首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Analysis of electrically recorded feeding behaviour of aphids was combined with colony‐development tests to search for sources of resistance to Myzus persicae (Sulzer) (Homoptera: Aphididae) in tuber‐bearing Solanum species (Solanaceae), aiming at a reduction of potato leaf roll virus (PLRV) transmission. Twenty genotypes, originating from 14 gene bank accessions, representing 13 wild tuber‐bearing Solanum spp., three Solanum tuberosum L. (potato) cultivars, and one S. tuberosum breeding line, were selected. Colony‐development tests were carried out in no‐choice experiments by placing adult aphids on plants of each genotype and counting numbers of nymphs and adults on young plants after 8 and 15 days, and on flowering plants after 14 and 30 days. Large differences were observed among genotypes: some developed small colonies and others developed large ones. Also, in a few genotypes, resistance in mature plants was different for leaves of different ages; young leaves were resistant to aphids whereas old senescent leaves were susceptible. The electrical penetration graph (DC‐EPG system) technique was used to study aphid feeding behaviour on each Solanum genotype for 6 h. Electrical penetration graph (EPG) results also showed large differences among the genotypes, indicating resistance at the leaf surface and at three different levels of plant tissue (epidermis, mesophyll, and phloem). Therefore, it was concluded that different mechanisms of resistance to M. persicae exist among the genotypes analysed. EPGs recorded from aphids on Solanum berthaultii Hawkes and Solanum tarijense Hawkes with and without glandular trichomes showed that strong surface resistance can bias EPG parameters associated with resistance located in deeper tissues. Experimental evidence is presented that the resistance to aphids in the genotypes with glandular trichomes strongly depends on these morphological structures.  相似文献   

2.
Enzyme-linked immunosorbent assay (ELISA) was adapted for the efficient detection and assay of potato leafroll virus (PLRV) in aphids. Best results were obtained when aphids were extracted in 0.05 M phosphate buffer, pH 7.0, and the extracts incubated at 37 °C for 1 h before starting the assay. Using batches of 20 green peach aphids (Myzus persicae), about 0.01 ng PLRV/aphid could be detected. The virus could also be detected in single aphids allowed a 1-day acquisition access period on infected potato leaves. The PLRV content of aphids depended on the age of potato source-plants and the position of source leaves on them. It increased with increase in acquisition access period up to 7 days but differed considerably between individual aphids. A maximum of 7 ng PLRV/aphid was recorded but aphids more usually accumulated about 0.2 ng PLRV per day. When aphids were allowed acquisition access periods of 1–3 days, and then caged singly on Physalis floridana seedlings for 3 days, the PLRV content of each aphid, measured subsequently, was not strongly correlated with the infection of P. floridana. The concentration of PLRV in leaf extracts differed only slightly when potato plants were kept at 15, 20, 25 or 30 °C for 1 or 2 wk, but the virus content of aphids kept on leaves at the different temperatures decreased with increase of temperature. PLRV was transmitted readily to P. floridana at all temperatures, but by a slightly smaller proportion of aphids, and after a longer latent period, at 15 °C than at 30 °C. The PLRV content of M. persicae fed on infected potato leaves decreased with increasing time after transfer to turnip (immune to PLRV). The decrease occurred in two phases, the first rapid and the second very slow. In the first phase the decrease was faster, briefer and greater at 25 and 30 °C than at 15 and 20 °C. No evidence was obtained that PLRV multiplies in M. persicae. These results are compatible with a model in which much of the PLRV in aphids during the second phase is in the haemocoele, and transmission is mainly limited by the rate of passage of virus particles from haemolymph to saliva. The potato aphid, Macrosiphum euphorbiae, transmitted PLRV much less efficiently than M. persicae. Its inefficiency as a vector could not be ascribed to failure to acquire or retain PLRV, or to the degradation of virus particles in the aphid. Probably only few PLRV particles pass from the haemolymph to saliva in this species. The virus content of M. euphorbiae collected from PLRV-infected potato plants in the field increased from early June to early July, and then decreased. PLRV was detected both in spring migrants collected from the plants and in summer migrants caught in yellow water-traps. PLRV was also detected in M. persicae collected from infected plants in July and August, and in trapped summer migrants, but their PLRV content was less than that of M. euphorbiae, and in some instances was too small for unequivocal detection.  相似文献   

