首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue inhibitors of metalloproteinases (TIMPs) are expressed within the uteri of virtually all species where they are postulated to control extracellular matrix turnover, cellular apoptosis, and proliferation. The objective of the current study was to examine the steroidal regulation of uterine TIMP expression and to determine the potential role of the TIMP-1 gene product in this regulation. To accomplish these goals, ovariectomized female TIMP-1 wild-type and null mice were treated with estradiol, progesterone, or estradiol and progesterone and killed at various times after steroid administration. Estradiol induced a significant reduction in uterine TIMP-3 expression in wild-type mice at 8 and 24 h post-steroid administration, but the ability of this steroid to decrease TIMP-3 expression was impaired in the uteri of TIMP-1 null mice. Further, estrogen-induced uterine wet-weight gain/edema was enhanced in the TIMP-1 null mice, and the antiestrogen compound ICI 182780 or progesterone could only partially block this estrogenic effect. It is concluded from this study that steroidal modulation of uterine TIMP-3 expression and regulation of wet-weight gain/edema are altered in TIMP-1 null mice. These observations suggest that steroids induce uterine TIMP-1 expression and, in turn, that TIMP-1 influences TIMP-3 mRNA expression and uterine edema.  相似文献   

2.
3.
Postnatal uterine development is marked by periods of tissue remodeling. The objective of the present study was to examine the role of tissue inhibitor of metalloproteinase-1 (TIMP-1), a regulator of tissue remodeling events, during postnatal uterine development and to assess the phenotypic consequences of disruption of the TIMP-1 gene product during this time period. To accomplish this goal, wild-type and TIMP-1 null mice were sacrificed at Postnatal Days (PNDs) 5, 10, 15, 20, and 25 and uterine morphology, TIMP expression and matrix metalloproteinase (MMP) activity were assessed. In wild-type mice, TIMP-1 mRNA steady-state levels were highest at PND 5, after which expression decreased. TIMP-2 and TIMP-3 expression in wild-type mice showed no significant changes from PND 5 to 25. In TIMP-1 null mice, TIMP-2 and TIMP-3 expression patterns were similar to those in wild-type counterparts with the exception that, at PND 10, TIMP-2 and TIMP-3 expression was significantly lower in the null mice. Endometrial gland number and uterine histology were similar between genotypes at PNDs 5 and 10, but at PNDs 15 and 20, endometrial glands were more abundant in TIMP-1 null mice. Associated with the increased gland density in the null mice was an increase in total MMP activity above the levels expressed in wild-type mice. In summary, disruption of the TIMP-1 gene product is associated with reduced TIMP-2 and TIMP-3 steady-state mRNA levels, elevated MMP activity, and accelerated endometrial gland formation. We conclude that, during early postnatal uterine development, TIMP-1 may be critical for proper endometrial gland development.  相似文献   

4.
Tissue inhibitor of metalloproteinase-1 (TIMP-1) is a multifunctional protein expressed in the uterus of essentially all species, yet the function of this protein is uncertain. To assess the role of TIMP-1 in the uterine events that occur during the murine estrous cycle, mature female TIMP-1 wild-type and null mice were monitored for reproductive cyclicity. Mice were sacrificed in each stage of the estrous cycle, and peripheral blood was collected and assayed for serum estradiol and progesterone content by RIA. Uterine morphology and TIMP-1, TIMP-2, TIMP-3, and TIMP-4 mRNA expression were also examined between genotypes in each stage of the estrous cycle. Disruption of the TIMP-1 gene product was associated with an altered reproductive cycle characterized by a significant decrease in the length of the estrus period in the null mice. Also during the period of estrus, null mice expressed significantly lower levels of uterine TIMP-3 mRNA expression, altered uterine morphology, significantly higher serum estradiol levels, and significantly lower serum progesterone levels compared to their wild-type counterparts. It is concluded from this study that TIMP-1 has a multifaceted role in regulating the murine reproductive cycle, and this control appears to be at the level of both the uterus and the ovary.  相似文献   

