首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Petiveria alliacea L. is a medicinal plant originating from the Amazon region. This study describes an efficient cryopreservation protocol for somatic embryos (SEs) produced from roots of P. alliacea based on the comparison of vitrification, encapsulation-dehydration, and D cryo-plate techniques. With the vitrification technique, SEs treated with PVS2 solution (0.4 M sucrose, 3.3 M glycerol, 2.4 M ethylene glycol, and 1.9 M DMSO) for 30 min displayed high viability (85%) and intermediate proliferation recovery (about 12 adventitious SEs produced from original SEs [SEs/SE] after 90 d of culture). With the encapsulation-dehydration technique, lower viability (70%) and very low proliferation recovery (about two SEs/SE) were achieved with cryopreserved SEs dehydrated for 10 min in a laminar air flow cabinet. The D cryo-plate technique led to high viability (85%) and proliferation recovery (19 SEs/SE) of cryopreserved SEs after 90 min dehydration. In the experimental conditions tested, the D cryo-plate method was the most efficient technique for cryopreservation of P. alliacea SEs.  相似文献   

2.
In this study conservation of Castilleja levisecta Greenm., a globally endangered species was addressed through in vitro cryopreservation of shoot tips. In vitro cultures were successfully established using seedlings received from British Columbia, Canada. Shoot tips excised from in vitro propagated plants were cryopreserved using a droplet-vitrification method following optimization of individual protocol steps such as pre-culture, treatment with vitrification solutions, and unloading. The highest plant regrowth after cryopreservation (66%) was achieved when shoot tips were pre-cultured in 0.3 M sucrose for 17 h followed by 0.5 M sucrose for 4 h, incubated in an osmo-protectant solution (17.5% [v/v] glycerol and 17.5% [w/v] sucrose) for 20 min, exposed to vitrification solution A3 (37.5% [v/v] glycerol plus 15% [v/v] dimethylsulfoxide (DMSO) plus 15% [v/v] ethylene glycol (EG) plus 22.5% [w/v] sucrose) on ice for 40 min, and unloaded in 0.8 M sucrose solution for 30 min. Healthy plants were developed from cryopreserved shoot tips and propagated in vitro using nodal segments. Plants derived from in vitro culture and from cryopreserved tissues were successfully rooted and acclimated in a greenhouse with 100% survival rate. Acclimatized plants were reintroduced in a naturalized propagation area at the Conservation Nursery at Fort Rodd Hill, Canada. Twenty of 94 reintroduced plants (21%) survived the transit from lab to field and some had started to flower. This is the first report for cryopreservation of C. levisecta, an important step in conserving and re-introducing this critically imperiled species in nature.  相似文献   

3.
This report highlights the first successful cryopreservation protocol for shoot tips of Garcinia mangostana L. achieved by using vitrification technique. We investigated the effects of different temperatures and exposure periods to a plant vitrification solution 2 (PVS2), sucrose concentrations and preculture periods, and unloading treatments in steps of the vitrification protocol on the survival of G. mangostana shoot tips after cryopreservation. Exposure to PVS2 for 25 min gave beneficial effects with 10.4 ± 1.8 % survival at 0 °C with average water content of 1.1 ± 0.3 g g?1 dry mass. Survival was 13.7 ± 5.5 % when using preculture medium with full-strength Murashige and Skoog (MS) medium supplemented with 0.6 M sucrose for 2 days. A significant difference was observed in survival of shoot tips when treated with various sucrose concentrations in preculture which strengthens their importance towards enhancing survival of shoot tips after cryopreservation. MS with 0.4 M sucrose and 2 M glycerol applied as an unloading solution increased the survival of shoot tips to 44.1 ± 6.5 %. Experiments on the effect of ascorbic acid were also conducted for each step of vitrification. Our results showed higher survival of 45.8 ± 3.8 % but there were no significant effects compared with the control (without ascorbic acid). Further study on the recovery dark/light period was conducted. Survival of shoot tips significantly increased to 50.0 ± 16.7 % when subjected to 7 days in the dark before transferring to 16 h/8 h light/dark photoperiod. These studies strengthen suggestions that cryopreservation through vitrification is possible for ex situ conservation of germplasm of this tropical recalcitrant species.  相似文献   