3.
Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) is a persistently transmitted circulative virus that depends on aphids for spreading. The primary vector of PLRV is the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Solanum tuberosum L. potato cv. Kardal (Solanaceae) has a certain degree of resistance to M. persicae: young leaves seem to be resistant, whereas senescent leaves are susceptible. In this study, we investigated whether PLRV‐infection of potato plants affected aphid behaviour. We found that M. persicae's ability to differentiate headspace volatiles emitted from PLRV‐infected and non‐infected potato plants depends on the age of the leaf. In young apical leaves, no difference in aphid attraction was found between PLRV‐infected and non‐infected leaves. In fact, hardly any aphids were attracted. On the contrary, in mature leaves, headspace volatiles from virus infected leaves attracted the aphids. We also studied the effect of PLRV‐infection on probing and feeding behaviour (plant penetration) of M. persicae using the electrical penetration graph technique (DC system). Several differences were observed between plant penetration in PLRV‐infected and non‐infected plants, but only after infected plants showed visual symptoms of PLRV infection. The effects of PLRV‐infection in plants on the behaviour of M. persicae, the vector of the virus, and the implications of these effects on the transmission of the virus are thoroughly discussed.  相似文献   

4.
When turnip plants with 3–7 leaves were inoculated with cabbage black ringspot virus (CBRSV) on the 3rd rough-leaf, symptoms only appeared on leaves that had been less than 15 mm long at the time of inoculation, although infection decreased the area and both fresh and dry weight of all leaves. Leaves were ‘aged’ by their appearance and placed in Leaf Age Categories (LACs). Leaves with symptoms senesced (‘aged’) prematurely. CBRSV-infection of cv. Green Top White did not change the distribution of populations of Myzus persicae between LACs, but increased the proportion of the plant suitable for colonisation. All suitable LACs were quickly colonised by adult apterae and nymphs. On CBRSV-infected plants the nymphal period was shorter, F1 adults deposited larvae more frequently and the live body weight and tibial length of the F2 generation was greater, than on healthy plants. The distribution of Brevicoryne brassicae populations on cv. Green Top White differed from that of M. persicae but was also unchanged by CBRSV-infection. On healthy plants the largest colonies were on mature leaves, so that on virus-infected plants premature senescence shortened the life of the colony. On CBRSV-infected plants the nymphal period was prolonged and the live weight of F1 and F2 adult apterae was less than on healthy plants. The differences between the biology of M. persicae and B. brassicae on CBRSV-infected cv. Green Top White were associated with the accelerated senescence of CBRSV-infected leaves. The possibility that CBRSV-infection might reduce the resistance of turnips to aphid infestation was tested. M. persicae and B. brassicae were cultured on two favourable and two less favourable cultivars. No improvement in population growth rate was found when the less favourable host cultivars were infected with CBRSV, but both aphid species weighed less and/or had smaller nymphal populations on cultivars showing the severest symptoms. These results are discussed in relation to the evolution of non-persistent virus transmission by aphids.  相似文献   

