首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated tissue- and cell-specific accumulation of radish aquaporin isoforms by immunocytochemical analysis. In taproots, the plasma membrane aquaporins (RsPIP1 and RsPIP2) were accumulated at high levels in the cambium, while the tonoplast aquaporin (RsTIP) was distributed in all tissues. The three isoforms were highly accumulated in the central cylinder of seedling roots and hypocotyls, and rich in the vascular tissue of the petiole of mature plants. The results suggest that RsPIP1 and RsPIP2 are abundant in the cells surrounding the sieve tube of the radish plant. The swelling rate of protoplasts in a hypotonic solution was determined individually by a newly established method to compare the osmotic water permeability of different cell types. All cells of the cortex and endodermis in seedlings showed a high water permeability of more than 300 microm s(-1). There was no marked difference in the values between the root endodermis and cortex protoplasts, although the RsPIP level was lower in the cortex than in the endodermis. This inconsistency suggests two possibilities: (1) a low level of aquaporin is enough for high water permeability and (2) the water channel activity of aquaporin in the tissues is regulated individually. The uneven distribution of aquaporins in tissues is discussed along with their physiological roles.  相似文献   

2.
The osmotic water permeability ( P os) of cell membranes isolated from leaves of 40-, 50- and 60-day-old Mesembryanthemum crystallinum plants was estimated by measuring light-scattering kinetics using stopped-flow spectrophotometry. The measurements were performed on the plasma membrane (PM), purified tonoplast (TP), and TP-enriched vesicles. The PM and TP-enriched vesicles were obtained by partitioning the microsomal fraction in an aqueous polymer two-phase system, whereas the purified TP vesicles were prepared by microsomal vesicle flotation on a sucrose cushion. The P os of isolated membranes declined with plant age. The kinetic experiments showed that there was no difference between the P os of the PM and TP isolated from plants of all ages. A 24-h exposure of plants to 400 m M NaCl caused a decline in the P os as well. These findings suggest that, during M. crystallinum transition to CAM, which was induced by plant ageing or salinity, plant osmoregulatory responses included changes in the P os of the leaf-cell membranes. These variations in the P os are discussed in the context of adaptive mechanisms responsible for the maintenance of the water balance in the common ice plant.  相似文献   

3.
The osmotic water permeability of plasma membrane vesicles was examined after isolation from the roots of 7-day-old etiolated pea ( Pisum sativum, cv. Orlovchanin) seedlings grown at optimal temperature and those exposed to 1-day chilling at 8°C in the end of the growth period. The homogenization medium for obtaining plasma membranes was supplemented with either SH-reagents or protein phosphatase inhibitors. The plasmalemma vesicles were purified from the microsome fraction by means of two-phase polymer system. The osmotic water permeability of membrane vesicles was evaluated from the rate of their osmotically induced shrinkage. The lowering of growth temperature was accompanied by the increase in osmotic water permeability of plasmalemma. These changes occurred without the corresponding increase in aquaporin content or permeability of membrane lipid matrix. The membranes from cooled seedlings were markedly depleted in the content of SH-groups. Furthermore, the treatment of membrane samples with a thiol-reducing agent, tributylphosphine did not raise the SH-group content in membranes from chilled plants, unlike such changes in membranes from warm-grown plants. When the homogenization medium contained dithiothreitol and phenylarsine oxide (an inhibitor of tyrosine protein phosphatases), the osmotic permeability of plasmalemma in preparations from warm-grown seedlings also increased. Based on these results, it is supposed that aquaporin-mediated water permeability of membranes is regulated through different pathways under optimal and adverse conditions for plant growth. Direct action of endogenous SH redox regulators on aquaporin activity is likely under optimal growth conditions, while protein phosphatase might mediate changes in aquaporin activity under unfavorable growth conditions.  相似文献   