4.
An efficient and broad-spectrum protocol for cryopreservation of Vitis spp. shoot tips by droplet-vitrification is reported. Shoot tips (1.0 mm) containing 5–6 leaf primordia (LPs) were precultured for 3 d with a preculture medium containing 0.3 M sucrose, 0.16 μM glutathione, and 0.14 μM ascorbic acid. Precultured shoot tips were treated for 20 min at 24°C with a loading solution composed of 2 M glycerol and 0.4 M sucrose, followed by exposure at 0°C to half-strength plant vitrification solution 2 (PVS2) for 30 min, and then full-strength PVS2 for 50 min. Dehydrated shoot tips were transferred into 2.5-μL PVS2 carried on aluminum foil, prior to a direct immersion in liquid nitrogen. With this method, an average shoot regrowth level of 50.5% was obtained from cryopreserved shoot tips in six V. vinifera genotypes (three wine cultivars, two table cultivars, and one rootstock) and two V. pseudoreticulata genotypes. Vegetative growth of the regenerants recovered from cryopreservation, significantly increased as the number of subculture cycles increased and was greater than the control after the third subculture following cryopreservation. Inter-simple sequence repeats (ISSR) and random amplification of polymorphic DNA (RAPD) analyses did not detect any polymorphic loci in the plants of V. vinifera L. cv. ‘Cabernet Sauvignon’ from cryopreserved shoot tips compared to the original cultures. This droplet-vitrification cryopreservation method provides a technical platform to set up cryobanks of Vitis spp.  相似文献   

5.
We report a new cryopreservation method for Lilium Oriental hybrid ‘Siberia’. Adventitious buds were induced from leaf segments cultured for 12 days on adventitious bud induction medium composed of half-strength Murashige and Skoog medium (MS) supplemented with 1 mg L?1 α-naphthalene acetic acid and 0.5 mg L?1 thidiazuron. Small leaf squares (SLSs, 3?×?4 mm), each bearing at least one adventitious bud, were cut from leaf segments, precultured on medium with 0.5 M sucrose for 1 day, and then treated for 20 min with a loading solution containing 0.4 M sucrose and 2 M glycerol, followed by exposure to plant vitrification solution 2 for 7 h at 0 °C. Dehydrated SLSs were directly immersed in liquid nitrogen for 1 h. Cryopreserved SLSs were re-warmed in MS medium containing 1.2 M sucrose for 20 min at room temperature, followed by post-thaw culture for recovery. With this procedure, 85% survival and 72% shoot regrowth were achieved following cryopreservation. The use of SLSs bearing adventitious buds for cryopreservation reported in the present study eliminates the time-consuming and labour-intensive step of shoot tip excision, and has great potential to facilitate cryopreservation in other plant species.  相似文献   

6.
The objective of the present study was the cryopreservation of monotypic endemic Hladnikia pastinacifolia Rchb. shoot tips from an in vitro culture, via encapsulation-dehydration (ED) or encapsulation-vitrification (EV). For all tested genotypes, the highest rates of shoot regrowth and multiplication were obtained after overnight preculture in 0.4 M sucrose, encapsulation in Murashige and Skoog (MS) medium with 0.4 M sucrose and 1 M glycerol, followed by polymerization in 3% (w/v) Na-alginate in MS with 0.4 M sucrose. Optimal osmoprotection was achieved for ED with 0.4 M sucrose plus 1 M glycerol and for EV with 0.4 M sucrose plus 2 M glycerol. The best dehydration time for ED was 150 min in a desiccation chamber with silica gel, and the best vitrification time for EV was 85 min in plant vitrification solution 2 (PVS2). For ED, dehydration for 150 min resulted in explant water content of 22%. When the encapsulation method was combined with ED, 53% regrowth was achieved, and when it was combined with EV, 64% regrowth was achieved. Both methods could become applicable for the long-term cryopreservation of H. pastinacifolia germplasm, although EV was faster and resulted in better final regrowth success. Genetic stability analysis of cryopreserved plant samples was carried out for two genotypes, using random amplified polymorphic DNA (RAPD) markers to compare the two different cryopreservation protocols. Significant genetic differences between the genotypes were detected and a low level of genomic variation was observed.  相似文献   

