首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Capillary electrophoresis (CE) coupled to tandem mass spectrometry was applied to the chiral separation of baclofen using sulfobutylether-beta-cyclodextrin chiral selector in partial filling counter current mode. On-line UV detection was simultaneously used. Method optimization was performed by studying the effect of cyclodextrin and BGE concentration as well as sheath liquid composition on analyte migration time and enantiomeric resolution. The cyclodextrin showed stereoselective complexation towards baclofen enantiomers, allowing chiral resolution at low concentration. The CE capillary protrusion from the ESI needle relevantly affected the chiral resolution and the analyte migration time. Complete enantiomeric separation was obtained by using 0.25 M formic acid BGE containing 1.75 mM of chiral selector and water/methanol (30:70, v/v) 3% formic acid as sheath liquid. The method exhibited a LOD of 0.1 microg/mL (racemic concentration) in MS3 product ion scan mode of detection and was applied to the analysis of racemic baclofen in pharmaceutical formulations.  相似文献   

2.
Kwon C  Park H  Jung S 《Carbohydrate research》2007,342(5):762-766
Cyclic beta-(1-->3),(1-->6)-glucans, microbial cyclooligosaccharides produced by Bradyrhizobium japonicum USDA 110, were used as novel chiral additives for the enantiomeric separation of some flavanones such as eriodictyol, homoeriodictyol, hesperetin, naringenin, and isosakuranetin in capillary electrophoresis (CE). Among the flavanones, eriodictyol was separated with the highest resolution (R(s) 5.66) and selectivity factor (alpha 1.18) when 20mM cyclic beta-(1-->3),(1-->6)-glucans were added to the background electrolyte (BGE) at pH 8.3.  相似文献   

3.
An easy‐to‐prepare chiral CE method for the enantiomeric separation of 13 new amphetamine‐like designer drugs, using CDs as chiral selectors, was developed. Sulfated‐β‐CD was found to be the best chiral selector among the three used (sulfated‐β‐CD, caroboxymethyl‐β‐CD, dimethyl‐β‐CD). The separation of the analytes was achieved in a fused‐silica gel capillary at 20 °C using an applied voltage of +25 kV. The optimized background electrolyte consisted of 63.5 mM H3PO4 and 46.9 mM NaOH in water. Several electrophoretic parameters such as CD type, CD concentration (1 ? 40 mg/mL), buffer pH (2.6, 3.6, 5.0, 6.0), length of the capillary (70 ? 40 cm total length), amount of the organic solvent (methanol and acetonitrile) were investigated and optimized. Chirality 25:617–621, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
A simple and reliable capillary electrophoresis (CE) method with UV-vis detection is presented for the enantioselective separation and determination of vigabatrin enantiomers. Dehydroabietylisothiocyante (DHAIC), a novel chiral derivatizing reagent, was used for precolumn derivatization of vigabatrin enantiomers. Optimal separation was obtained with a running buffer consisting of 50 mM Na2HPO4 (pH 9.0), 17 mM sodium dodecyl sulfate (SDS) and 25% acetonitrile. The enantiomeric separation of vigabatrin derivatives was achieved within 25 min, and the resolution was found to be 2.1. Detection was followed by direct UV absorptiometric measurements at 202 nm. A calibration curve ranging from 0.3 to 6.0 microg/ml was shown to be linear, and the limit of detection was 0.15 microg/ml. The developed method has been applied to the determination of vigabatrin enantiomers spiked in human plasma, no interferences were found from endogenous amino acids.  相似文献   

5.
A capillary zone electrophoresis method with laser induced fluorescence detection for the chiral separation of highly fluorescent enantiomeric derivatives of d/l-Serine from 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-d/l-Serine) was developed and optimized. Enantiomeric separation of NBD-d/l-Serine was accomplished by using 40 mM hydroxypropyl-beta-cyclodextrin (HP-beta-CD) contained in 100 mM borate buffer, pH 10.0. A 70 cm (effective length of 50 cm) uncoated fused-silica capillary at a voltage of 15 kV was used for the separation. The optimized electrophoretic conditions were subsequently applied to the analysis of d-Serine in rat brain, and satisfactory analytical results with respect to accuracy were obtained. This assay showed acceptable precision, with linearity in the d-Serine concentration range of 0.2-20.0 microM. The limit of detection for d-Serine was 3.0 x 10(-7)M.  相似文献   