4.
Western-blot analysis was used to determine the contents of aquaporin isoforms MIP A, MIP B, and MIP C in cell membranes isolated from roots and leaves of Mesembryanthemum crystallinum plants with C3 and Crassulacean acid metabolism (CAM) types of photosynthesis. These membrane preparations were also used to assess osmotic water permeability; to this end, the rate of osmotic vesicle shrinking was registered as the light scattering intensity by the method of stopped flow. The cell membranes represented by the plasmalemma and the tonoplast-enriched fraction were obtained by separating the microsomes in a two-phase polymer system. Plant transition from C3 to CAM-photosynthesis occurred in the course of plant development or was induced by salinization. All three isoforms under study were found in the plasma membranes of roots and leaves of the C3 plants, whereas in the CAM plants, independent of the transition-inducing factor, the aquaporin contents notably decreased in the leaf membranes and remained unchanged in the roots. In the membranes isolated from roots and leaves of the C3 plants, the values of osmotic water permeability exceeded two–threefold the corresponding indices characteristic of the CAM plants. The authors believe that aquaporin isoforms in M. crystallinum are under the organ- and tissue-specific control.  相似文献   

5.
Aquaporins are integral membrane proteins of the tonoplast and the plasma membrane that facilitate the passage of water through these membranes. Because of their potentially important role in regulating water flow in plants, studies documenting aquaporin gene expression in specialized tissues involved in water and solute transport are important. We used in situ hybridization to examine the expression pattern of the tonoplast aquaporin ZmTIP1 in different organs of maize (Zea mays L.). This tonoplast water channel is highly expressed in the root epidermis, the root endodermis, the small parenchyma cells surrounding mature xylem vessels in the root and the stem, phloem companion cells and a ring of cells around the phloem strand in the stem and the leaf sheath, and the basal endosperm transfer cells in developing kernels. We postulate that the high level of expression of ZmTIP1 in these tissues facilitates rapid flow of water through the tonoplast to permit osmotic equilibration between the cytosol and the vacuolar content, and to permit rapid transcellular water flow through living cells when required.  相似文献   

6.
Members of the major intrinsic protein (MIP) family, described in plants as water-selective channels (aquaporins), can also transport small neutral solutes in other organisms. In the present work, we characterize the permeability of plant vacuolar membrane (tonoplast; TP) and plasma membrane (PM) to non-electrolytes and evaluate the contribution of MIP homologues to such transport. PM and TP vesicles were purified from tobacco suspension cells by free-flow electrophoresis, and membrane permeabilities for a wide range of neutral solutes including urea, polyols of different molecular size, and amino acids were investigated by stopped-flow spectrofluorimetry. For all solutes tested, TP vesicles were found to be more permeable than their PM counterparts, with for instance urea permeabilities from influx experiments of 74.9 +/- 9.6 x 10(-6) and 1.0 +/- 0.3 x 10(-6) cm sec-1, respectively. Glycerol and urea transport in TP vesicles exhibited features of a facilitated diffusion process. This and the high channel-mediated permeability of the same TP vesicles to water suggested a common role for MIP proteins in water and solute transport. A cDNA encoding a novel tonoplast intrinsic protein (TIP) homologue named Nicotiana tabacum TIPa (Nt-TIPa) was isolated from tobacco cells. Immunodetection of Nt-TIPa in purified membrane fractions confirmed that the protein is localized in the TP. Functional expression of Nt-TIPa in Xenopus oocytes showed this protein to be permeable to water and solutes such as urea and glycerol. These features could account for the transport selectivity profile determined in purified TP vesicles. These results support the idea that plant aquaporins have a dual function in water and solute transport. Because Nt-TIPa diverges in sequence from solute permeable aquaporins characterized in other organisms, its identification also provides a novel tool for investigating the molecular determinants of aquaporin transport selectivity.  相似文献   

7.
Heavy metals (HMs) are known to have negative effects on plant water status; however, the mechanisms by which plants rearrange their water relations to adapt to such conditions are poorly understood. Using the model plant Mesembryanthemum crystallinum, we studied disturbances in water status and rapid plant defence responses induced by excess copper or zinc. After a day of HM stress, reductions in root sap exudation and water deficits in leaf tissues became evident. We also observed several primary adaptive events, including a rapid decrease in the transpiration rate and progressive declines in the leaf-cell sap osmotic potential. Longer HM treatments resulted in reductions of total and relative water contents as well as proline accumulation, an increase in water retention capacity and changes in aquaporin gene expression. After 3 h of HM exposure, leaf expression of the McTIP2;2 gene, which encodes tonoplast aquaporin, was suppressed more than two-fold, thus representing one of the earliest responses to HM treatment. The expression of three additional aquaporin genes was also reduced starting at 9 h; this effect became more prominent upon longer HM exposure. These results indicate that HMs induce critical rearrangements in the water relations of M. crystallinum plants, based on the rapid suppression of transpiration flow and strong inhibition of root sap exudation. These effects then triggered an adaptive water-conserving strategy involving differential regulation of aquaporin gene expression in leaves and roots, further reductions in transpiration, and an accelerated switch to CAM photosynthesis.  相似文献   