7.
Saussurea involucrata Kar. et Kir. is one of the most well-known Chinese medicinal plants, and it is utilized for a variety of medical conditions. Due to the overexploitation of this endangered species, it is crucial to develop methods for both conservation and propagation. To address this issue, we have developed and optimized a simple and effective vitrification process for the cryopreservation of S. involucrata callus tissue. The optimized method consisted of a 3-d incubation period on medium containing 0.3 M sucrose, transfer to a plant vitrification solution (PVS2) containing 30% (v/v) glycerol, 15% (v/v) ethylene glycol, 15% (v/v) dimethylsulfoxide, and 0.4 M sucrose first at 60% PVS2 for 40 min, then at 100% PVS2 for 60 min, followed by immediate immersion and storage in liquid nitrogen. To thaw the tissue, tissues were rewarmed at 40°C for 2 min. This method resulted in a survival rate of approximately 56% and a regrowth rate of approximately 40%. Survival and regrowth were significantly improved by the addition of a low-temperature preincubation step. Incubating the calli at 4°C for 12 d prior to initiating the optimized cryopreservation protocol increased the survival rate of the tissue to 75%, increased the regrowth rate to 60%, and more than doubled the number of regenerated shoots per explant. Following cryopreservation, greater than 90% of the regenerated shoots formed complete plantlets, and 81% of the regenerated plantlets survived and grew vigorously under greenhouse conditions.  相似文献   

8.
Tuberaria major is an endangered endemic species from the Algarve, in the south of Portugal. We investigated two techniques for the cryopreservation of T. major shoot tips, namely vitrification and encapsulation-dehydration. Before the cryopreservation trials, shoot tips were precultured for 1 day on liquid Murashige and Skoog (MS) medium containing 0.3 M sucrose. For the vitrification method, shoots tips were exposed for 0, 30, 60, 90 and 120 min to plant vitrification solution 2 (PVS2). As for the encapsulation-dehydration method, shoot tips were dried inside a laminar air flow cabinet for 0, 1, 2, 3, 4, 5 and 6 h at room temperature. The highest regrowth percentages were approximately 60 and 67 % for vitrification and encapsulation-dehydration, respectively. The best times were 60 min exposure to PVS2 for vitrification and 3 h desiccation for encapsulation-dehydration. Though these are preliminary results, the use of the cryopreservation techniques tested here proved to be an important asset in the conservation of this endangered species and will complement the conservation strategies previously developed.  相似文献   

9.
Arachis glabrata Benth (perennial peanut) is a rhizomatous legume with high forage value and great potential for soil conservation as well as it displays valuable plant genetic resources for the cultivated edible peanut improvement. In this study, we developed for the first time successful protocols for micropropagation and cryopreservation of A. glabrata. First fully expanded leaflets from greenhouse-growing plants were efficiently established in vitro (93%) and displayed high frequency of bud induction (58%) on MS medium with 6 mg L?1 1-fenil-3-(1,2,3-tiadiazol-5-il)urea [TDZ]. Whole plant regeneration was achieved via direct organogenesis by transferring the induced buds to MS media. Immature unexpanded leaves from micropropagated plants were effectively cryopreserved by using the droplet-vitrification technique. Maximum survival (~ 70%) and further regeneration (60–67%) were obtained by preconditioning immature leaves on semisolid MS with 0.3 M sucrose (1 d), exposing to loading solution consisting of 0.4 M sucrose plus 2 M glycerol (30 min) followed by glycerol-sucrose plant vitrification solution PVS3 (150 min in ice), and direct plunging into liquid nitrogen in droplets of PVS3 deposited on cryoplates. Tissues were rewarmed by plunging the aluminum foils directly in liquid MS enriched with 1.2 M sucrose (15 min) at room temperature. Growth recovery and plant regeneration were efficiently achieved via shoot organogenesis, and somatic embryogenesis by culturing cryostored explants on MS added with 6 mg L?1 TDZ. Genetic stability of plants derived from cryopreserved leaves was confirmed by random amplified polymorphic DNA markers. The protocols established in this study have great potential for rapid multiplication and conservation of selected A. glabrata genotypes.  相似文献   

