首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In merodiploid strains of Klebsiella aerogenes with chromosomal hut genes of K. aerogenes and episomal hut genes of Salmonella typhimurium, the repressor of either species can regulate the hut operons of the other species. The repression exerted by the homologous repressor on the left-hand hut operon is, in both organisms, stronger than that exerted by the heterologous repressor.  相似文献   

2.
Two super-repressor mutations in the histidine utilization (hut) operons of Salmonella typhimurium are described. Cells bearing either of these mutations have levels of hut enzymes that do not increase above the uninduced levels when growth is in the presence of either histidine or the gratuitous inducer imidazole propionate. Both mutations lie in the region of the gene for the hut repressor, hutC, and reverse mutations of both are to the constitutive (repressor-negative) rather than to the inducible (wild type) phenotype. In hybrid merodiploid strains the super-repressor mutations are dominant over either wild-type (hutC+) or repressor-negative (hutC-) alleles. Whereas both super-repressor mutations cause the uninducible synthesis of hut enzymes, the degree of repression is different. One mutation causes repression of enzyme synthesis in one of the two hut operons to a level below the basal, uninduced level of wild-type cells. The other mutation causes repression to a lesser degree than in wild-type cells, so that the hut enzymes are present at a level above the normal basal level; this partially constitutive synthesis is greater for the enzymes of one of the hut operons than for the enzymes of the other. Thus, both mutations apparently result in repressors with altered operator-binding properties, in addition to altered inducer-binding properties.  相似文献   

3.
4.
Galactose appears to be the physiological inducer of the chromosomal lac operon in Klebsiella aerogenes. Both lactose and galactose are poor inducers in strains having a functional galactose catabolism (gal) operon, but both are excellent inducers in gal mutants. Thus the slow growth of K. aerogenes on lactose reflects the rapid degradation of the inducer. Several pts mutations were characterized and shown to affect both inducer exclusion and permanent catabolite repression. The beta-galactosidase of pts mutants cannot be induced at all by lactose, and pts mutants appear to have a permanent and constitutive inducer exclusion phenotype. In addition, pts mutants show a reduced rate of glucose metabolism, leading to slower growth on glucose and a reduced degree of glucose-mediated permanent catabolite repression. The crr-type pseudorevertants of pts mutations relieve the constitutive inducer exclusion for lac but do not restore the full level of glucose-mediated permanent catabolite repression and only slightly weaken the glucose-mediated inducer exclusion. Except for weakening the glucose-mediated permanent catabolite repression, pts and crr mutations have no effect on expression of the histidine utilization (hut) operons.  相似文献   

5.
6.
7.
To identify the role of the downstream region of a hut promoter in regulation of the Bacillus subtilis hut operon, three single-base substitutions (+9G-->A, +14C-->T, and +23T-->G) were introduced into the hut operon. Analysis of expression of the hut operon containing each of these three single-base substitutions and the hut-lacZ fusions with the single-base substitutions at position +14 showed that the position at +14 and probably the position at +23 were required for amino acid repression at the hut promoter, while the position at +14 was not required for catabolite repression at the hut promoter. The position at +9 was required for a histidine-dependent increase of activity of the hut promoter. Analysis of expression of the hut-lacZ fusions and the hut operon in the codY mutant indicated that the position at +14 and probably the position at +23 were involved in CodY-mediated amino acid repression at the hut promoter and that CodY was not required for catabolite repression at the hut promoter.  相似文献   

8.
Nalidixic acid (Nal), a drug which affects deoxyribonucleic acid gyrase activity, inhibits the expression of catabolite-sensitive genes: the three maltose operons, the lactose and galactose operons, and the tryptophanase gene. A correlation between the degree of sensitivity to Nal and that to catabolite repression has been observed. The expression of the threonine and tryptophan operons, insensitive to catabolite repression, is insensitive to Nal. The expression of the lacZ gene under the control of the IQ promoter is activated by Nal. Strains carrying a mutation in the nalA locus are resistant to these effects. Novobiocin, which inhibits the negative supercoiling activity of deoxyribonucleic acid gyrase, affects expression of the operons similarly to Nal. The involvement of promoters in Nal and novobiocin action, as well as a possible role of in vivo negative supercoiling in the selectivity of gene expression, are discussed.  相似文献   

9.
10.
11.
12.
13.
The histidine utilization (hut) system, MIGCPUH, comprises two operons, whose promoters are M and P. The DNA segments of phage λ vectors coding for the hut genes of Salmonella typhimurium and Klebsiella aerogenes were compared by using electron microscopy to study the nature of the hut DNA homology. The hut S. typhimurium/hut K. aerogenes DNA heteroduplexes were spread and mounted for electron microscopy under more and more denaturing conditions. The homology between hut S. typhimurium and hut K. aerogenes is extensive but, as denaturing conditions make base-pairing more difficult, the regions of lower homology are melted, while the regions of higher homology remain base-paired. The denaturation map could be correlated with the genetic map by the use of λhut S. typhimurium phages carrying different portions of the hut genome. The sequences with the highest homology are in the structural genes for the four enzymes, while the regulatory regions, the promoters and the hut repressor gene, are much less homologous.  相似文献   