5.
Estrogen stimulates water imbibition in the uterine endometrium. This water then crosses the epithelial cells into the lumen, leading to a decrease in viscosity of uterine luminal fluid. To gain insight into the mechanisms underlying this estrogen-stimulated water transport, we have explored the expression profile and functionality of water channels termed aquaporins (AQPs) in the ovariectomized mouse uterus treated with ovarian steroid hormones. Using immunocytochemical analysis and immunoprecipitation techniques, we have found that AQP-1, -3, and -8 were constitutively expressed. AQP-1 expression was restricted to the myometrium and may be slightly regulated by ovarian steroid hormones. AQP-3 was expressed at low levels in the epithelial cells and myometrium, whereas AQP-8 was found in both the stromal cells and myometrium. AQP-2 was absent in vehicle controls but strongly up-regulated by estrogen in the epithelial cells and myometrium of the uterus. This localization implicates all four isotypes in movement of water during uterine imbibition and, based on their localization to the luminal epithelial cells, AQP-2 and -3 in facilitating water movement into the lumen of the uterus. The analysis of the plasma membrane permeability of luminal epithelial cells by two separate cell swelling assays confirmed a highly increased water permeability of these cells in response to estrogen treatment. This finding suggests that estrogen decreases the luminal fluid viscosity, in part, by enhancing the water permeability of the epithelial layer, most likely by increasing the expression of AQP-2 and/or the availability of AQP-3. Together these results provide novel information concerning the mechanism by which estrogen controls water imbibition and luminal fluid viscosity in the mouse uterus.  相似文献   

6.
Pig blastocysts isolated between Days 10 and 16 of pregnancy release the protease, plasminogen activator (PA), into the medium in a time-dependent manner when cultured in vitro. Production is biphasic. The initial phase (Days 10-12) coincides with the early elongation stages, while release during the second phase (Days 14-16) occurs during a time at which the DNA content of the blastocysts is increasing markedly. Uterine flushings from these pregnant animals contain the zymogen substrate for PA, plasminogen, presumably as a serum transudate. Plasminogen is present in highest amounts at Day 12. The blastocyst, therefore, has the potential ability to generate the broadly specific protease, plasmin, within the uterine lumen. However, during this same period, the endometrium secretes an inhibitor of plasmin into the uterine lumen. In pregnant animals the amount of plasmin inhibitory activity rose 7-fold between Day 10.5, when the blastocysts were spherical, and Day 12, when they had become filamentous. At Day 12 each uterine horn contained about 3 to 4 mg of plasmin inhibitor. A similar release of inhibitor can be initiated in nonpregnant gilts given a single, intramuscular injection of estradiol valerate on Day 11 of the estrous cycle. It is suggested that the initiation of estrogen production by the elongating blastocyst triggers the release of plasmin inhibitor by the maternal endometrium and that the inhibitor serves to prevent a proteolytic cascade of reactions initiated by blastocyst PA, which might otherwise damage the uterine epithelium.  相似文献   

7.
8.
9.
10.
The cell cycle-regulatory protein, cyclin D1, is the sensor that connects the intracellular cell cycle machinery to external signals. Given this central role in the control of cell proliferation, it was surprising that mice lacking the cyclin D1 gene were viable and fertile. Fertility requires 17beta-estradiol (E2)-induced uterine luminal epithelial cell proliferation. In these cells E2 causes the translocation of cyclin D1/cyclin-dependent kinase 4 (CDK4) from the cytoplasm into the nucleus with the consequent phosphorylation of the retinoblastoma protein. In cyclin D1 null mice, E2 also induces retinoblastoma protein phosphorylation and DNA synthesis in a normal manner. CDK4 activity was slightly reduced in the D1 null mice compared with wild-type mice. This CDK4 activity was due to complexes of cyclin D2/CDK4. Cyclin D2 was translocated into the nucleus in response to E2 in the cyclin D1-/- mice to a much greater degree than in wild-type mice. This cyclin D2/CDK4 complex was also able to bind p27kip1 in cyclin D1-/- uterine luminal epithelial cells, allowing for the activation of CDK2. Our data show that in vivo cyclin D2 can completely compensate for the loss of cyclin D1 and reinforces the conclusions that cyclin Ds are the central regulatory point in the proliferative responses of epithelial cells to estrogens.  相似文献   