8.
Intra- and transcellular water movements in plants are regulated by the water permeability of the plasma membrane (PM) and vacuolar membrane (VM) in plant cells. In the present study, we investigated the osmotic water permeability of both PM (P ( f1)) and VM (P ( f2)), as well as the bulk osmotic water permeability of a protoplast (P ( f(bulk))) isolated from radish (Raphanus sativus) roots. The values of P ( f(bulk)) and P ( f2) were determined from the swelling/shrinking rate of protoplasts and isolated vacuoles under hypo- or hypertonic conditions. In order to minimize the effect of unstirred layer, we monitored dropping or rising protoplasts (vacuoles) in sorbitol solutions as they swelled or shrunk. P ( f1) was calculated from P ( f(bulk)) and P ( f2) by using the 'three-compartment model', which describes the theoretical relationship between P ( f1), P ( f2) and P ( f(bulk)) (Kuwagata and Murai-Hatano in J Plant Res, 2007). The time-dependent changes in the volume of protoplasts and isolated vacuoles fitted well to the theoretical curves, and solute permeation of PM and VM was able to be neglected for measuring the osmotic water permeability. High osmotic water permeability of more than 500 mum s(-1), indicating high activity of aquaporins (water channels), was observed in both PM and VM in radish root cells. This method has the advantage that P ( f1) and P ( f2) can be measured accurately in individual higher plant cells.  相似文献   

9.
Protoplasts and vacuoles were isolated and purified in large numbers from the CAM plants Ananas comosus (pineapple) and Sedum telephium for protein characterization. Vacuoles were further fractionated to yield a tonoplast vesicle preparation. Polypeptides of protoplasts, vacuoles, and tonoplast vesicles were compared to whole leaf polypeptides from both plants by one-dimensional sodium dodecylsulfate-polyacrylamide gel electrophoresis. Approximately 100 vacuole polypeptides could be resolved of which 25 to 30% were enriched in the tonoplast vesicles. The proteins of protoplasts, vacuoles, and tonoplast vesicles from A. comosus were analyzed further by two-dimensional gel electrophoresis. When one-dimensional electrophoretograms of A. comosus polypeptides were stained with a glycoprotein-specific periodic acid Schiff stain, very few polypeptides appeared to be glycosylated, whereas a large number of glycosylated polypeptides were detected with a silver-based glycoprotein stain particularly in tonoplast vesicles. Analysis of the enzymic content of vacuoles from both plants indicated the presence of a variety of hydrolases, including bromelain as a major constituent of A. comosus. No substrate-specific ATPase, however, could be detected in vacuoles or tonoplast vesicles from either plant.  相似文献   

10.
11.
Suga S  Imagawa S  Maeshima M 《Planta》2001,212(2):294-304
Plant aquaporins occur in multiple isoforms and are distributed in both plasma membrane and tonoplast. We cloned cDNAs for plasma-membrane aquaporins (PAQ1, 1b, 1c, 2, 2b, and 2c) of radish (Raphanus sativus L.). The amino acid sequences of the PAQs showed on average 63% sequence identity. Their sequences were 23% identical to those of tonoplast aquaporins (γ- and δ-VM23). A comprehensive investigation of the aquaporin mRNAs, including VM23, in seedlings, plants, flowers and seeds of radish showed a marked accumulation of all the mRNAs in hypocotyls and growing taproots. In other organs, the mRNA level of each isoform varied according to the organ. In petals, stamens, pistils and sepals of flowers, the levels of PAQ1, 1b, 1c and γ-VM23 mRNAs were high, and mRNAs of all aquaporins except for δ-VM23 were detected at high levels in pericarps. The protein levels of aquaporins on the basis of the membrane protein were determined by immunoblotting. Proteins PAQ1 and VM23 were detected in every organ except for the mature petiole. The PAQ2 protein level was especially high in green cotyledons and leaves, but was extremely low in seedling cotyledons and hypocotyls. Proteins PAQ1, PAQ2 and VM23 were highly accumulated in growing pericarps, but not in the immature seeds. These results indicate that the gene expression of the aquaporin isoforms was individually regulated in an organ- and tissue-specific manner, and that the amounts of aquaporin protein, especially PAQ2, are regulated in certain tissues at the translational level and by the rate of protein turnover. Received: 10 February 2000 / Accepted: 30 June 2000  相似文献   