5.
The green peach aphid, Myzus persicae, is a major pest worldwide. An examination of the impact of temperature, relative humidity (RH) and developmental stages of M. persicae on the efficacy of the whitefly mycoinsecticide Mycotal®, based on Lecanicillium muscarium and the effects of infection on aphid fecundity was evaluated under controlled conditions. Although this fungus can be grown at a broad range of temperatures (15–30°C), the optimum temperature for control of M. persicae ranged between 20 and 30°C. L. muscarium had high efficacy as a microbial control agent against M. persicae between 55% and 90% RH. Total mortality of aphids treated with different spore dosages of L. muscarium varied according to the developmental stage: adults, fourth and third instar nymphs proved more susceptible than first instar nymphs. Although the fungus did not affect the rate of nymph production, the reproductive period of aphids significantly decreased with increasing the spore dosage. Thus, total fecundity of treated aphids was 22.6 ± 1.1 and 31.6 ± 2.4 offspring per adult at the medium (644 ± viable spore/mm2) and low (330 ± 40 viable spore/mm2) dosages, compared with 45.7 ± 4.3 offspring per untreated aphid. The results suggest that L. muscarium has the potential as a biological control agent of M. persicae.  相似文献   

6.
Levels and components of resistance to Amphorophora idaei in raspberry cultivars containing different A. idaei resistance genes were studied under infestation tunnel, glasshouse and laboratory conditions. Each test consistently ranked raspberry cultivars, with increasing levels of resistance in the order, non-resistant (cv. Mailing Jewel), resistant cultivars containing minor genes, major gene A1, gene A10 (red raspberry) and gene A10 (black raspberry) respectively. Resistance was expressed in three different ways; decreased alatae settling and feeding, decreased apterae settling and decreased aphid fecundity and rate of nymphal development. Following exposure to a large population of alatae, significantly fewer aphids settled on A1, A10 and to a lesser extent, minor gene-containing cultivars, compared to cv. Mailing Jewel. More alatae settled on the top than the bottom zone of non-resistant, minor gene resistant and two of four A1-containing cultivars; alatae settling was low on all zones of A10-containing raspberries. Aphid fecundity and nymph development patterns on different cultivars and resistance classes were similar to those found for alatae settling. After 7 days reproduction more than 30% of the nymphs developed to third or fourth instar on cv. Mailing Jewel, whilst on minor gene and major gene-containing cultivars the total number of nymphs and the proportion of later instars decreased. On resistant cultivars the nymphs were found mainly on the middle and bottom leaf zones, compared to cv. Mailing Jewel. A rapid (48 h) screening test using floating leaflets was developed and, on the basis of apterae settling, ranked cultivars reliably; it was particularly effective in distinguishing moderate and strong resistance to strain 1 A. idaei. Gene A1-containing cultivars bred in England were much more resistant to strain 1 A. idaei than those bred in Scotland. Possible reasons for this difference are discussed, in relation to modified screening procedures and to the control of the viruses transmitted by this aphid vector.  相似文献   

7.
Two generations of two aphid species (Myzus ascalonicus and M. persicae) were reared on Plantago lanceolata plants, with and without root colonization by the arbuscular mycorrhizal fungus, Glomus intraradices. Life history traits of the aphids measured were nymphal development time, teneral adult weight, growth rate, total fecundity, adult longevity and duration of post-reproductive life. For both aphids in both generations, mycorrhizal colonization increased aphid weight and fecundity, while other traits were unaffected. The increases were consistent between generations. In a second experiment, M. persicae was reared on plants with and without the fungus, under varying N and P regimes. The results of N addition were inconclusive because there was high aphid mortality. However, under P supplementation, positive effects of the mycorrhiza on aphid growth were seen at low and medium P levels, while at high P levels these effects disappeared. The positive effects of mycorrhizal colonization reported here are contrary to the majority of previous studies with chewing insects, which have reported negative effects. A number of possible mechanisms for this apparent discrepancy are discussed. Received: 1 February 1999 / Accepted: 22 March 1999  相似文献   

