首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
Carbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings. Consistent with decreased Suc export, cpd28 mutants exhibited decreased phloem pressure in mature leaves, and altered phloem cell wall ultrastructure in immature and mature leaves. We identified the causative mutations in the Brittle Stalk2-Like3 (Bk2L3) gene, a member of the COBRA family, which is involved in cell wall development across angiosperms. None of the previously characterized COBRA genes are reported to affect carbohydrate export. Consistent with other characterized COBRA members, the BK2L3 protein localized to the plasma membrane, and the mutants condition a dwarf phenotype in dark-grown shoots and primary roots, as well as the loss of anisotropic cell elongation in the root elongation zone. Likewise, both mutants exhibit a significant cellulose deficiency in mature leaves. Therefore, Bk2L3 functions in tissue growth and cell wall development, and this work elucidates a unique connection between cellulose deposition in the phloem and whole-plant carbohydrate partitioning.

Mutations in Bk2L3 result in dwarfed plants with decreased anisotropic cell growth, cellulose deposition, phloem pressure, sucrose export, and carbohydrate hyperaccumulation in mature maize leaves.  相似文献   

3.
It has been known for more than a century that sieve plates in the phloem in plants contain callose, a β-1,3-glucan. However, the genes responsible for callose deposition in this subcellular location have not been identified. In this paper we examine callose deposition patterns in T-DNA insertion mutants (cs7) of the Callose Synthase 7 (CalS7) gene. We demonstrated here that the CalS7 gene is expressed specifically in the phloem of vascular tissues. Callose deposition in the phloem, especially in the sieve elements, was greatly reduced in cs7 mutants. Ultrastructural analysis of developing sieve elements revealed that callose failed to accumulate in the plasmodesmata of incipient sieve plates at the early perforation stage of phloem development, resulting in the formation of sieve plates with fewer pores. In wild-type Arabidopsis plants, callose is present as a constituent polysaccharide in the phloem of the stem, and its accumulation can also be induced by wounding. Callose accumulation in both conditions was eliminated in mature sieve plates of cs7 mutants. These results demonstrate that CalS7 is a phloem-specific callose synthase gene, and is responsible for callose deposition in developing sieve elements during phloem formation and in mature phloem induced by wounding. The mutant plants exhibited moderate reduction in seedling height and produced aberrant pollen grains and short siliques with aborted embryos, suggesting that CalS7 also plays a role in plant growth and reproduction.  相似文献   

4.
Companion cell-specific inhibition of the potato sucrose transporter SUT1   总被引:26,自引:3,他引:23  
In many plants, translocation of sucrose from mesnsophyll to phloem for long-distance transport is carrier-mediated. The sucrose H+-symporter gene SUT1 from potato is expressed at high levels in the phloem of mature, exporting leaves and at lower levels in other organs. Inhibition of SUT1 by expression of an antisense gene in companion cells under control of the rolC promoter leads to accumulation of high amounts of soluble and insoluble carbohydrates in leaves and inhibition of photosynthesis. The distribution of in situ localized starch does not correspond with areas of reduced photosynthesis as shown by fluorescence imaging. Dissection of antisense effects on sink and source organs by reciprocal grafts shows that inhibition of transporter gene expression in leaves is sufficient to produce chlorosis in leaves and reduced tuber yield. In contrast to the arrest of plasmodesmal development found in plants that express yeast invertase in the apoplast, in mature leaves of sucrose transporter antisense plants plasmodesmata are branched and have median cavities. These data strongly support an apoplastic mode of phloem loading in potato, in which the sucrose transporter located at the plasma membrane of the sieve element/companion cell complex represents the primary route for sugar uptake into the long-distance translocation pathway.  相似文献   