11.
12.
13.
The activation function-1 (AF-1) domain of the estrogen receptor alpha (ERalpha) in stromal cells has been shown to be required for epithelial responses to estrogen in the mouse uterus. To investigate the role of the stroma in estrogenic responses of human uterine epithelium (hUtE), human/mouse chimeric uteri composed of human epithelium and mouse stroma were prepared as tissue recombinants (TR) that were grown in vivo under the renal capsule of female nude mouse hosts. In association with mouse uterine stroma (mUtS), hUtE formed normal glands surrounded by mouse endometrial stroma and the human epithelium influenced the differentiation of stroma into myometrium, such that a histologically normal appearing uterine tissue was formed. The hUtE showed a similar proliferative response and increase in progesterone receptors (PR) in response to 17beta-estradiol (E2) in association with either human or mUtS, as TRs. However, under identical endocrine and micro-environmental conditions, hUtE required 5-7 days exposure to E2 rather than 1 day, as shown for mouse uterine epithelium, to obtain a maximal proliferative response. Moreover, this extended length of E2 exposure inhibited mouse epithelial proliferation in the presence of mouse stroma. In addition, unlike the mouse epithelium, which does not proliferate or show regulation of PR expression in response to E2 in association with uterine stroma derived from mice that are null for the AF-1 domain of ERalpha, hUtE proliferates and PR are up-regulated in response to E2 in association genetically identical ERalpha knock-out mouse stromal cells. These results clearly demonstrate fundamental differences between mouse and human uterine epithelia with respect to the mechanisms that regulate estrogen-induced proliferation and expression of PR. Moreover, we show that genetically engineered mouse models could potentially aid in dissecting molecular pathways of stromal epithelial interactions in the human uterus.  相似文献   

14.
The non-receptive uterine luminal epithelium forms an intact polarised epithelial barrier that is refractory to blastocyst invasion. During implantation, organised dismantling of this barrier leads to a receptive state promoting blastocyst attachment. Claudins are tight junction proteins that increase in the uterine epithelium at the time of implantation. Claudin 7 is a member of this family but demonstrates a basolateral localisation pattern that is distinct from other claudins. The present study investigated the localisation, abundance and hormonal regulation of claudin 7 to elucidate a role for the protein during implantation. The results showed that claudin 7 demonstrates a distinct basal and lateral localisation in the uterine luminal and glandular epithelium throughout early pregnancy. On day 1, claudin 7 is abundantly present in response to ovarian estrogen. At the time of implantation, claudin 7 decreases in abundance. This decrease is not dependent on blastocyst presence, as shown by results in pseudopregnant animals. We propose that claudin 7 mediates intercellular adhesions in the uterine epithelium and also may be responsible for stabilising adhesion proteins at the basolateral cell surface. Thus, claudin 7 may function under the maintenance of the uterine luminal epithelial barrier, in the non-receptive state preventing implantation from occurring.  相似文献   

15.
Occlusion and reformation of the rat uterine lumen during pregnancy   总被引:1,自引:0,他引:1  
Implantation sites were obtained from rats at various stages of pregnancy and were studied by light microscopy and scanning electron microscopy. Early in pregnancy the uterine luminal epithelium and the decidual cells in the implantation site formed an implantation chamber containing the conceptus. The epithelial cells lining the chamber and the mouth of the chamber degenerated, and the uterine lumen that was mesometrial to the conceptus was obliterated such that the uterine lumen became discontinuous, and the luminal epithelia of intersite areas were isolated. As the conceptus continued to grow, the decidua-conceptus unit bulged into the intersite areas and was partially covered by an epithelium that eventually became discontinuous and degenerated. Once this had occurred, the luminal epithelium of the intersite areas reestablished contact antimesometrial to the decidua-conceptus unit, and the uterine lumen was again continuous. However, the epithelium lining the lumen was not complete in the mesometrial region because of the vascular connections between the uterine stroma and the placenta. Factors influencing the restructuring of the uterine luminal epithelium were discussed.  相似文献   