10.
Here, we report an efficient and widely applicable method for cryopreservation of Malus shoot tips by encapsulation–dehydration using adventitious shoots. Shoots were induced from leaf segments cultured on a shoot induction medium containing 2–3 mg L?1 thidiazuron, depending on genotype, and 0.5 mg L?1 indole-3-butyric acid. Shoot tips (3 mm in length) containing six leaf primordia excised from 11-wk-old adventitious shoots were encapsulated and precultured with 0.5 M sucrose for 5 d, followed by air-drying for 6 h prior to direct immersion in liquid nitrogen. With our protocol, we obtained a mean organogenesis rate of 100%, a mean of 4.5 adventitious shoots per explant (leaf segment), and a mean shoot recovery of 57.0% from cryopreserved shoot tips in four Malus species. Inter-simple sequence repeat (ISSR) analysis did not reveal any polymorphic bands in regenerants recovered from either leaf segments or cryopreserved shoot tips of ‘Gala’. To the best of our knowledge, this is the first report on cryopreservation of Malus shoot tips using adventitious shoots derived from leaf segments and is the most widely applicable protocol so far reported for cryopreservation of Malus. Establishment of this protocol provides an alternative means for cryopreservation of Malus.  相似文献   

11.
In this work, we compared the efficiency of encapsulation-dehydration and droplet-vitrification techniques for cryopreserving grapevine (Vitis vinifera L.) cv. Portan shoot tips. Recovery of cryopreserved samples was achieved with both techniques; however, droplet-vitrification, which was used for the first time with grapevine shoot tips, produced higher regrowth. With encapsulationdehydration, encapsulated shoot tips were precultured in liquid medium with progressively increasing sucrose concentrations over a 2-day period (12 h in medium with 0.25, 0.5, 0.75 and 1.0 M sucrose), then dehydrated to 22.28% moisture content (fresh weight). After liquid nitrogen exposure 37.1% regrowth was achieved using 1 mm-long shoot tips and only 16.0% with 2 mm-long shoot tips. With droplet-vitrification, 50% regrowth was obtained following treatment of shoot tips with a loading solution containing 2 M glycerol + 0.4 M sucrose for 20 min, dehydration with half-strength PVS2 vitrification solution (30% (w/v) glycerol, 15% (w/v) ethylene glycol, 15% dimethylsulfoxide and 0.4 M sucrose in basal medium) at room temperature, then with full strength PVS2 solution at 0°C for 50 min before direct immersion in liquid nitrogen. No regrowth was achieved after cryopreservation when shoot tips were dehydrated with PVS3 vitrification solution (50% (w/v) glycerol and 50% (w/v) sucrose in basal medium).  相似文献   

12.
Our present study constitutes the successful and efficient protocol for cryopreservation of Dendrobium chrysanthum. D. chrysanthum Wall. ex Lindl. is a pharmaceutically valuable, ornamental epiphytic orchid of temperate and subtropical regions. On account of excellent herbal medicinal value and horticultural importance, D. chrysanthum is becoming rare due to over exploitation. For long-term conservation of this orchid, protocorm-like bodies of D. chrysanthum were excised and used for cryopreservation by encapsulation–vitrification. In this cryogenic procedure, PLBs were initially osmoprotected with a mixture of 0.4 M sucrose and 2 M glycerol, incorporated in the encapsulation matrix (comprising of 3 % (w/v) sodium alginate and 0.1 M CaCl2). Encapsulated protocorm-like bodies (PLBs) were then precultured on MS liquid medium supplemented with different concentrations of sucrose (0.06, 0.3, 0.5, 0.7 M), and loaded in a loading solution (comprised of 2 M glycerol and 0.4 M sucrose) for different duration to make the precultured PLBs tolerant to plant vitrification solution 2 (PVS2). Subsequently, the PLBs were subjected to PVS2 (Sakai et al. 1990) treatment at different time of exposure (minutes) and temperatures (0 °C and 25 °C). Encapsulated–vitrified PLBs were plunged directly into liquid nitrogen and stored for 1 h. Optimum result (survival 63.2 % and regrowth 59.9 %) was obtained when the beads treated with loading solution for 80 min followed by PVS2 treatment for 100 min. Regenerated plants showed normal morphology as that of control plants.  相似文献   