5.
The structure-function relationship of proteinaceous filaments in sieve elements has long been a source of investigation in order to understand their role in the biology of the phloem. Two phloem filament proteins AtSEOR1 (At3g01680.1) and AtSEOR2 (At3g01670.1) in Arabidopsis have been identified that are required for filament formation. Immunolocalization experiments using a phloem filament-specific monoclonal antibody in the respective T-DNA insertion mutants provided an initial indication that both proteins are necessary to form phloem filaments. To investigate the relationship between these two proteins further, green fluorescent protein (GFP)-AtSEO fusion proteins were expressed in Columbia wild-type and T-DNA insertion mutants. Analysis of these mutants by confocal microscopy confirmed that phloem filaments could only be detected in the presence of both proteins, indicating that despite significant sequence homology the proteins are not functionally redundant. Individual phloem filament protein subunits of AtSEOR1 and AtSEOR2 were capable of forming homodimers, but not heterodimers in a yeast two-hybrid system. The absence of phloem filaments in phloem sieve elements did not result in gross alterations of plant phenotype or affect basal resistance to green peach aphid (Myzus persicae).  相似文献   

6.
Diaphorina citri is a major pest of citrus because it transmits Candidatus Liberibacter asiaticus, a phloem-limited bacterium that putatively causes Huanglongbing (HLB). The disease moves slowly through a tree, and the vector facilitates further within-tree movement via transmission of the pathogen. However, this only happens when D. citri stylets contact the phloem, to inoculate bacteria during phloem salivation and acquire bacteria during phloem sap ingestion. Behavioral changes in D. citri associated with different plant parts would affect how long it takes to reach phloem and how long the psyllids stays in phloem to ingest, thereby influencing the risk of disease spread. D. citri feeding was recorded on the abaxial and adaxial surfaces of mature and immature citrus leaves. Adults in the field can be found on these surfaces at all times of year. On abaxial surface of immature leaves, phloem salivation would occur after 11 h on average, but rarely as soon as 0.56 h. The corresponding values on mature leaves were 16 and 2.7. In general, psyllids spent more time ingesting phloem sap on immature leaves than on mature leaves. Psyllids on abaxial surfaces spent more time ingesting from phloem, though the strength of this effect was less than for immature versus mature leaves. In contrast, xylem ingestion increased on mature leaves compared with young. The biological differences that could produce this outcome are discussed. The results discussed herein are of relevance to further studies on the efficacy of an insecticide to act quickly enough to prevent pathogen transmission.  相似文献   

7.
The sink effect of cytokinin is manifested as a decrease in source capacity and the induction of sink activity in the phytohormone-treated region of a mature excised leaf. In order to find out whether this effect was due to the direct action of cytokinin on the phloem structure, two types of phloem terminals were examined. In pumpkin (Cucurbita pepo L.) leaves, the phloem terminals are open; i.e., they are linked to mesophyll by numerous symplastic connections, which are located in narrow areas called plasmodesmal pit fields. In broad bean (Vicia faba L.) leaves, the phloem terminals belong to the closed type and have no symplastic links with mesophyll. The electron microscopic study of terminal phloem did not reveal any structural changes in the companion cells, which could account for the suppression of assimilate export. The treatment of leaves with cytokinin neither disturbed the structure of plasmodesmal pit fields in pumpkin leaves nor eliminated the wall protuberances (the ingrowths promoting phloem loading) in bean leaves. No evidence was obtained that the cytokinin-induced import of assimilates in mature leaves is caused by the recovery of meristematic activity, i.e., by either formation of new phloem terminals having immature sieve elements capable of unloading or by the development of new sieve elements within the existing veins. Cytokinin did not induce de novo formation of phloem elements. Structural characteristics of the leaf phloem, such as the number of branching orders in the venation pattern, the number of vein endings per areole, the number of areoles per leaf, the area of one areole, and the number of sieve elements per bundle remained unaltered. It is concluded that the sink effect of cytokinin in excised leaves cannot be determined by alteration of the phloem structure.  相似文献   

8.
The synthesis, transport and metabolism of endogenous cytokinins   总被引:7,自引:0,他引:7  
Abstract Present evidence indicates that only the root systems of plants have been shown conclusively to synthesize cytokinins. Although most of these compounds are apparently exported to the shoot via the xylem, there are indications that more attention should be given to the possibility of translocation through the phloem. Within mature leaves the cytokinins derived from the roots are converted to inactive or storage forms by means of glucosylation. While it would appear that glucosylation could occur in all living plant cells whenever the cytokinins are no longer required for active growth, and could provide the plant with a potential reservoir of cytokinins, very little is known with regard to the transport and reutilisation of these compounds.  相似文献   