14.
Y Miwa  Y Fujita 《Nucleic acids research》1990,18(23):7049-7053
The mechanism underlying catabolite repression in Bacillus species remains unsolved. The gluconate (gnt) operon of Bacillus subtilis is one of the catabolic operons which is under catabolite repression. To identify the cis sequence involved in catabolite repression of the gnt operon, we performed deletion analysis of a DNA fragment carrying the gnt promoter and the gntR gene, which had been cloned into the promoter probe vector, pWP19. Deletion of the region upstream of the gnt promoter did not affect catabolite repression. Further deletion analysis of the gnt promoter and gntR coding region was carried out after restoration of promoter activity through the insertion of internal constitutive promoters of the gnt operon before the gntR gene (P2 and P3). These deletions revealed that the cis sequence involved in catabolite repression of the gnt operon is located between nucleotide positions +137 and +148. This DNA segment contains a sequence, ATTGAAAG, which may be implicated as a consensus sequence involved in catabolite repression in the genus Bacillus.  相似文献   

15.
16.
17.
In Bacillus subtilis, CcpA-dependent carbon catabolite repression (CCR) mediated at several cis-acting carbon repression elements (cre) requires the seryl-phosphorylated form of both the HPr (ptsH) and Crh (crh) proteins. During growth in minimal medium, the ptsH1 mutation, which prevents seryl phosphorylation of HPr, partially relieves CCR of several genes regulated by CCR. Examination of the CCR of the histidine utilization (hut) enzymes in cells grown in minimal medium showed that neither the ptsH1 nor the crh mutation individually had any affect on hut CCR but that hut CCR was abolished in a ptsH1 crh double mutant. In contrast, the ptsH1 mutation completely relieved hut CCR in cells grown in Luria-Bertani medium. The ptsH1 crh double mutant exhibited several growth defects in glucose minimal medium, including reduced rates of growth and growth inhibition by high levels of glycerol or histidine. CCR is partially relieved in B. subtilis mutants which synthesize low levels of active glutamine synthetase (glnA). In addition, these glnA mutants grow more slowly than wild-type cells in glucose minimal medium. The defects in growth and CCR seen in these mutants are suppressed by mutational inactivation of TnrA, a global nitrogen regulatory protein. The inappropriate expression of TnrA-regulated genes in this class of glnA mutants may deplete intracellular pools of carbon metabolites and thereby result in the reduction of the growth rate and partial relief of CCR.  相似文献   

18.
The hutC gene of Klebsiella aerogenes encodes a repressor that regulates expression of the histidine utilization (hut) operons. The DNA sequence of a region known to contain hutC was determined and shown to contain two long rightward-reading open reading frames (ORFs). One of these ORFs was identified as the 3' portion of the hutG gene. The other ORF was the hutC gene. The repressor predicted from the hutC sequence contained a helix-turn-helix motif strongly similar to that seen in other DNA-binding proteins, such as lac repressor and the catabolite gene activator protein. This motif was located in the N-terminal portion of the protein, and this portion of the protein seemed to be sufficient to allow repression of the hutUH operon but insufficient to allow interaction with the inducer. The presence of a promoterlike sequence and a ribosome-binding site immediately upstream of the hutC gene explained the earlier observation that hutC can be transcribed independently of the other hut operon genes. The predicted amino acid sequence of hut repressor strongly resembled that of the corresponding protein from Pseudomonas putida (S. L. Allison and A. T. Phillips, J. Bacteriol. 172:5470-5476, 1990). An unexpected, leftward-reading ORF extending from about the middle of hutC into the preceding (hutG) gene was also detected. The deduced amino acid sequence of this leftward ORF was quite distinct from that of an unexpected ORF of similar size found immediately downstream of the P. putida hutC gene. The nonstandard codon usage of this leftward ORF and the expression of repressor activity from plasmids with deletions in this region made it unlikely that this ORF was necessary for repressor activity.  相似文献   

19.
Regulation of the expression of the histidase coded by hutk of Klebsiella aerogenes in Salmonella typhimurium and in Escherichia coli and of the expression of the histidase coded by huts of S. typhimurium in E. coli was investigated. The hutk histidase was found to be sensitive to catabolite repression in K. aerogenes and in E. coli, but insensitive to catabolite repression in S. typhimurium; huts histidase has previously been shown to be catabolite sensitive in all three organisms. The expression of both hutk and huts histidase in E. coli was activated by nitrogen starvation. Apparently, the glutamine synthetase of E. coli may activate the formation of some glutamate- and ammonia-producing enzymes.  相似文献   

20.
S Iuchi  S T Cole    E C Lin 《Journal of bacteriology》1990,172(1):179-184
In Escherichia coli, sn-glycerol-3-phosphate can be oxidized by two different flavo-dehydrogenases, an anaerobic enzyme encoded by the glpACB operon and an aerobic enzyme encoded by the glpD operon. These two operons belong to the glp regulon specifying the utilization of glycerol, sn-glycerol-3-phosphate, and glycerophosphodiesters. In glpR mutant cells grown under conditions of low catabolite repression, the glpA operon is best expressed anaerobically with fumarate as the exogenous electron acceptor, whereas the glpD operon is best expressed aerobically. Increased anaerobic expression of glpA is dependent on the fnr product, a pleiotropic activator of genes involved in anaerobic respiration. In this study we found that the expression of a glpA1(Oxr) (oxygen-resistant) mutant operon, selected for increased aerobic expression, became less dependent on the FNR protein but more dependent on the cyclic AMP-catabolite gene activator protein complex mediating catabolite repression. Despite the increased aerobic expression of glpA1(Oxr), a twofold aerobic repressibility persisted. Moreover, anaerobic repression by nitrate respiration remained normal. Thus, there seems to exist a redox control apart from the FNR-mediated one. We also showed that the anaerobic repression of the glpD operon was fully relieved by mutations in either arcA (encoding a presumptive DNA recognition protein) or arcB (encoding a presumptive redox sensor protein). The arc system is known to mediate pleiotropic control of genes of aerobic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号