13.
We report a straightforward and widely applicable cryopreservation method for Lilium shoot tips. This method uses adventitious shoots that were induced from leaf segments cultured for 4 weeks on a shoot regeneration medium containing 1 mg/l α-naphthaleneacetic acid and 0.5 mg/l thidiazuron. Shoot tips (1.5–2 mm in length) including 2–3 leaf primordia were precultured on Murashige and Skoog (MS; 1962) medium with 0.5 M sucrose for 1 day and then treated with a loading solution containing 0.4 M sucrose and 2 M glycerol for 20 min, followed by a Plant Vitrification Solution 2 (PVS2) treatment for 4 h at 0 °C. Dehydrated shoot tips were transferred onto 2.5 µl PVS2 droplets on aluminum foil strips, prior to a direct immersion into liquid nitrogen for 1 h. Frozen shoot tips were re-warmed in MS medium containing 1.2 M sucrose for 20 min at room temperature, followed by post-thaw culture for shoot regrowth. Shoot regrowth levels ranged from 42.5 % for L. longiflorum × Oriental ‘Triumphator’ to 87.5 % for L. Oriental hybrid ‘Siberia’, with a mean shoot regrowth level of 67.1 % across the six diverse Lilium genotypes tested. Histological observations found that the survival patterns were similar in cryopreserved shoot tips of ‘Triumphator’ and ‘Siberia’. Assessments using inter-simple sequence repeat markers found no differences in regenerants recovered from the control stock cultures and from cryopreserved shoot tips in ‘Triumphator’ and ‘Siberia’. This Lilium droplet-vitrification cryopreservation method is efficient, simple and widely applicable for the long-term conservation of lily genetic resources.  相似文献   

14.
In vitro-cultured adventitious bud clusters of Guazuma crinita Mart. were successfully cryopreserved by the one-step vitrification method. Small segments (1.0-1.5 mm3) cut from adventitious bud clusters were exposed to a cryoprotectant mix solution containing (w/v), 25 glycerol, 15 sucrose, 15 ethylene glycol, 13 dimethyl sulfoxide, and 2 polyethylene glycol, at 25 °C for 15-60 min prior to storage in liquid nitrogen. After rapid warming (37 °C), the segments were treated with woody plant medium containing 40 (w/v) sucrose for 20 min at 25 °C, and then transferred to recovery-growth medium. High survival rates (about 80) were achieved without any cold hardening and/or pre-culturing treatments, and about 30 of the surviving cryopreserved explants regenerated plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
In vitro-grown shoot tips of Alnus glutinosa (L.) Gaertn. were successfully cryopreserved by vitrification. Shoot tips (0.5–1 mm) excised from 6-week-old shoots were precultured in hormone-free Woody Plant Medium (WPM) supplemented with 0.2 M sucrose, for 2 days at 4 °C in the dark, and then treated with a mixture of 2 M glycerol plus 0.4 M sucrose, for 20 min at 25 °C. Osmoprotected shoot tips were first dehydrated with 50 % vitrification solution (PVS2), for 30 min at 0 °C, and then placed in 100 % PVS2, for 30 min at 0 °C. The solution was replaced with fresh 100 % PVS2, and the shoot tips were plunged directly into liquid nitrogen. The shoot tips were rewarmed in a water bath at 40 °C for 2 min, and then washed twice, for 10 min at 25 °C, with 1.2 M sucrose solution, before being transferred onto WPM supplemented with 0.5 mg l?1 N 6-benzyladenine, 0.5 mg l?1 indole-3-acetic acid, 0.2 mg l?1 zeatin, 20 g l?1 glucose and 6 g l?1 Difco Bacto agar. The shoot tips were kept in darkness for 1 week and under dim lighting for another week, before being exposed to standard culture conditions (16 h photoperiod). This protocol was successfully applied to three alder genotypes, with recovery rates higher than 50 %.  相似文献   