9.
Summary Penetration of the phloem of young and mature leaves ofNerium oleander by stylets of the aphid,Aphis nerii was studied with light, phase and differential interference contrast microscopes. Two of five pairs of stylet tips encountered in young leaves and eleven of sixteen pairs encountered in mature leaves were lodged in sieve tubes of the adaxial phloem. In young leaves, the majority of penetrations originated from the abaxial epidermis; conversely, the majority of penetrations in mature leaves originated from the adaxial epidermis. In all instances, penetration of the epidermis, ground tissue and phloem was largely intercellular.  相似文献   

10.
The contents of sucrose and amino acids in the leaves, phloemsap and taproots have been analysed in three experimental hybridsof sugar beet and compared with earlier analysed leaf and phloemsap contents in spinach and barley. The three hybrids accumulatedsucrose and amino acids to various extents in the mature rootsas well as in the young taproots (9–12 weeks). The differencesin the sucrose-to-amino acid ratios in the taproots were reflectedin the corresponding ratios in the phloem sap. The leaf contentsof sucrose and amino acids in the three hybrids were found tobe very similar to each other and also to those in spinach andbarley. In contrast, the phloem concentration of sucrose (1.3M) was much higher, and that of amino acids much lower thanin spinach and barley. In the taproots, the overall concentrationof sucrose was about half that in the phloem sap. From thesefindings it is con cluded that the decisive factor in the highsucrose accumulation in sugar beet roots is the very efficientprocess of phloem loading in the leaves. The patterns of theamino acids in the phloem sap and in the taproots resembledthose in the leaves, indicating that there is no special transportform for a-amino nitrogen from the leaves to the roots, butall amino acids which are present in the cytosol are translocated. Key words: Amino acids, Beta vulgaris L., phloem sap, sucrose, tap roots, transport  相似文献   

11.
Jager CE  Symons GM  Glancy NE  Reid JB  Ross JJ 《Planta》2007,226(2):361-368
In plants such as the garden pea (Pisum sativum L.), it is widely thought that the auxin indole-3-acetic acid (IAA) is synthesised mainly in the immature tissues of the apical bud and then transported basipetally to other parts of the plant. Consistent with this belief are results showing that removal of the apical bud markedly reduces the IAA content in the stem. However, it has also been suggested that the mature leaves may synthesise substantial amounts of IAA, which enters the basipetal transport stream after being transported to the shoot apex in the phloem (Cambridge and Morris in Planta 99:583–588, 1996). To examine this theory, we defoliated pea plants and measured the effect on IAA content in the remaining shoot tissues. IAA levels were reduced in the internodes, and to a lesser extent in the apical bud, after defoliation, suggesting that mature leaves are indeed an important source of auxin for the shoot. Consistent with this idea, we have demonstrated that mature, fully expanded leaves are capable of de novo IAA synthesis. Furthermore, we report evidence for the presence of IAA in the phloem sap of pea. Together these results support those of Cambridge and Morris, suggesting that mature leaves are a source of the IAA in the basipetal transport stream.  相似文献   

12.
Tocopherols (vitamin E) are lipophilic antioxidants presumed to play a key role in protecting chloroplast membranes and the photosynthetic apparatus from photooxidative damage. Additional nonantioxidant functions of tocopherols have been proposed after the recent finding that the Suc export defective1 maize (Zea mays) mutant (sxd1) carries a defect in tocopherol cyclase (TC) and thus is devoid of tocopherols. However, the corresponding vitamin E deficient1 Arabidopsis mutant (vte1) lacks a phenotype analogous to sxd1, suggesting differences in tocopherol function between C4 and C3 plants. Therefore, in this study, the potato (Solanum tuberosum) ortholog of SXD1 was isolated and functionally characterized. StSXD1 encoded a protein with high TC activity in vitro, and chloroplastic localization was demonstrated by transient expression of green fluorescent protein-tagged fusion constructs. RNAi-mediated silencing of StSXD1 in transgenic potato plants resulted in the disruption of TC activity and severe tocopherol deficiency similar to the orthologous sxd1 and vte1 mutants. The nearly complete absence of tocopherols caused a characteristic photoassimilate export-defective phenotype comparable to sxd1, which appeared to be a consequence of vascular-specific callose deposition observed in source leaves. CO2 assimilation rates and photosynthetic gene expression were decreased in source leaves in close correlation with excess sugar accumulation, suggesting a carbohydrate-mediated feedback inhibition rather than a direct impact of tocopherol deficiency on photosynthetic capacity. This conclusion is further supported by an increased photosynthetic capacity of young leaves regardless of decreased tocopherol levels. Our data provide evidence that tocopherol deficiency leads to impaired photoassimilate export from source leaves in both monocot and dicot plant species and suggest significant differences among C3 plants in response to tocopherol reduction.  相似文献   