6.
Capillary zone electrophoresis (CZE) and micellar capillary electrophoresis (MCE) were applied for the enantiomeric separation of nine mononuclear tris(diimine)ruthenium(II) complexes as well as the separation of all stereoisomers of a dinuclear tris(diimine)ruthenium(II) complex. Nine cyclodextrin (CD) based chiral selectors were examined as run buffer additives to evaluate their effectiveness in the enantiomeric separation of tris(diimine)ruthenium(II) complexes. Seven showed enantioselectivity. Sulfated gamma-cyclodextrin (SGC), with four baseline and three partial separations, was found to be the most useful chiral selector. In CZE mode, the derivatized gamma-CDs were more effective than beta-CDs while sulfated CDs work better than carboxymethyl CDs. In MCE mode, hydroxypropyl beta-CD separated the greatest number of tris(diimine) ruthenium(II) complexes. The effects of chiral selector concentration, run buffer pH and concentration, the concentration ratio between chiral selector and other factors were investigated.  相似文献   

7.
Investigation of individual drug enantiomers is required in pharmacokinetic and pharmacodynamic studies of drugs with a chiral centre. Cyclodextrins (CDs) are extensively used in high-performance liquid chromatography as stationary phases bonded to a solid support or as mobile phase additives in HPLC and capillary electrophoresis (CE) for the separation of chiral compounds. We describe here the basis for the liquid chromatographic and capillary electrophoretic resolution of drug enantiomers and the factors affecting their enantiomeric separation. This review covers the use of CDs and some of their derivatives in studies of compounds of pharmacological interest.  相似文献   

8.
A capillary electrophoretic (CE) method for the enantioseparation of N‐protected chiral amino acids was developed using quinine and tert‐butyl carbamoylated quinine as chiral selectors added to nonaqueous electrolyte solutions (NACE). A series of various N‐derivatized amino acids were tested as chiral selectands, and in order to optimize the CE enantioseparation of these compounds, different parameters were investigated: the nature of the organic solvent, the combination of different solvents, the nature and the concentration of the background electrolyte, the selector concentration, the capillary temperature, and the applied voltage. The influence of these factors on the separation of the analyte enantiomers and the electroosmotic flow was studied. Generally, with tert‐butyl carbamoylated quinine as chiral selector, better enantioseparations were achieved than with unmodified quinine. Optimum experimental conditions were found with a buffer made of 12.5 mM ammonia, 100 mM octanoic acid, and 10 mM tert‐butyl carbamoylated quinine in an ethanol–methanol mixture (60:40 v/v). Under these conditions, DNB‐Leu enantiomers could be separated with a selectivity factor (α) of 1.572 and a resolution (Rs) of 64.3; a plate number (N) of 127,000 and an asymmetry factor (As) of 0.93 were obtained for the first migrating enantiomer. Chirality 11:622–630, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
Much attention has been paid to chiral ionic liquids (ILs) in analytical chemistry, especially its application in capillary electrophoresis (CE) enantioseparation. However, the investigation of chiral ionic liquids synergistic systems based on antibiotic chiral selectors has been reported in only one article. In this work, a novel chiral ionic liquid, tetramethylammonium‐L‐hydroxyproline (TMA‐L‐Hyp), was applied for the first time in CE chiral separation to evaluate its potential synergistic effect with clindamycin phosphate (CP) as the chiral selector. As observed, significantly improved separation was obtained in this TMA‐L‐Hyp/CP synergistic system compared to TMA‐L‐Hyp or a CP single system. Several primary factors that might influence the separation were investigated, including CP concentration, TMA‐L‐Hyp concentration, buffer pH, types and concentrations of organic modifier, applied voltage, and capillary temperature. The best results were obtained with a 40 mM borax buffer (pH 7.6) containing 30 mM TMA‐L‐Hyp, 80 mM CP, and 20% (v/v) methanol, while the applied voltage and temperature were set at 20 kV and 20°C, respectively. Chirality 27:598–604, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
The first CE method enabling the quantitation of the two enantiomers of bupropion was developed in this work. Electrokinetic chromatography (EKC) mode using cyclodextrins as chiral selectors was employed. A study on the enantiomeric separation ability of different neutral and anionic CDs was carried out. Sulfated-beta-CD was shown to provide the highest values for the enantiomeric resolution. The influence of some experimental conditions, such as pH, chiral selector concentration, temperature, and separation voltage on the enantiomeric separation of bupropion was also studied. The use of 10 mM sulfated-beta-CD in 50 mM borate buffer (pH 9.0) with an applied voltage of 30 kV and a temperature of 30 degrees C enabled the separation of the enantiomers of bupropion with high resolution (Rs > 7) and short analysis time (approximately 3.5 min). Finally, the method was successfully applied to the quantitation of bupropion in two pharmaceutical formulations.  相似文献   