12.
Abstract Water-stressed pigeonpea leaves have high levels of osmotic adjustment at low leaf water potentials. The possible contribution of this adjustment of dehydration tolerance of leaves was examined in plants grown in a controlled environment. Osmotic adjustment was varied by withholding water from plants growing in differing amounts of soil, which resulted in different rates of decline of leaf water potential. The level of osmotic adjustment was inversely related to leaf water potential in all treatments. In addition, at any particular water potential, plants that had experienced a rapid development of stress exhibited less osmotic adjustment than plants that experienced a slower development of stress. Leaves with different levels of osmotic adjustment died at water potentials between –3.4 and –6.3 MPa, but all leaves died at a similar relative water content (32%). Consequently, leaves died when relative water content reached a lethal value, rather than when a lethal leaf water potential was reached. Osmotic adjustment delayed the time and lowered the leaf water potential when the lethal relative water content occurred, because it helped maintain higher relative water contents at low leaf water potentials. The consequences of osmotic adjustment for leaf survival in water-stressed pigeonpea are discussed.  相似文献   

13.
14.
Two different effects of calcium were studied, respectively, in plasma membrane vesicles and in protoplasts isolated from roots of control pepper plants (Capsicum annuum L cv. California) or of plants treated with 50 mM NaCl, 10 mM CaCl(2) or 10 mM CaCl(2) + 50 mM NaCl. Under saline conditions, osmotic water permeability (P ( f )) values decreased in protoplasts and plasma membrane vesicles, and the same reduction was observed in the PIP1 aquaporin abundance, indicating inhibitory effects of NaCl on aquaporin functionality and protein abundance. The cytosolic Ca(2+) concentration, [Ca(2+)](cyt), was reduced by salinity, as observed by confocal microscope analysis. Two different actions of Ca(2+) were observed. On the one hand, increase in free cytosolic calcium concentrations associated with stress perception may lead to aquaporin closure. On the other hand, when critical requirements of Ca(2+) were reduced (by salinity), and extra-calcium would lead to an upregulation of aquaporins, indicating that a positive role of calcium at whole plant level combined with an inhibitory mechanism at aquaporin level may work in the regulation of pepper root water transport under salt stress. However, a link between these observations and other cell signalling in relation to water channel gating remains to be established.  相似文献   

15.
Partitioning in a biphasic polymer system was used to isolate plasmalemma (PM) from roots and shoots of etiolated pea seedlings. The membrane preparations were used to assess the osmotic water permeability (P os) with the stopped-flow method. The Western-blot technique was employed to determine the membrane content of the PIP-family of aquaporins, and their activity was estimated by measuring the rate of osmotic vesicle shrinking in the presence of inhibitors, HgCl2 and AgNO3. Monobromobimane fluorescent dye was used to determine the quantity of sulfhydryl groups in cell membranes and follow the effect of SH-oxidizing (diamide) and SH-reducing (dithiothreitol and tributylphosphine) agents on P os of the root PM and oligomerization of aquaporins. The shoot PM was shown to combine high P os with low aquaporin content. In the root PM, P os was lower and the aquaporin content greatly exceeded that in the shoots. HgCl2 and AgNO3 did not decrease the rate of osmotic shrinking in root membrane vesicles, whereas considerably (by 40–50%) inhibited this index in the shoot membranes. Root and shoot PM preparations dramatically differed in their SH-group contents: the former exceeded the latter sixfold. When added to the homogenization medium, diamide and tributylphosphine affected the content of SH-groups and P os in the root PM. In the roots, diamide decreased the quantity of SH-groups almost twofold and increased P os fourfold, and the introduction of tributylphosphine produced a twofold increase in the quantity of SH-groups with only slight decrease in the P os. Immunological analysis of membranes isolated in the presence of diamide showed that the ratio between the monomer and dimer forms of aquaporins in two membrane preparations depended on the presence of dithiothreitol in the denaturing buffer apparently because dithiothreitol exposed and reduced disulfide bonds essential for monomer interactions and inaccessible for interaction with redox modifiers of SH-groups in the membrane. Because of their inaccessibility, these modifiers could not cause the changes of P os in the root PM produced by oxidation and reduction of SH-groups. This phenomenon is probably related to the change in the status of SH-groups in two cysteine residues at the N-end of the aquaporin loop C oriented outward into the apoplast.  相似文献   