16.
Apical meristems from adventitious buds induced by culturing of bulb-scale segments of Japanese Pink Lily (Lilium japonicum Thunb.) were successfully cryopreserved by a vitrification. The excised apical meristems were precultured on a solidified Murashige & Skoog medium, containing 0.3 M sucrose, for 1 day at 25°C and then loaded in a mixture of 2 M glycerol plus 0.4 M sucrose for 20 min at 25°C. Cryoprotected meristems were then sufficiently dehydrated with a highly concentrated vitrification solution (designated PVS2) at 25°C for 20 min or at 0°C for 110 min prior to a plunge into liquid nitrogen. After rapid warming in a water bath at 40°C, the meristems were placed in 1.8 ml of 1.2 M sucrose for 20 min and then, placed on filter papers over gellan gum-solidified MS medium. The revived meristems resumed growth within 5 days and directly produced shoots. The rate of shoot formation was approximately 80% after 4 weeks. When bulb-scale segments with adventitious buds were cold-hardened at 0°C for more than 7 days before the procedure, the rates of shoot formation were significantly increased. This vitrification method was successfully applied to five other lily cultivars. Thus, this vitrification procedure for cryopreservation appears promising as a routine method for cryopreserving meristems of lily.Abbreviations DMSO dimethylsulfoxide - EG ethylene glycol - LN liquid nitrogen - MS medium Murashige & Skoog (1962) medium - PVS2 vitrification solution  相似文献   

17.
A series of five experiments measured the high survival of bovine blastocysts produced in vitro after cryopreservation by vitrification. The vitrification solution (designated VS) contained 40% (v/v) ethylene glycol, 6% (w/v) polyethylene glycol and 0.5 M sucrose in phosphate-buffered saline. Embryos developed in vitro at Days 7 and 8 (Day 0 = insemination day) were exposed in one step to VS for 1 min or two steps with 10% ethylene glycol for 5 min and then VS for 1 min. In both cases, the embryos were finally cryopreserved in liquid nitrogen. After the embryos were warmed rapidly and the VS solution diluted, the survival rates were assessed by monitoring hatching rate in vitro. They were 13.0% for the one-step and 72.7% for the two-step procedures (P < 0.001). When embryos were exposed to individual solutions containing 6% (w/v) of each of 4 macromolecules (polyethylene glycol, BSA, polyvinylpyrrolidone or Ficoll) in the two-step protocol and then cryopreserved, the survival rates were 79.3, 34.8, 41.4 and 57.1%, respectively. After embryos had been exposed to the VS in two steps and then cryopreserved, there were no significant differences in survival rates when the solutions were diluted with or without sucrose. These results indicated that a vitrification solution containing polyethylene glycol can be used for cryopreservation of bovine blastocysts produced in vitro, and that a two-step addition of VS improved the in vitro survival of post-warming embryos. It was also shown to be possible to dilute post-warming embryos directly without the use of sucrose solution.  相似文献   