11.
This work aimed to develop a chiral separation method of ketoconazole enantiomers using electrokinetic chromatography. The separation was achieved using heptakis (2, 3, 6‐tri‐O‐methyl)‐β‐cyclodextrin (TMβCD), a commonly used chiral selector (CS), as it is relatively inexpensive and has a low UV absorbance in addition to an anionic surfactant, sodium dodecyl sulfate (SDS). The influence of TMβCD concentration, phosphate buffer concentration, SDS concentration, buffer pH, and applied voltage were investigated. The optimum conditions for chiral separation of ketoconazole was achieved using 10 mM phosphate buffer at pH 2.5 containing 20 mM TMβCD, 5 mM SDS, and 1.0% (v/v) methanol with an applied voltage of 25 kV at 25 °C with a 5‐s injection time (hydrodynamic injection). The four ketoconazole stereoisomers were successfully resolved for the first time within 17 min (total analysis time was 28 min including capillary conditioning). The migration time precision of this method was examined to give repeatability and reproducibility with RSDs ≤5.80% (n =3) and RSDs ≤8.88% (n =9), respectively. Chirality 27:223–227, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
A chiral capillary electrophoresis method has been developed for the quantification of 0.1% of the enantiomeric impurity (dextrocetirizine) in levocetirizine and determination of both in pharmaceuticals using sulfated-β-cyclodextrins (CDs) as chiral selector. Several parameters affecting the separation were studied such as the type and concentration of chiral selectors, buffer composition and pH, organic modifier, mixtures of two CDs in a dual system, voltage, and temperature. The optimal separation conditions were obtained using a 50 mM tetraborate buffer (pH 8.2) containing 1% (w/v) sulfated-β-CDs on a fused-silica capillary. Under these conditions, the resolution of two enantiomers was higher than 3. To validate the method, the stability of the solutions, robustness (two level half fraction factorial design for 5 factors using 19 experiments [2(n-1)+3]), precision, linearity (dextrocetirizine 0.25-2.5 μg/ml, R(2) = 0.9994, y = 0.0375x + 0.0008; levocetirizine 15-100 μg/ml, R(2) = 0.9996, y = 0.0213x + 0.0339), limit of detection (0.075 μg/ml, 0.03% m/m), limit of quantification (0.25 μg/ml, 0.1% m/m), accuracy (dextrocetirizine 84-109%, levocetirizine 97.3-103.1%), filter effect, and different CD batches were examined. The validated method was further applied to bulk drug and tablets of levocetirizine.  相似文献   

