首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The possible involvement of vacuolar cysteine proteinases in degradation of ribulose-bisphosphate carboxylase (Rubisco) in senescing French bean leaves was studied by ultrastructural and immunocytochemical analyses with antibodies raised against the large subunit (LSU) of Rubisco and SH-EP, a cysteine proteinase fromVigna mungo that is immunologically identical to one of the major proteinases of French bean plants. Primary leaves of 10-day-old plants were detached and placed at 25 °C in darkness for 0, 4, and 8 days to allow their senescence to proceed. The leaves at each senescence stage were subjected to the conventional electron microscopic and immunocytochemical studies. The results indicated that the chloroplasts of senescing French bean leaves were separated from the cytoplasm of the cell periphery and taken into the central vacuole and that the Rubisco LSU in the chloroplasts was degraded by vacuolar enzymes such as an SH-EP-related cysteine proteinase that developed in senescing leaves. The present results together with the results of previous biochemical studies using vacuolar lysates support the view that Rubisco is degraded through the association of chloroplasts with the central vacuole during the senescence of leaves that were detached and placed in darkness.  相似文献   

2.
3.
In wheat (Triticum aestivum L.), leaf senescence can be initiated by different factors. Depending on the plant system (intact plants or detached leaves) or the environmental conditions (light, nutrient availability), the symptoms of senescence differ. The aim of this work was to elucidate the catabolism of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC. 4.1.1.39) under various senescence-inducing conditions. Leaf senescence was initiated in intact plants by darkness or by N-deprivation and in leaf segments by exposure to light or darkness. Depending on the treatment, a 50 kDa fragment of Rubisco was observed. The formation of this fragment was enhanced by leaf detachment and low light. In segments exposed to high light and in intact plants induced to senesce by N-deprivation, the fragment was essentially absent. Since an antibody against the N-terminus of a large subunit of Rubisco (LSU) did not cross-react with the fragment, it appears likely that a smaller fragment was removed from the N-terminus of LSU. Inhibitor studies suggest that a cysteine endopeptidase was involved in the formation of the 50 kDa fragment. Non-denaturing-PAGE followed by SDS-PAGE revealed that the fragment was produced while LSU was integrated in the holoenzyme complex, and that it remained there after being produced. It remains open how the putative endopeptidase reaches the stromal protein Rubisco. The results indicate that depending on the senescence-inducing conditions, different proteolytic enzymes may be involved. The involvement of vacuolar proteases must be considered as occurring during LSU degradation, which takes place in darkness, low light or under carbon limitation.  相似文献   

4.
The rate of senescence and the two-dimensional pattern of soluble proteins from detached oat leaves senescing in either darkness or light were analyzed, and compared to those of leaves in which senescence was delayed by application of the cytokinin benzyladenine or enhanced through the action of abscisic acid.Senescence of detached leaves in light did not differ significantly from senescence in attached leaves on intact plants. In darkness, protein was lost at a higher rate than in light, but several individual proteins showed relative increases. Notably, proteins previously characterized as high-molecular-weight proteins and senescence-associated proteins (Klerk et al., 1992) increased. Changes observed during incubation in light or darkness appeared to be related to this condition rather than the rate or progress of senescence. Cytokinins delayed and abscisic acid accelerated the changes in protein pattern compared to water. Beside changes previously identified in leaves senescing on the plant, detached leaves show alterations that reflect their condition of incubation rather than their developmental progress.Abbreviations 2D-PAG two-dimensional polyacrylamide gel electrophoresis - ABA abscisic acid - BA N6-benzyladenine - BSA bovine serum albumin - EDTA ethylenediamine tetraacetic acid - IEF isoelectric focusing - Rubisco ribulosebisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate - Tris tris (hydroxymethyl) aminomethane  相似文献   