18.
The cryostoring of embryogenic tissue of the date palm (Phoenix dactylifera L. cv. Sagai) was examined through dehydrated-encapsulation, vitrification, and vitrification-encapsulation. The most extreme regeneration rate (53.33%) of epitomized, cryostored liquid nitrogen (+LN) treated embryos was observed when pre-embryonic masses were hatched with 0.5 M sucrose for 48 h pursued by 6 h air drying out. The most noteworthy survival rate (80.0%) of epitomized, cryopreserved embryonic cluster came about when calli were hatched with 0.3 or 0.7 M sucrose for 48 h pursued by four hours of lack of hydration, or with 0.5 M sucrose for 48 h without air drying out or with 2 h of air drying out. Following cryopreservation utilizing the embodiment vitrification convention, the most astounding survival (86.7%) as well as the greatest growth (46.7%) was accomplished when the typified vitrified, cryopreserved calli were treated with Vitrification Solution 2 for plants (PVS2) for 60 min at 25 °C. Cryopreservation utilizing the vitrification convention brought about the most extreme recuperation of 53.3%, when vitrified-cryopreserved calli were subjected to PVS2 solution for 30 min at 25 °C. Most extreme (40%) regeneration of vitrified, cryopreserved embryonic calli was seen when these calli were treated with PVS2 solution for 60 min at 25 °C. The outcome got amid this investigation of regrowth after cryopreservation of the cv. Sagai was over the base suitable for a cryo-germplasm bank. Recovery and regrowth were above 30% for all the techniques developed for the cv. Sagai.  相似文献   

19.
This study was carried out to optimize a modified droplet-vitrification procedure for the cryopreservation of shoot tips from different carnation genotypes. The best procedure was developed by applying orthogonal tests to the experimental data and by further investigation of the effects on the regrowth percentage. It consisted in preculturing shoot tips in liquid Murashige and Skoog (MS) medium with 0.3 M sucrose for 2 days, pretreating them in liquid MS medium with 5 % Dimethyl sulfoxide +5 % glycerol + 0.3 M sucrose for 10 min, osmoprotecting in Loading solution for 20 min at 25 °C, cryoprotecting with Plant vitrification solution No.2 (PVS2) for 60 min at 0 °C, transferring in drops of fresh PVS2 over aluminum strips and finally storing them in Liquid nitrogen. With the application of the optimized protocol, four carnation cultivars (‘Master’, ‘Calibra’, ‘Lamour’ and ‘Ofcar’) achieved regrowth percentage after cryopreservation ranging from 41 to 73 %. Ultrastructural observations investigated by using transmission electron microscopy showed that the cells encountered the stress during cryopreservation and the main damages occurred during the dehydration step. For surviving cells, the most of the damaged cells could be repaired after recovery growth. This modified protocol will aid in the long-term conservation of carnation germplasm and the ultrastructural studies will benefit for understanding the damage and recovery of the cells during cryopreservation.  相似文献   

20.
Teucrium polium L. with the common name of Felty Germander is one of the plants flora that is widely used in folk medicine in many Middle East countries, it is an endangered plant species and must be highly considered for preservation. Cryopreservation of T. polium by vitrification and encapsulation-dehydration was successfully achieved in this study. Shoot-tips were excised aseptically from in vitro grown plants and incubated for 3?days on solid hormone free-Murashige and Skoog (HF-MS) media supplemented with 0.3?M sucrose under complete darkness at 24?±?1?°C. In vitrification, shoot-tips were loaded in 0.4?M sucrose and 2?M glycerol for 20?min followed by desiccation with different combinations and concentrations of plant vittrification solution 2 (PVS2), before immersion in Liquid Nitrogen (LN). Whereas for the encapsulation-dehydration; shoot-tips were encapsulated in calcium alginate and dehydrated under laminar air flow cabinet for 0, 3, 6, or 9?h. A total of 60?% of the cryopreserved vitrified shoot-tips survived when desiccated in concentrated PVS2 solution for 20?min, whereas, 28?% of the cryopreserved vitrified shoot-tips were regrown after 20?min of desiccation by two step increase in PVS2 concentration. Complete survival were obtained for the non-cryopreserved encapsulated shoot-tips treated for 3?days in 0.5?M sucrose with MS media without or with 3?h of dehydration, whereas, only 20?% of the cryopreserved encapsulated shoot-tips were regrown. The procedures developed in this study are easy to handle and produced a high levels of shoot formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号