8.
Growth, reproduction and survival (=performance) of the aphidMyzus persicae Sulzer was measured on virus-free and virus-infected potato plants The principle objective was to evaluate if various viral infections affected aphid performance differently, and if so, whether any order in the performance response of the aphid was discernible according to the type of virus-vector relationship. Three viruses varying in their dependency onM. persicae as a vector were used. Plants infected with potato leafroll virus (PLRV), a circulative virus highly dependent uponM. persicae for dispersal and transmission, were superior hosts as determined by the significantly greater mean relative growth rate (MRGR) and intrinsic rate of increase (rm) ofM. persicae compared with those of aphids reared on other plants. Plants infected with potato virus Y, a noncirculative virus less dependent uponM. persicae for dispersal than PLRV, were intermediate in their quality based upon intermediate MRGR and rm values. Plants infected with potato virus X, a nonvectored virus independent ofM. persicae, were least suitable hosts along with the group of virus-free plants according to the lower MRGR and rm values.  相似文献   

9.
Aphis gossypii is the main virus vector in muskmelon crops. The melon gene Vat confers resistance to non‐persistent virus transmission by this aphid. The mechanism of this resistance is not well understood, but no relationship has been detected between resistance and the probing behaviour of aphids on resistant plants. Results presented here suggest that temporary blockage of aphid stylet tips preventing virus particle release may explain the resistance conferred by Vat gene. We performed experiments in which viruliferous aphids were allowed to probe different sequences of resistant (Vat‐bearing) and/or susceptible melon plants. The results demonstrated that A. gossypii inoculates Cucumber mosaic virus (CMV) efficiently in susceptible plants having previously probed resistant plants, showing that the resistance mechanism is reversible. Furthermore, the infection rate obtained for susceptible plants was the same (25%) regardless of whether the transmitting aphid had come directly from the CMV source or had subsequently probed on resistant plants. This result suggests that virus is not lost from stylet to plant during probing of resistant plants, supporting the temporary blockage hypothesis. We also found that the ability of Myzus persicae to transmit CMV is noticeably reduced after probing on resistant plants, providing evidence that this aphid species also responds to the presence of the Vat gene. Finally, we also found that in probes immediately after virus acquisition M. persicae inoculates resistant plants with CMV more efficiently than susceptible plants, perhaps because the Vat gene product induces increased salivation by this aphid.  相似文献   

10.
Differences in inherited resistance among seven sugar-beet stocks had similar effects on Myzus persicae clones representing the range of variation in aphid response to resistant and susceptible sugar beet observed in fifty-eight clones collected between 1969 and 1971. Three sugar-beet stocks were consistently resistant. Statistically significant interactions between beet stocks and aphid clones did not indicate the existence of biotypes with specific abilities to overcome resistance. M. persicae clones differed in their vigour of colonizing sugar beet, irrespective of the differences between beet stocks. The readiness of adult aphids to settle determined the size of aphid population produced and included a component related to the response of the aphid clone to sugar beet as a host, and a component related to the resistance ranking of the beet stock. Breeding sugar beet with resistance to aphids will be simplified, as the results indicate that, at present, differences between aphid biotypes need not be considered a problem.  相似文献   

11.
Insect growth regulating effects of neem extract and azadirachtin on aphids   总被引:1,自引:0,他引:1  
Neem,Azadirachta indica (A. Juss.), seed oil (NSO) applied to leaf discs at a concentration of 1.0% resulted in 94% to 100% mortality of second instar nymphs of currant-lettuce aphid,Nasonovia ribis-nigri (Mosley), and green peach aphid,Myzus persicae (Sulzer), after nine days. The equivalent amount of pure azadirachtin (AZA) (≈40 ppm), the principle active ingredient of neem, was as effective as NSO. The survival of adult aphids was unaffected by NSO or AZA, but the survival of offspring from treated adultM. persicae andN. ribis-nigri was reduced significantly. The lethal concentration of AZA resulting in 50% mortality of second instar nymphs of nine species of aphids ranged from 2.4 ppm forM. persicae on pepper to 635.0 ppm for the strawberry aphid,Chaetosiphon fragaefolii (Cockerell), on strawberry. ForM. persicae, the growth regulating effect of AZA was influenced by the host plant and the nymphal instar treated.  相似文献   