5.
SAG2 and SAG12 protein expression in senescing Arabidopsis plants   总被引:1,自引:0,他引:1  
  相似文献   

6.
Breakdown of chlorophylls in attached senescing sycamore leaves held in darkness was significantly less over a 14-d period than that occurring in leaves exposed to natural light. Chlorophyll a declined more rapidly than chlorophyll b in both situations, the stability of the latter being particularly increased in darkness. The differences between dark-maintained leaves and those exposed to light with respect to soluble protein, cytoplasmic RNA, and free amino-nitrogen were much less marked. The data indicate that chlorophyll loss during senescence is, at least in part, the result of a direct photochemical degradation of the pigment.  相似文献   

7.
The induction of two subtilisin-like proteases (P1 and P2) associated with stress-induced senescence in young plants was investigated in adult wheat plants during the grain-filling period. Western blot analysis of flag leaf extracts showed that P1 was induced very late in the life cycle of the plants (9 days post-anthesis) and that 7 days later it reached a 2.5-fold increase with respect to the initial value at anthesis. On the other hand, the P2 signal was already detected previous to anthesis and increased soon after anthesis, reaching a fourfold increase by the end of the grain-filling period. The induction of P1 and P2 temporally correlates with the degradation of the Rubisco small and large subunits in the flag leaf, as well as with nitrogen (N) accumulation in the ears. At the same time, a decrease in the endogenous concentration of the cytokinins isopentenyladenine and isopentenyladenosine (iP + iPA) in the leaves was observed. In detached leaves senescing in the dark, the levels of both proteases were affected by 6-benzylaminopurine application: the induction of P1 was completely prevented, whereas the induction of P2 was reduced. Our findings demonstrate that both P1 and P2 are expressed in leaves of adult plants and are induced during natural senescence. These results enable us to postulate their participation in N remobilization to developing grains during monocarpic senescence and their regulation by a cytokinin-mediated mechanism.  相似文献   

8.
The activities of several enzymes related to amino acid metabolism were investigated in senescing detached wheat leaves ( Triticum aestivum L. cv. Diplomat) in light and darkness and after kinetin treatment. Glutamine synthetase and glutamate synthase activities rapidly declined in darkness. In light, the decline of glutamate synthase activity was retarded, while the activity of glutamine synthetase remained high and even increased transitorily. Kinetin treatment counteracted the decline of the activities of both enzymes. The activity of glutamate dehydrogenase markedly increased during senescence, particularly in light, and kinetin treatment lowered its activity. The activities of glutamate-oxaloacetate and glutamate-pyruvate amino-transferases and of NADP-dependent isocitrate dehydrogenase also increased in detached wheat leaves in light. Kinetin treatment prevented the rise of these enzyme activities. In darkness, the activities of glutamate-oxaloacetate aminotransferase and NADP-dependent isocitrate dehydrogenase decreased slowly while the decline of glutamate-pyruvate aminotransferase activity was more rapid. The activity of NAD-dependent malate dehydrogenase decreased both in light and, more rapidly, in darkness. The pattern of changes of the enzyme activities provides an explanation for the amino acid transformations and the flow of amino nitrogen into transport metabolites in senescing leaves.  相似文献   

9.
The senescence-induced staygreen protein regulates chlorophyll degradation   总被引:15,自引:1,他引:14  
Park SY  Yu JW  Park JS  Li J  Yoo SC  Lee NY  Lee SK  Jeong SW  Seo HS  Koh HJ  Jeon JS  Park YI  Paek NC 《The Plant cell》2007,19(5):1649-1664
  相似文献   