16.
We have localized horseradish peroxidase (HRP) in the mouse uterus after intravenous administration on days 1 and 5 of pregnancy in an effort to understand how serum proteins reach the uterine lumen. Direct movement of HRP into uterine and glandular lumina was blocked by the epithelial tight junctions on both days. In luminal and glandular epithelial cells at both times, HRP was localized in endocytic vesicles along the basolateral membranes, multivesicular bodies (mvb), elongated dense bodies below the nucleus (bdb), and many small vesicles near the apical surface of the cells. The uptake of HRP was most extensive in the luminal epithelium on day 1: the number of tracer-containing apical vesicles and bdb was largest, and there were also clusters of vesicles containing the tracer above the nucleus. Acid phosphatase was localized on day 1 in mvb and bdb in both cell types, indicating that these structures are lysosomes. It appeared that HRP followed two pathways after basolateral endocytosis by the epithelial cells: it was transported to the apical region of the cells, where it was present in small vesicles that may release their contents into the uterine or glandular lumina, or it was transported to lysosomes. To investigate whether macromolecules may be transported from the uterine lumen to the stroma, we also studied endocytosis at the apical pole of luminal epithelial cells after intraluminal injection of HRP. There was no detectable uptake of HRP from the lumen on day 1, and no tracer was detected in the intercellular spaces or basement membrane region. On day 5, a large amount of HRP was taken up from the lumen into apical endocytic vesicles, mvb, and dense bodies, but tracer was not present in the Golgi apparatus, lateral intercellular spaces, or the basement membrane region at the times studied. These observations indicate that there was no transport of luminal macromolecules to the uterine stroma on day 1, while the possibility of transport on day 5 requires further study.  相似文献   

17.
Mice deficient in tissue inhibitor of metalloproteinase-3 (TIMP-3) develop an emphysema-like phenotype involving increased pulmonary compliance, tissue degradation, and matrix metalloproteinase (MMP) activity. After a septic insult, they develop a further increase in compliance that is thought to be a result of heightened metalloproteinase activity produced by the alveolar macrophage, potentially modeling an emphysemic exacerbation. Therefore, we hypothesized that TIMP-3 null mice lacking alveolar macrophages would not be susceptible to the altered lung function associated with a septic insult. TIMP-3 null and wild-type (WT) mice were depleted of alveolar macrophages before the induction of a septic insult and assessed for alteration in lung mechanics, alveolar structure, metalloproteinase levels, and inflammation. The results showed that TIMP-3 null mice lacking alveolar macrophages were protected from sepsis-induced alterations in lung mechanics, particularly pulmonary compliance, a finding that was supported by changes in alveolar structure. Additionally, changes in lung mechanics involved primarily peripheral tissue vs. central airways as determined using the flexiVent system. From investigation into possible molecules that could cause these alterations, it was found that although several proteases and inflammatory mediators were increased during the septic response, only MMP-7 was attenuated after macrophage depletion. In conclusion, the alveolar macrophage is essential for the TIMP-3 null sepsis-induced compliance alterations. This response may be mediated in part by MMP-7 activity but occurs independently of inflammatory cytokine and/or chemokine concentrations.  相似文献   