12.
Enzyme-linked immunosorbent assay was used to measure the concentration of potato leafroll virus (PLRV) antigen in different parts of field-grown secondarily infected plants of three potato genotypes known to differ in resistance to infection. The antigen concentration in leaves of cv. Maris Piper (susceptible) was 10–30 times greater than that in cv. Pentland Crown or G 7445(1), a breeder's line (both resistant). Differences between genotypes in antigen concentration were smaller in petioles and tubers (5–10-fold) and in above-ground stems (about 4-fold), and were least in below-ground stems, stolons and roots (about 2-fold). PLRV antigen, detected by fluorescent antibody staining of tissue sections, was confined to phloem companion cells. In Pentland Crown, the decrease in PLRV antigen concentration in leaf mid-veins and petioles, relative to that in Maris Piper, was proportional to the decrease in number of PLRV-containing companion cells; this decrease was greater in the external phloem than in the internal phloem. The spread of PLRV infection within the phloem system seems to be impaired in the resistant genotypes. Green peach aphids (Myzuspersicae) acquired < 2800 pg PLRV/aphid when fed for 4 days on infected field-grown Maris Piper plants and < 58% of such aphids transmitted the virus to Physalis floridana test plants. In contrast, aphids fed on infected Pentland Crown plants acquired <120 pg PLRV/aphid and <3% transmitted the virus to P. floridana. The ease with which M. persicae acquired and transmitted PLRV from field-grown Maris Piper plants decreased greatly after the end of June without a proportionate drop in PLRV concentration. Spread of PLRV in potato crops should be substantially decreased by growing cultivars in which the virus multiplies to only a limited extent.  相似文献   

13.
《Journal of Asia》2019,22(1):194-202
While chemical application can control aphid outbreaks, the overuse of insecticides can make aphids more resistant to these insecticides. These effects make strategies such as host plant resistance combined with biological control agents as an important part of alternative control methods. In this study, the performance of the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) and its parasitoid wasp, Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae) were determined on different pepper cultivars (California, Hamedan, Minab, Sabz-Farangi, Sabz-Ghalami, Semnan, Shahroud, and Tehran) in a growth chamber at 25 ± 1 °C, 60 ± 5% RH and a 16:8 h L:D photoperiod. The intrinsic rate of increase (r) of the aphid on the above-mentioned cultivars was 0.3203, 0.3891, 0.3594, 0.3152, 0.3512, 0.3032, 0.3352 and 0.2787 day−1, respectively. Comparison of the intrinsic rate of increase (r) on different pepper cultivars revealed that Hamedan was the most susceptible and Tehran was the most resistant cultivar. The parasitoids reared on the aphids fed on the susceptible cultivar (Hamedan) had a higher intrinsic rate of increase (0.2641 day−1) than those (0.2259 day−1) reared on the resistant cultivar (Tehran). These results demonstrated that the quality of host plant affected the performance of M. persicae and its parasitoid D. rapae.  相似文献   

14.
Supercooling point studies were used to investigate the factors influencing the cold hardiness of the peach-potato aphid Myzus persicae, a freezing-susceptible insect. Overwintering adults lost cold hardiness as winter progressed, with a variable proportion showing a marked reduction in supercooling ability. Cold hardiness increased in spring so that all individuals demonstrated extensive supercooling ability typical of aphids reared in the laboratory at 20°C with a long photoperiod; these levels of cold hardiness were maintained in the field during summer and early autumn. First instar nymphs demonstrated considerable cold hardiness all year. Surface moisture caused inoculative freezing in some first instar nymphs and adults when supercooled, but the majority were unaffected. In the laboratory, adults starved for 7 days at 5°C showed distinct losses of supercooling potential equivalent to those observed in the field during mid to late winter. No loss of cold hardiness was found in first instar nymphs starved under the same conditions. The results demonstrate that the cold hardiness characteristics of M. persicae are atypical of those observed in other freezing-susceptible insects and it is suggested that continued feeding during mild winter conditions allows maintenance of cold hardiness particularly in adult aphids, and provides a possible explanation for the successful anholocyclic overwintering of M. persicae during such winters.  相似文献   