16.
The effects of osmotic stress on H+-ATPase and H+-PPase activities and the levels of covalently conjugated polyamines (CC-PAs) and noncovalently conjugated polyamines (NCC-PAs) were investigated using tonoplast vesicles isolated from the roots of wheat (Triticum aestivum L.) seedlings differing in drought-tolerance. The results showed that after polyethylene glycol (PEG) 6,000 (–0.55MPa) treatment for 7 days, seedling leaf relative water content (LRWC), relative dry weight increase rate (RDWIR) and root H+-ATPase and H+-PPase activities from the drought-sensitive cultivar Yangmai No. 9 decreased more markedly than those from the drought-tolerant cultivar Yumai No. 18. At the same time, the increase of the NCC-spermidine (NCC-Spd) and CC-putrescine (CC-Put) levels in root tonoplast vesicles from Yumai No. 18 was more obvious than that from Yangmai No. 9. Exogenous Spd treatment alleviated osmotic stress injury to Yangmai No. 9 seedlings, coupled with marked increases of tonoplast NCC-Spd levels and H+-ATPase and H+-PPase activities. Treatments with methylglyoxyl bis (guanyl hydrazone) (MGBG), an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), and phenanthrolin, an inhibitor of transglutaminase (TGase), significantly inhibited the osmotically induced increases of NCC-Spd and CC-Put levels, respectively, in root tonoplast vesicles from Yumai No. 18 seedlings. Both MGBG and phenanthrolin treatments markedly promoted osmotically induced decreases of tonoplast H+-ATPase and H+-PPase activities and osmotic stress tolerance of seedlings of this cultivar. These results suggest that the NCC-Spd and CC-Put present in tonoplast vesicles isolated from wheat seedling roots might enhance the adaptation of seedlings to osmotic stress via maintenance of tonoplast H+-ATPase and H+-PPase activities.  相似文献   

17.
The method of stopped flow was used to follow the changes in light scattering by the vesicles of plasmalemma and tonoplast isolated from maize (Zea maysL.) roots and treated by osmotic pressure. In both membrane preparations, the rate of the process depended on the osmotic gradient and was described with the simple exponential function. The rate constants derived from these functions were the following: the coefficient of water permeability in the tonoplast (P= 165 ± 7 m/s) exceeded by an order of magnitude the corresponding index for plasmalemma (11 ± 2 m/s). The presence of HgCl2(1.6 nmol/g membrane protein) decreased the tonoplast water permeability by 80%. Microviscosity studies of the hydrocarbon zone in the isolated membranes by using a fluorescent diphenylhexatriene probe demonstrated that the two membranes do not differ in the phase state of their lipid bilayer. The authors conclude that the observed difference in water permeability does not depend on the state of the lipid phase and probably reflects the dissimilar functional activity of plasmalemma and tonoplast aquaporins.  相似文献   

18.
19.
钙素和水分亏缺对黄瓜叶片细胞质膜透性的影响   总被引:16,自引:0,他引:16  
用控制溶液的钙量[加或不加Ca(NO_3)_2]和渗透势(加聚乙二醇6000,202 g/L)的方法,研究了钙素和水分亏缺对黄瓜叶片细胞质膜透性的影响。结果表明:在渗透胁迫下,正常供钙的黄瓜叶片相对含水量(RWC)和膜透性变化较小、MDA增加不显著、SOD活性无明显改变;缺钙植株叶片的RWC随渗透胁迫处理线性下降,膜透性显著增大、MDA含量迅速提高、SOD活性也升高。在正常水分供应下,与供钙植株相比,缺钙植株SOD活性和MDA含量均较高,但RWC和膜透性无差异。在水分胁迫下,缺钙植株MDA和质膜透性与ΔRWC以及MDA与质膜透性之间均呈正相关。这些结果表明在水分胁迫下,缺钙处理叶片保水能力降低,使受害加重;同时,细胞质膜的稳定性降低。膜透性改变可能与在水分胁迫下体内的膜脂过氧化反应密切相关,即缺钙加速了膜脂过氧化反应,从而损害了质膜结构。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号