13.
Liu P  He W  Zhao Y  Wang PA  Sun XL  Li XY  Zhang SY 《Chirality》2008,20(2):75-83
This paper describes an improved access to 1,4-bis (9-O-quininyl) phthalazine [(QN)(2)PHAL], a very useful chiral ligand for catalytic asymmetric dihydroxylation (AD), by using CaH(2) as acid-binding reagent in a high yield under mild conditions. The application of (QN)(2)PHAL to the AD reactions of eight olefins exhibited excellent enantioselectivity and activity with corresponding chiral vicinal diols. Furthermore, a capillary zone electrophoresis method was developed to separate the aforementioned chiral vicinal diols by using of neutral beta-cyclodextrin (beta-CD) as chiral selector and borate as running buffer. High resolution was achieved under the optimal conditions of beta-CD 2.2% (w/v), pH 10, 200 mM borate buffer at 15 kV, and 20 degrees C within 15 min. The relative standard deviations of the corrected peak areas and migration time were less than 3.9% and 1.3%, respectively. In addition, the developed method was successfully applied to the determination of the purity and the enantiomeric excesses value (%ee) of the AD reaction products.  相似文献   

14.
The chiral separation of (±)‐catechin was investigated by capillary electrophoresis using characterized succinyl‐β‐cyclodextrins (Suc‐β‐CDs) with one to three degree of substitution values. The effects of nature and concentration of Suc‐β‐CDs and running buffer pH on the migration time and resolution of (±)‐catechin are discussed. All three kinds of Suc‐β‐CDs show a clear baseline separation of (±)‐catechin in capillary electrophoresis. Mono‐Suc‐β‐CD effectively separated (±)‐catechin, and additional substituted CDs (di‐ and tri‐Suc‐β‐CD) were capable of chiral separation at a broad pH range. The optimum running conditions were found to be 100 mM borate buffer (pH 9.8) containing 5 mM mono‐Suc‐β‐CD with no methanol organic modifier. Chirality, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Mey B  Paulus H  Lamparter E  Blaschke G 《Chirality》1999,11(10):772-780
The enantiomers of the anorectic drug amfepramone [rac-diethylpropion, rac-2-(diethylamino)-1-phenyl-1-propanone; rac-DEP] were separated in the preparative scale by crystallization. With enantiopure di-O-benzoyltartaric acid as salt-forming chiral selector, diastereoisomeric salts of DEP enantiomers with a final purity of more than 97.5% were obtained. Analytical liquid chromatographic and electrophoretic methods for the control of the enantiomeric purity and the stoichiometry of the salts were developed. The enantioseparation of rac-DEP by capillary electrophoresis (CE) using hydroxypropyl-beta-cyclodextrin (HP-beta-CD) as chiral discriminator and phosphate buffer (pH 3.3) as run buffer led to good separations. HPLC methods were developed using polysaccharide chiral stationary phases (CSP). The separation of the two enantiomers and the two main degradation products (1-phenyl-1,2-propanedione and propiophenone), known from solid and liquid pharmaceutical preparations, was attained in one run on the silica-based CSP cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD). The conditions which might affect the enantioselectivity and the quality of the enantiomeric separation were investigated for Chiralcel OD and the related CSP amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD). Both CSPs showed very similar chromatographic properties. The separation factors could be influenced significantly by varying the polar organic modifier added to the mobile phase.  相似文献   