13.
Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate.  相似文献   

14.
Passiflora warmingii petiolar nectaries are characterized by the presence of large protein-containing phloem parenchyma cells which occupy the bulk of the nectary. Immature, mature, and senescent nectaries, as well as stem tips and petioles from unexpanded and mature leaves, were studied to learn the origin and fate of the protein and to determine if similar protein-containing cells occur in main-path phloem. The protein is present as membrane-limited fibrils in the phloem parenchyma of immature nectaries and in young main-path phloem. In the nectary, it persists until leaf senescence but becomes highly dispersed and barely detectable in mature main-path phloem parenchyma. Although superficially resembling P-protein it is always surrounded by a membrane, has smaller dimensions than is reported for P-protein, appears to be derived from RER, and is found in association with typical P-protein in the same cell. Possible functions for this material are suggested.  相似文献   

15.
Most studies on the function of tocopherols in plants have focused on their photo-protective and antioxidant properties, and it has been recently suggested, though not yet demonstrated, that they may also play a role in cellular signaling. By using vte1 mutants of Arabidopsis thaliana, with an insertion in the promoter region of the gene encoding tocopherol cyclase, we demonstrate here for the first time that tocopherol deficiency may alter endogenous phytohormone levels in plants, thereby reducing plant growth and triggering anthocyanin accumulation in leaves. In plants grown under a combination of high light and low temperature conditions to induce anthocyanin accumulation, we evaluated age-dependent changes in tocopherols, indicators of photo-oxidative stress, phytohormone levels, plant growth and anthocyanin levels in wild type and vte1 mutants. These mutants showed lower tocopherol levels, reduced growth and enhanced anthocyanin accumulation compared with the wild type, while both the maximum and relative efficiencies of PSII, chlorophylls, and carotenoids were not significantly altered. Analyses of phytohormone levels revealed that reduced growth and enhanced anthocyanin accumulation in tocopherol-deficient plants were preceded by increased jasmonic acid levels. This is the first study suggesting a direct effect of tocopherols on phytohormones levels in plants and will undoubtedly help us to better understand the multiple functions tocopherols play in plants, as well as the cellular signaling mechanisms responsible for the phenotypes thus far described in tocopherol-deficient plants.  相似文献   

16.
L-Ascorbic acid (AsA) was found to be loaded into phloem of source leaves and transported to sink tissues. When L-[(14)C]AsA was applied to leaves of intact plants of three different species, autoradiographs and HPLC analysis demonstrated that AsA was accumulated into phloem and transported to root tips, shoots, and floral organs, but not to mature leaves. AsA was also directly detected in Arabidopsis sieve tube sap collected from an English green aphid (Sitobion avenae) stylet. Feeding a single leaf of intact Arabidopsis or Medicago sativa with 10 or 20 mM L-galactono-1,4-lactone (GAL-L), the immediate precursor of AsA, lead to a 7- to 8-fold increase in AsA in the treated leaf and a 2- to 3-fold increase of AsA in untreated sink tissues of the same plant. The amount of AsA produced in treated leaves and accumulated in sink tissues was proportional to the amount of GAL-L applied. Studies of the ability of organs to produce AsA from GAL-L showed mature leaves have a 3- to 10-fold higher biosynthetic capacity and much lower AsA turnover rate than sink tissues. The results indicate AsA transporters reside in the phloem, and that AsA translocation is likely required to meet AsA demands of rapidly growing non-photosynthetic tissues. This study also demonstrates that source leaf AsA biosynthesis is limited by substrate availability rather than biosynthetic capacity, and sink AsA levels may be limited to some extent by source production. Phloem translocation of AsA may be one factor regulating sink development because AsA is critical to cell division/growth.  相似文献   

