
19.
R Zhang  G H Snyder 《Biochemistry》1988,27(10):3785-3794
Rate constants have been determined in 3 M guanidine hydrochloride for disulfide exchange reactions between glutathione and two synthetic peptides containing a cysteine-valine-cysteine region. Equilibrium experiments demonstrate the absence of noncovalent peptide aggregation in this solvent. Procedures are given for separating seven different components in quenched reactions, including the fully reduced cysteine cluster, the monomeric disulfide loop, parallel and antiparallel dimer loops, and the three monomers containing one or two mixed disulfides with glutathione. Intramolecular rate constants for (1) formation of a sterically strained monomer loop, (2) transfer of glutathione between the two cysteines on the same peptide chain, and (3) formation of unstrained dimer loops correspond to a series of processes forming rings of increasing size. In one sequence, these rate constants are 3, 6, and about 21 s-1, respectively. The larger loops are formed more easily. In the other sequence, rate constants for formation and opening of monomer loops are accelerated 180- and 1300-fold, respectively, relative to analogous reactions in a peptide containing eight residues between the two cysteines. This gives a 7-fold smaller equilibrium constant for ring closure in the cysteine cluster. Dimer formation occurs by a mechanism utilizing the accelerated opening of monomer loops. Results provide information assisting efforts to develop strategies for directing disulfide pairing in novel protein structures. Results also help define factors contributing to formation of undesired oligomers during efforts to refold cysteine-containing proteins obtained by bacterial expression of mammalian genes.  相似文献   

20.
1. The amino acid sequences around three disulphide bridges and four methionine residues of porcine pepsin were studied by using diagonal electrophoresis methods. 2. Two of the three disulphide bridges were in small loops of five and six residues. The sequence around one of the two half-cystine residues of the third disulphide bridge had a large number of acidic residues. 3. The sequence of a tetrapeptide containing phosphoserine was also determined. 4. Four unique methionine-containing sequences were constructed. The information is sufficient for the determination of the overlaps in the cyanogen bromide fragments of pepsin. 5. The usefulness of diagonal methods in the study of protein structure, the relative positions of cystinyl and methionyl residues in porcine pepsin and the homology between pepsin and rennin are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号