10.
11.
The impact of light intensity on shade-induced leaf senescence   总被引:2,自引:0,他引:2  
Plants often have to cope with altered light conditions, which in leaves induce various physiological responses ranging from photosynthetic acclimation to leaf senescence. However, our knowledge of the regulatory pathways by which shade and darkness induce leaf senescence remains incomplete. To determine to what extent reduced light intensities regulate the induction of leaf senescence, we performed a functional comparison between Arabidopsis leaves subjected to a range of shading treatments. Individually covered leaves, which remained attached to the plant, were compared with respect to chlorophyll, protein, histology, expression of senescence-associated genes, capacity for photosynthesis and respiration, and light compensation point (LCP). Mild shading induced photosynthetic acclimation and resource partitioning, which, together with a decreased respiration, lowered the LCP. Leaf senescence was induced only under strong shade, coinciding with a negative carbon balance and independent of the red/far-red ratio. Interestingly, while senescence was significantly delayed at very low light compared with darkness, phytochrome A mutant plants showed enhanced chlorophyll degradation under all shading treatments except complete darkness. Taken together, our results suggest that the induction of leaf senescence during shading depends on the efficiency of carbon fixation, which in turn appears to be modulated via light receptors such as phytochrome A.  相似文献   

12.
The degradation of large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in wheat ( Triticum aestivum L. cv. Yangmai 158) leaves was studied. A novel 51-kDa fragment was detected in leaf crude extracts and in chloroplast lysates from leaves with dark-induced senescence. Further studies showed that the 51-kDa fragment was found in the reaction solution with stroma fraction but not in that with the chloroplast membrane fraction and in the chloroplast lysates from mature wheat leaves. The reaction of producing the 51-kDa fragment was inhibited by 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF), 1,10-phenanthroline and EDTA. The N-terminal sequence analysis indicated that the LSU was cleaved at the peptide bond between Lys-14 and Ala-15. In addition, a 50-kDa fragment of LSU formed obviously at pH 6.0–6.5 was detected in the crude extracts of leaves with dark-induced senescence but was not found in lysates of chloroplasts. The degradation was prevented by AEBSF, leupeptin and transepoxysuccinyl- l -leucylamido (4-guanidino) butane (E-64). The results obtained in this study imply that the appearance of the 51-kDa fragment could be because of the involvement of a new senescence-associated protease that is located in the stroma of chloroplasts in senescing wheat leaves.  相似文献   

13.
A cDNA clone encoding a cysteine protease was isolated from a tobacco cDNA library, utilizing as a probe a PCR fragment obtained from degenerated primers based on the conserved sequences of plant cysteine protease genes. A putative protein encoded by the clone NTCP-23 had an amino acid sequence with significant similarities to those of plant senescence-associated cysteine proteases and mammalian cathepsin H. Northern blot analysis showed that NTCP-23 mRNA is expressed in all organs and the mRNA and protein expression is enhanced during natural senescence. We propose that NTCP-23 is responsible for amino acid remobilization especially in senescencing leaves. Furthermore, it was found that the mRNA expression follows a circadian rhythm and is reduced by continuous darkness, wounding and hypersensitive reaction (HR). NTCP-23 is the first cysteine protease whose mRNA expression has been shown to be temporarily reduced by wounding.  相似文献   

14.
The onset of leaf senescence is regulated by a complex mechanism involving positive and negative regulators. Among positive regulators, jasmonic acid (JA) accumulates in senescing leaves and the JA-insensitive coi1-1 mutant displays delayed leaf senescence in Arabidopsis. A strong activated expression of the gene coding for the JA-biosynthetic beta-oxidation enzyme 3-ketoacyl-CoA thiolase 2 (KAT2) in natural and dark-induced senescing leaves of Arabidopsis thaliana is reported here. By using KAT2::GUS and KAT2::LUC transgenic plants, it was observed that dark-induced KAT2 activation occurred both in excised leaves as well as in whole darkened plants. The KAT2 activation associated with dark-induced senescence occurred soon after a move to darkness, and it preceded the detection of symptoms and the expression of senescence-associated gene (SAG) markers. Transgenic plants with reduced expression of the KAT2 gene showed a significant delayed senescence both in natural and dark-induced processes. The rapid induction of the KAT2 gene in senescence-promoting conditions as well as the delayed senescence phenotype and the reduced SAG expression in KAT2 antisense transgenic plants, point to KAT2 as an essential component for the timely onset of leaf senescence in Arabidopsis.  相似文献   