17.
ALONI  R. 《Annals of botany》1978,42(6):1261-1269
The fact that fibre induction is strictly basipetal is usedhere to study the long distance effect of young growing leaveson acropetal primary phloem fibre differentiation. Excisionexperiments are used to show that young leaves induce fibredifferentiation around a wound a few internodes below them.No fibers appeared in the younger internodes between the youngleaves and the mature internode. Young leaves yield shorterfibres than those which differentiate under mature leaves, indicatingthat more than one stimulus is involved in the induction process.Fibre differentiation in nodes is faster than in subtendinginternodes. Wounding causes rapid differentiation of phloemfibres above and beside the wound. The rapid differentiationin the node as well as around the wound can be understood asan effect of a high local concentration of inductive stimulus.It is proved that the ability of the cells to respond to inductiondetermines the pattern of their differentiation which in thiscase is counter-directional to the induction. Coleus blumei, phloem fibres, differentiation  相似文献   

18.
Several quantitative trait locus analyses have suggested that grain yield and nitrogen use efficiency are well correlated with nitrate storage capacity and efficient remobilization. This study of the Arabidopsis thaliana nitrate transporter NRT1.7 provides new insights into nitrate remobilization. Immunoblots, quantitative RT-PCR, β-glucuronidase reporter analysis, and immunolocalization indicated that NRT1.7 is expressed in the phloem of the leaf minor vein and that its expression levels increase coincidentally with the source strength of the leaf. In nrt1.7 mutants, more nitrate was present in the older leaves, less 15NO3 spotted on old leaves was remobilized into N-demanding tissues, and less nitrate was detected in the phloem exudates of old leaves. These data indicate that NRT1.7 is responsible for phloem loading of nitrate in the source leaf to allow nitrate transport out of older leaves and into younger leaves. Interestingly, nrt1.7 mutants showed growth retardation when external nitrogen was depleted. We conclude that (1) nitrate itself, in addition to organic forms of nitrogen, is remobilized, (2) nitrate remobilization is important to sustain vigorous growth during nitrogen deficiency, and (3) source-to-sink remobilization of nitrate is mediated by phloem.  相似文献   

19.
This study addressed whether the winter annual Arabidopsis thaliana can adjust foliar phloem and xylem anatomy both differentially and in parallel. In plants acclimated to hot vs cool temperature, foliar minor vein xylem‐to‐phloem ratio was greater, whereas xylem and phloem responded concomitantly to growth light intensity. Across all growth conditions, xylem anatomy correlated with transpiration rate, while phloem anatomy correlated with photosynthetic capacity for two plant lines (wild‐type Col‐0 and tocopherol‐deficient vte1 mutant) irrespective of tocopherol status. A high foliar vein density (VD) was associated with greater numbers and cross‐sectional areas of both xylem and phloem cells per vein as well as higher rates of both photosynthesis and transpiration under high vs low light intensities. Under hot vs cool temperature, high foliar VD was associated with a higher xylem‐to‐phloem ratio and greater relative rates of transpiration to photosynthesis. Tocopherol status affected development of foliar vasculature as dependent on growth environment. The most notable impact of tocopherol deficiency was seen under hot growth temperature, where the vte1 mutant exhibited greater numbers of tracheary elements (TEs) per vein, a greater ratio of TEs to sieve elements, with smaller individual sizes of TEs, and resulting similar total areas of TEs per vein and transpiration rates compared with Col‐0 wild‐type. These findings illustrate the plasticity of foliar vascular anatomy acclimation to growth environment resulting from independent adjustments of the vasculature's components.  相似文献   

20.
Summary Seventy-four of 83 stylet tracks, and 20 of 22 pairs of stylets of the aphid,Rhopalosiphum maidis were observed terminating in abaxial phloem of matureCucurbita maxima leaves. These results indicate that the abaxial phloem is more important in vein loading and the export of assimilates from mature leaves than the adaxial phloem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号