16.
Chiral ionic liquids (ILs) have drawn more and more attention in separation science; however, only a few papers focused on the application of chiral ILs as chiral ligands in LE‐CE. In this article, a novel amino acid ionic liquid (AAIL), tetramethylammonium L‐hydroxyproline ([TMA][L‐OH‐Pro]), was first applied as a chiral ligand to evaluate its enantioselectivity towards several aromatic amino acids in ligand‐exchange capillary electrophoresis (LE‐CE) and ligand‐exchange micellar electrokinetic capillary chromatography (LE‐MEKC). In the LE‐CE system, excellent separations were achieved for tryptophan (Rs = 3.03) and 3, 4‐dihydroxyphenylalanine (DOPA) (Rs = 4.35). Several parameters affecting the enantioseparation were systematically investigated, including AAIL concentration, type and concentration of central metal ion, buffer pH, as well as applied voltage. The optimum separation was obtained with 60 mM AAIL containing 30 mM Cu (II) at pH 4.5. Additionally, an LE‐MEKC system was established to further study the enantioselectivity of [TMA][L‐OH‐Pro] towards selected analytes. As observed, the separations of the enantiomers of tryptophan, phenylalanine, and histidine were all improved compared to the LE‐CE system. The results indicated that the application of AAILs as chiral ligands is a promising method in chiral separation science. Chirality 27:58–63, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Powerful capillary electrophoresis (CE) methods were developed for monitoring the reaction of ecto-5'-nucleotidase (ecto-5'-NT, CD73), a (patho)biochemically important enzyme that hydrolyzes nucleoside-5'-monophosphates to the corresponding nucleosides. The enzymatic reaction was performed either before injection into the capillary (method A) or directly within the capillary (method B). In method A, separation of substrates and products was achieved within 8 min using an eCAP fused-silica capillary (20 cm effective length, 75 microM i.d., UV detection at 260 nm), 40 mM sodium borate buffer (pH 9.1), normal polarity, and a constant voltage of 15 kV. In method B, the sandwich technique was applied; substrate dissolved in reaction buffer (10mM Hepes [pH 7.4], 2mM MgCl2, and 1mM CaCl2) was hydrodynamically injected into a fused-silica capillary (30 cm, 75 microM i.d.), followed by enzyme (recombinant rat ecto-5'-NT) and subsequent injection of substrate solution. The reaction was initiated by the application of 1 kV voltage for 1 min. The voltage was turned off for 1 min and again turned on at a constant voltage of 15 kV to elute products (nucleosides) within 4 min using borate buffer (40 mM, pH 9.1). Thus, assays could be performed within 6 min, including enzymatic reaction, separation, and quantification of the formed nucleoside. The CE methods were used for measuring enzyme kinetics and for assaying inhibitors and substrates. In addition, the online assay was successfully applied to melanoma cell membrane preparations natively expressing the human ecto-5'-NT.  相似文献   

18.
Chiral separation methods development using conventional techniques such as GC or HPLC requires a lot of experience, effort, and expense, due to the wide diversity of the optically active solutes and their possible chiral selectors. Capillary electrophoresis has received increased attention as an alternative technique for chiral separation due to its inherent high efficiencies and ease of methods development. However, due to the wide variety of chiral selectors available in CE, the benefits of this technique might be diminished without an appropriate methods development scheme. In this paper detailed examples are shown for fast, efficient, and predictable chiral capillary electrophoresis separation methods development based on a new and systematic theory. Optimized separations and their parameters are presented for several enantiomeric acids and bases. All the three possible cases, such as the use of low and high pH, as well as pH = pK buffer systems are thoroughly discussed. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Twelve nucleotides and seven nucleotide sugars in Chinese Hamster ovary (CHO) cells were determined by capillary electrophoresis (CE). The CE operating conditions of buffer pH value, ion strength, capillary temperature, polymer additive and cell extraction method were investigated. Optimum separation was achieved with 40 mM sodium tetraborate buffer (pH 9.5) containing 1% (w/v) polyethylene glycol (PEG) at a capillary temperature of 22 degrees C. Acetonitrile and chloroform were used for intracellular extraction. This method can be used to monitor intracellular carbohydrate metabolism.  相似文献   

20.
In this work, the capability of two polymeric drug delivery systems (DDS) containing racemic ibuprofen (IBU) for controlled release of IBU in different media was studied carrying out assays in-vitro. To quantitatively monitor the release of R(-)- and S(+)-IBU, a fast, sensitive and inexpensive capillary electrophoresis (CE) method was developed. To do this, different chiral selectors, temperatures, buffer compositions and pHs were tested. This new CE method uses bare silica columns together with a buffer containing 6% Dextrin in a 150 mM sodium tetraborate buffer at pH 9. Baseline separations of R(-)- and S(+)-IBU were achieved in less than 5 min at 20 degrees C. By using this method, both enantiomers can be determined at concentrations as low as 1 microg/ml, allowing the detection of enantiomeric percentages of 0.5% of R(-)-IBU in the presence of 99.5% of the optical antipode. Moreover, the method shows a high reproducibility for the same day and different days. The usefulness of this method to quantitatively monitor the release of R(-)- and S(+)-IBU from two different polymeric DDS is demonstrated. It is shown that the release rate of IBU depends on the spacer of the side residue used in the polymeric device. Also, it is demonstrated that the release of both enantiomers is enzymatically activated in rat plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号