15.
Little is known about the simultaneous effects of drought stress and plant resistance on herbivorous insects. By subjecting the green peach aphid Myzus persicae Sulzer to well‐watered and drought‐stressed plants of both susceptible and resistant peach (Prunus persica), the effects of both stressors on aphid performance and proteomics are tested. Overall, the influence of the water treatment on aphid performance is less pronounced than the effect of host plant genetic resistance. On the susceptible cultivar, aphid survival, host acceptance and ability to colonize the plant do not depend on water treatment. On the resistant cultivar, aphid survival and ability to colonize are higher on drought‐stressed than on well‐watered plants. A study examining the pattern of protein expression aiming to explain the variation in aphid performance finds higher protein expression in aphids on the drought‐stressed susceptible cultivars compared with the well‐watered ones. In the susceptible cultivar, the regulated proteins are related to energy metabolism and exoskeleton functionality, whereas, in the resistant cultivar, the proteins are involved with the cytoskeleton. Comparison of the protein expression ratios for resistant versus susceptible plants reveals that four proteins are down‐regulated in well‐watered plants and 15 proteins are down‐regulated in drought‐stressed plants. Drought stress applied to the susceptible cultivar induces the regulation of proteins in M. persicae that enable physiological adaptation to maintain an almost unaltered aphid performance. By contrast, for aphids on the resistant cultivar subjected to drought stress, the down‐regulation of proteins responds to an induced host susceptibility effect.  相似文献   

16.
Damaging effects of either black bean aphid (Aphis fabae), broad bean rust (Uromyces viciae-fabae), or the combination of both were investigated on a susceptible (cv. Diana) and an aphid resistant (cv. Bolero) cultivar of Vicia faba. When compared with rust, aphids caused greater reductions of root dry weight, shoot dry weight, leaf area, and mean relative growth rate. The mean unit leaf rate was also reduced whereas the leaf area ratio was not affected. The damage caused per aphid was highest on the susceptible cultivar. Rust induced damage did not differ between the cultivars. Concomitant infestation with both pests only resulted in additive damage. The population development of aphids was delayed on partially resistant plants. High temperature and rust infection reduced the total number of aphids the plants were able to support but not the level of resistance. Thus the specific damaging effect per aphid was increased.  相似文献   

17.
Life table data forAphis gossypii Glover (Homoptera: Aphididae), an important pest in glasshouse cucumber crops, were studied at 20, 25 and 30°C on two cucumber cultivars (Cucumis sativus L.) in controlled climate cabinets. The development time on the cucumber cv. ‘Sporu’ ranged from 4.8 days at 20°C to 3.2 days at 30°C. Immature mortality was approximately 20% and did not differ between temperatures. Most mortality occurred during the first instar. Reproduction periods did not differ among temperatures, but at 25 and 30°C more nymphs were produced (65.9 and 69.8 nymphs/♀, respectively) than at 20°C (59,9 nymphs/♀) because of a higher daily reproduction. Intrinsic rate of increase was greatest at 25°C (r m =0.556 day−1). At 20 and 30°C the intrinsic rate of increase was 0.426 and 0.510, respectively. On cv. ‘Aramon’, the development time ofA. gossypii was approximately 20% longer at all temperatures. Immature mortality did not differ between the two cultivars. The intrinsic rate of increase on cv. ‘Aramon’ was 15% smaller than on cv. ‘Sporu’. The use of cucumber cultivars partially resistant to aphids is discussed in relation to biological control of cotton aphid in glasshouses. Development time and immature mortality on leaves of the middle and upper leaf layer of glasshouse grown cucumber plants (cv. ‘Aramon’) were comparable to development in the controlled climate cabinets. On the lower leaves immature mortality was much higher (approximately 82%) than on leaves of the middle (24.0%) and upper leaf layer (24.5%). Reproduction was less on the lower leaf layer (45.9, 70.5 and 70.1 nymphs/♀ on leaves of the lower, middle and upper leaf layer, respectively). Aphids, successfully parasitized byAphidius colemani Viereck (Hymenoptera: Braconidae) only reproduced when they were parasitized after the third instar. Fecundity was 0.1 to 0.9 and 10.5 to 13.3 nymphs/♀ for aphids parasitized in the fourth instar or as adults, respectively. Reproduction of aphids that were stung but survived the attack was lower than for aphids not stung. Average longevity of these aphids was equal to the longevity of aphids not stung byA. colemani.  相似文献   