15.
Massive degradation of photosynthetic proteins is the hallmark of leaf senescence; however the mechanism involved in chloroplast protein breakdown is not completely understood. As small 'senescence-associated vacuoles' (SAVs) with intense proteolytic activity accumulate in senescing leaves of soybean and Arabidopsis, the main goal of this work was to determine whether SAVs are involved in the degradation of chloroplastic components. SAVs with protease activity were readily detected through confocal microscopy of naturally senescing leaves of tobacco (Nicotiana tabacum L.). In detached leaves incubated in darkness, acceleration of the chloroplast degradation rate by ethylene treatment correlated with a twofold increase in the number of SAVs per cell, compared to untreated leaves. In a tobacco line expressing GFP targeted to plastids, GFP was re-located to SAVs in senescing leaves. SAVs were isolated by sucrose density gradient centrifugation. Isolated SAVs contained chloroplast-targeted GFP and the chloroplast stromal proteins Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and glutamine synthetase, but lacked the thylakoid proteins D1 and light-harvesting complex II of the photosystem II reaction center and photosystem II antenna, respectively. In SAVs incubated at 30 degrees C, there was a steady decrease in Rubisco levels, which was completely abolished by addition of protease inhibitors. These results indicate that SAVs are involved in degradation of the soluble photosynthetic proteins of the chloroplast stroma during senescence of leaves.  相似文献   

16.
During leaf senescence, Rubisco is gradually degraded and its components are recycled within the plant. Although Rubisco can be mobilized to the vacuole by autophagy via specific autophagic bodies, the importance of this process in Rubisco degradation has not been shown directly. Here, we monitored Rubisco autophagy during leaf senescence by fusing synthetic green fluorescent protein (sGFP) or monomeric red fluorescent protein (mRFP) with Rubisco in Arabidopsis (Arabidopsis thaliana). When attached leaves were individually exposed to darkness to promote their senescence, the fluorescence of Rubisco‐sGFP was observed in the vacuolar lumen as well as chloroplasts. In addition, release of free‐sGFP due to the processing of Rubisco‐sGFP was observed in the vacuole of individually darkened leaves. This vacuolar transfer and processing of Rubisco‐sGFP was not observed in autophagy‐deficient atg5 mutants. Unlike sGFP, mRFP was resistant to proteolysis in the leaf vacuole of light‐grown plants. The vacuolar transfer and processing of Rubisco‐mRFP was observed at an early stage of natural leaf senescence and was also obvious in leaves naturally covered by other leaves. These results indicate that autophagy contributes substantially to Rubisco degradation during natural leaf senescence as well as dark‐promoted senescence.  相似文献   

17.
Jasmonates are signaling molecules that play key roles in wound response and regulate the biosynthesis of many defensive proteins, including proteases. In this study, we investigate the effects of wounding and methyl jasmonate (MJ) application on the protein expression pattern of Ricinus communis L. leaves and on proteolytic activity. Gelatin zymography demonstrated that both MJ and mechanical wounding induce alterations in the proteolytic pattern of castor bean leaves (R. communis L.). Expression of two cysteine proteases (38 and 29 kDa) was induced by the treatments employed; however, MJ induced a higher protease level than mechanical wounding during the stress period (24, 48, and 72 h). The increase in protease activity mirrors the decline in soluble protein content and rubisco degradation that may indicate initiation of senescence in castor plants. The 29 kDa protease has an acidic optimal pH; whereas the 38 kDa protease has a neutral optimum activity. Both proteases were almost completely inhibited by E-64 and cystatin. The significant induction of these proteins by MJ suggests a possible role of cysteine proteases in leaf senescence as well as their involvement in regulating both the wound response and MJ in castor bean plants.  相似文献   