18.
Matrix metalloproteinases (MMPs) are mediators of lung injury, and their activity has been associated with the development of pulmonary fibrosis. To understand how MMPs regulate the development of pulmonary fibrosis, we examined MMP expression in two strains of mice with differing sensitivities to the fibrosis-inducing drug bleomycin. After a single intratracheal injection of the drug, bleomycin-sensitive C57BL/6 mice showed increased expression for MMPs (-2, -7, -9, -13) at both 7 and 14 days posttreatment compared with the bleomycin-resistant BALB/c strain. In addition, TIMP-1, an endogenous inhibitor of MMPs, was upregulated in the lungs of C57BL/6 mice but not BALB/c mice. We designed two strategies to decrease MMP expression to potentially decrease sensitivity of C57BL/6 mice: 1) we engineered C57BL/6 mice that overexpressed TIMP-1 in their lungs via surfactant protein C (SP-C) promoter; and 2) we inhibited expression of MMPs independent of TIMP-1 by knocking out metallothionein (MT), a critical zinc binding protein. SP-C-TIMP-1 mice reduced MMP expression in response to bleomycin. However, they were equally sensitive to bleomycin as their wild-type counterparts, displaying similar levels of hydroxyproline in the lung tissue. MT null mice displayed decreased lung activity of MMPs with no change in TIMP-1. Nonetheless, there was no difference between the MT null and wild-type control littermates with regards to any of the lung injury parameters measured. We conclude that although TIMP-1 expression is differentially regulated in fibrosis-sensitive and fibrosis-resistant strains, epithelial overexpression of TIMP-1 does not appear to substantially alter fibrotic lung disease in mice.  相似文献   

19.
The goal of our study was to analyse the prognostic values for some matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in breast cancer. We evaluated the activity and the expression levels of MMP-9, MMP-2, TIMP-1 and TIMP-2 in malignant versus benign fresh breast tumor extracts. For this purpose, gelatinzymography, immunoblotting and ELISA were used to analyse the activity and expression of MMPs and TIMPs. We found that MMP-9 expression level and activity are increased in malignant tumors. In addition, MMP-9/TIMP-1 and MMP-2/TIMP-2 ratio values obtained by us were significantly different in malignant tumors compared to benign tumors. We suggest that the abnormal MMP-9/TIMP-1 balance plays a role in the configuration of breast invasive carcinoma of no special type and also in tumor growth, while altered MMP-2/TIMP-2 ratio value could be associated with lymph node invasion and used as a prognostic marker in correlation with Nottingham Prognostic Index. Finally, we showed that in malignant tumors high expression of estrogen receptors is associated with enhanced activity of MMP-2 and increased bcl- 2 levels, while high expression of progesterone receptors is correlated with low TIMP-1 protein levels.  相似文献   

20.
Recent findings indicate that endothelial nitric oxide (NO) plays a key role in uterine artery outward circumferential remodeling during pregnancy. Although the underlying mechanisms are not known, they likely involve matrix metalloproteinases (MMPs). The goal of this study was to examine the linkage among NO inhibition, expansive remodeling, and MMP expression within the uterine vascular wall. Adult female rats were treated with N(G)-nitro-L-arginine methyl ester [L-NAME (LPLN)] beginning on day 10 of pregnancy and until death at day 20 and compared with age-matched controls [late pregnant (LP)]. Mean arterial pressure of LPLN rats was significantly higher than controls. LPLN fetal and placental weights were significantly reduced compared with controls. Main uterine arteries (mUA) were collected to determine dimensional properties (lumen area and wall thickness), collagen and elastin content, and levels of endothelial nitric oxide synthase (eNOS) and MMP expression. Circumferential remodeling was attenuated, as evidenced by significantly smaller lumen diameters. eNOS RNA and protein were significantly (>90%) decreased in the LPLN mUA compared with LP. Collagen and elastin contents were significantly increased in LPLN rats by ~10 and 25%, respectively, compared with LP (P < 0.05). Both MMP-2 and tissue inhibitors of metalloproteinase-2 as assessed by immunofluorescence were lower in the endothelium (reduction of 60%) and adventitia (reduction of 50%) of LPLN compared with LP mUA. Membrane bound MMP-1 (MT1-MMP) as assessed by immunoblot was significantly decreased in LPLN. These data suggest a novel contribution of MMPs to gestational uterine vascular remodeling and substantiate the linkage between NO signaling and gestational remodeling of the uterine circulation via altered MMP, TIMP-2, and MT1-MMP expression and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号