18.
Young leaves of the potato Solanum tuberosum L. cultivar Kardal contain resistance factors to the green peach aphid Myzuspersicae (Sulzer) (Hemiptera: Aphididae) and normal probing behavior is impeded. However, M. persicae can survive and reproduce on mature and senescent leaves of the cv. Kardal plant without problems. We compared the settling ofM. persicae on young and old leaves and analyzed the impact of aphids settling on the plant in terms of gene expression. Settling, as measured by aphid numbers staying on young or old leaves, showed that after 21 h significantly fewer aphids were found on the young leaves. At earlier time points there were no difference between young and old leaves, suggesting that the young leaf resistance factors are not located at the surface level but deeper in the tissue. Gene expression was measured in plants at 96 h postinfestation, which is at a late stage in the interaction and in compatible interactions this is long enough for host plant acceptance to occur. In old leaves of cv. Kardal (compatible interaction), M. persicae infestation elicited a higher number of differentially regulated genes than in young leaves. The plant response to aphid infestation included a larger number of genes induced than repressed, and the proportion of induced versus repressed genes was larger in young than in old leaves. Several genes changing expression seem to be involved in changing the metabolic state of the leaf from source to sink.  相似文献   

19.
The bird cherry-oat aphid (Rhopalosiphum padi L.) is a major pest of wheat (Triticum aestivum L.) and can cause up to 30% yield losses. Heritable plant resistance to aphids is both an economically and ecologically sound method for managing aphids. Here we report how the behaviour and performance of R. padi differs on two resistant, one susceptible wheat landrace and a susceptible elite wheat variety. Feeding behaviour differed among the genotypes, with aphids on resistant lines spending longer in the pathway phase and less time phloem feeding. These behaviours suggest that both inter- and intracellular factors encountered during pathway and phloem feeding phases could be linked to the observed aphid resistance. Locomotion and antennal positioning choice tests also revealed a clear preference for susceptible lines. Although feeding studies revealed differences in the first probe indicating that the resistance factors might also be located in the peripheral layers of the plant tissue, scanning electron microscopy revealed no difference in trichrome length and density on the surface of leaves. Aphids are phloem feeders and limiting the nutrient uptake by the aphids may negatively affect their growth and development as shown here in lower weight and survival of nymphs on resistant genotypes and decreased reproductive potential, with lowest mean numbers of nymphs produced by aphids on W064 (54.8) compared to Solstice (71.9). The results indicate that resistant lines markedly alter the behaviour, reproduction and development potential of R. padi and possess both antixenosis and antibiosis type of resistance.  相似文献   

20.
A survey of esterases in field populations of the peach-potato aphid, Myzus persicae was made during the spring of 1975. Assay was by electrophoresis of single aphid homogenates, and the known association between the activity of an esterase and resistance to organophosphorus insecticide (OP) was used to infer resistance in field populations. The resistant variant replaced the susceptible in populations which had been treated with OP and another variant with threefold (approximately) more esterase activity appeared to be replacing the resistant variant in populations which have been treated twice with OP. The significance of this for control of M. persicae is discussed. Differences in resistance between aphids in different parts of the same field, and the widespread association of these esterase variants in favoured combinations with two electrophoretic variants at another locus have also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号