18.
We characterized the senescence-associated proteases of postharvest broccoli (Brassica oleracea L. var Green King) florets, using class-specific protease inhibitors and gelatin-polyacrylamide gel electrophoresis. Different classes of senescence-associated proteases in broccoli florets were partially characterized for the first time. Protease activity of broccoli florets was depressed by all the inhibitors and showed different inhibition curves during postharvest. The hydrolytic activity of metalloprotease (EC 3.4.24. - ) and serine protease (EC 3.4.21. - ) reached a maximum, 1 day after harvest (DAH), then decreased, while the hydrolytic activity of cysteine protease (EC 3.4.22. - ) and aspartic protease (EC 3.4.23. - ) increased throughout the postharvest senescence based on the calculated inhibition percentage of protease activity. The senescence-associated proteases were separated into seven endoprotease (EP) groups by gelatin-polyacryamide gel electrophoresis and classified into EP1 (metalloprotease), EP2 (metalloprotease and cysteine protease), EP3 (serine protease and aspartic protease), EP4, EP5, EP7 (cysteine protease), and EP6 (serine protease) based on the sensitivity of class-specific protease inhibitors. The proteases EP2, EP3, and EP4 were present throughout the postharvest stages. EP3 was the major EP at all times during senescence; EP4 intensity of activity increased after 2 DAH; EP6 and EP7 clearly increased after 4 DAH. Our results suggest that serine protease activity contributes to early stage (0-1 DAH) and late stage (4-5 DAH) of senescence; metalloprotease activity was involved in the early and intermediate stages (0-3 DAH) of senescence; and cysteine protease and aspartic protease activities participated in the whole process of broccoli senescence.  相似文献   

19.
Changes in the number and composition of chloroplasts of mesophyll cells were followed during senescence of the primary leaf of wheat (Triticum aestivum L.). Senescence was due to the natural pattern of leaf ontogeny or was either induced by leaf detachment and incubation in darkness, or incubation of attached leaves in the dark. In each case discrete sections (1 centimeter) of the leaf, representing mesophyll cells of the basal, middle, and tip regions, were examined. For all treatments, senescence was characterized by a loss of chlorophyll and the protein ribulose 1,5-bisphosphate carboxylase (RuBPCase). Chloroplast number per mesophyll cell remained essentially constant during senescence. It was not until more than 80% of the plastid chlorophyll and RuBPCase was degraded that some reduction (22%) in chloroplast number per mesophyll cell was recorded and this was invariably in the mesophyll cells of the leaf tip. We conclude that these data are consistent with the idea that degradation occurs within the chloroplast and that all chloroplasts in a mesophyll cell senesce with a high degree of synchrony rather than each chloroplast senescing sequentially.  相似文献   

20.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the predominant protein in photosynthesizing plant parts and the most abundant protein on earth. Amino acids deriving from its net degradation during senescence are transported to sinks (e.g. developing leaves, fruits). Rubisco catabolism is not controlled only by the overall sink demand. An accumulation of carbohydrates may also accelerate senescence and Rubisco degradation under certain conditions. Amino acids produced by proteolysis are rapidly redistributed in plants with proper source-sink relationships. In leaves of wheat plants with reduced sink capacity (e.g. sink removal, phloem interruption by steam girdling at the leaf base), Rubisco is degraded and free amino acids accumulate. They may be washed out in the rain during late senescence. In leaves of depodded soybeans, Rubisco is degraded and amino acids can be reutilized in these leaves for the synthesis of special vacuolar proteins in the paraveinal mesophyll (vegetative storage proteins). Nitrogen deriving from Rubisco degradation in older (senescing) leaves of annual crops is integrated to some extent again in newly synthesized Rubisco in younger leaves or photosynthesizing tissues of fruits. Finally, a high percentage of this nitrogen is accumulated in protein bodies (storage proteins). At the subcellular level, Rubisco can be degraded in intact chloroplasts. Reactive oxygen species may directly cleave the large subunit or modify it to become more susceptible to proteolysis. A metalloendopeptidase may play an important role in Rubisco degradation within intact chloroplasts. Additionally, the involvement of vacuolar endopeptidase(s) in Rubisco catabolism (at least under certain conditions) was postulated by various laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号