首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-three peanut (Arachis hypogaea L.) genotypes were evaluated for kernel resistance to Aspergillus parasiticus Spear. colonization and aflatoxin contamination when incubated under high relative humidity. Also, tannin-containing extracts from kernel coats (testae) and cotyledons of these genotypes were prepared and tested for their effect on A. parasiticus growth and aflatoxin production in vitro. The lowest degree of colonization, less than 30% was noted in kernels from the genotypes, Toalson x UF 73-4022 (selections TX-798731 and TX-798736), A72118, SN 55-437, PI337409, and Florunner. Genotypes with low levels of colonization also had the lowest aflatoxin contamination. The coefficient of correlation between infection frequency and aflatoxin contamination was 0.66. Higher levels of tannins were detected in the testae (23.9–97.2 mg g tissue) compared to the cotyledons (0.17–0.82 mg g tissue). Some of the methanol-extracted and water-soluble tannin extracts from testae and cotyledons, when incorporated in yeast extract sucrose liquid medium (100 mg l), significantly inhibited A. parasiticus growth and reduced the levels of aflatoxin produced. There was no overall correlation between the peanut genotypes and the influence of tannin extracts on A. parasiticus growth and aflatoxin production. However, correlations were higher for specific genotypes. For example, the coefficient of correlation between the ability of tannin extracts from testae of genotypes PI337409 and TX-798736 to inhibit aflatoxin production was 0.93 and 0.85 respectively.  相似文献   

2.
Peanuts and other seed and grain crops are commonly contaminated with carcinogenic aflatoxins, secondary metabolites produced by Aspergillus flavus and A. parasiticus. Aflatoxin contamination of peanuts in the field can be reduced by 77–98% with biological control through the application of nontoxigenic strains of these species, which competitively exclude native aflatoxin-producing strains from developing peanuts. In this study, viable peanut seeds were artificially wounded and inoculated with field soil containing natural fungal populations that were supplemented with conidia of nontoxigenic A. flavus NRRL 21882 (niaD nitrate-nonutilizing mutant) and A. parasiticus NRRL 21369 (conidial color mutant). Increasing soil densities of applied nontoxigenic strains generally resulted in an increase in the incidence of seed colonization by applied nontoxigenic strains, a decrease in seed colonization by native A. flavus and A. parasiticus, and a decrease in aflatoxin concentration in seeds. Reduction of aflatoxins in peanut seeds depended on both the density and the aflatoxin-producing potential of native populations and on the fungal strain used for biological control. Wild-type strain A. flavus NRRL 21882 and its niaD mutant were equally effective in reducing aflatoxins in peanuts, indicating that nitrate-nonutilizing mutants, which are easily monitored in the field, can be used for evaluating the efficacy of biocontrol strains.  相似文献   

3.
Total flavonoid content (TFC) and cyanidin‐3‐glucoside (Cyd‐3‐glu) of seed and seed coat extract of 16 genotypes from five species of Carthamus were studied, and their major polyphenolic compounds and antioxidant activity of the seed coat extracts were determined using HPLC analysis and DPPH assay, respectively. Additionally, fatty acids composition of the seed oil was analyzed by GC. In general, TFC and Cyd‐3‐glu content of seed coat extracts were higher than those of seed extracts. A novel breeding line with black seed coat (named A82) depicted lower TFC (3.79 mg QUE/g DW) but higher Cyd‐3‐glu (24.64 mg/g DW) compared to the white and other seed‐pigmented genotypes. DPPH radical scavenging activity showed a strong association with Cyd‐3‐glu content (r = 0.84), but no correlation with TFC (r = ?0.32). HPLC analysis of seed coat extracts revealed that four compounds were dominant constituents including rutin (7.23 – 117.95 mg/100 g DW), apigenin (4.37 – 64.88 mg/100 g DW), quercetin (3.09 – 14.10 mg/100 g DW), and ferulic acid (4.49 – 30.41 mg/100 g DW). Interestingly, the genotype A82 with an appropriate polyunsaturated/saturated fatty acids index (5.46%) and a moderate linoleic fatty acid content (64.70%) had higher nutritional and pharmaceutical value than all the other genotypes.  相似文献   

4.
Environmental control plots adjusted to late season drought and elevated soil temperatures where inoculated at peanut planting with low and high levels of conidia, sclerotia, and mycelium from a brown conidial mutant ofAspergillus parasiticus. Percentage infection of peanut seeds from undamaged pods was greatest for the subplot containing the high sclerotial inoculum (15/cm2 soil surface). Sclerotia did not germinate sporogenically and may have invaded seeds through mycelium. In contrast, the mycelial inoculum (colonized peanut seed particles) released large numbers of conidia into soil. Soil conidial populations of brownA. parasiticus from treatments with conidia and mycelium were positively correlated with the incidence of seed infection in undamaged pods. The ratio ofA. flavus to wild-typeA. parasiticus in soil shifted from 7:3 to 1:1 in the uninoculated subplot after instigation of drought, whereas in all subplots treated with brownA. parasiticus, the ratio of the two species became approximately 8:2. Despite high levels of brownA. parasiticus populations in soil, nativeA. flavus often dominated peanut seeds, suggesting that it is a more aggressive species. Sclerotia of wild-typeA. parasiticus formed infrequently on preharvest peanut seeds from insect-damaged pods.  相似文献   

5.
The mold flora of seeds of twelve varieties of winged beans was determined both before and after surface disinfections. When seeds were surface disinfected, mold fungi were detected in 73% of the seeds whereas 81% of the seed that was not disinfected produced mold fungi. Aspergillus spp. was most frequently present while Penicillium spp. occurred in seed of 4 varieties and in less than 4% of the seed. Twelve isolates oiA. flavus and A. parasiticus were examined for their ability to produce aflatoxins. Whether aflatoxins were produced and the amount of each varied according to the origin of the isolate and the species of Aspergillus. For example all A. parasiticus isolates produced at least 2 aflatoxins whereas 4 of the A. parasiticus isolates were non-toxigenic. When ground seeds of winged beans were inoculated with an aflatoxigenic strain of A. parasiticus the level of aflatoxins that occurred varied with the variety, however, the level of aflatoxin was higher in winged bean than in peanut tissue and 6 of the 12 winged bean varieties contained higher levels of aflatoxins than rice.  相似文献   

6.
花生种皮蜡质和角质层与黄曲霉侵染和产毒的关系   总被引:14,自引:0,他引:14  
黄曲霉侵染花生的研究表明,种皮破损的黄曲霉毒素含量显著高于种皮完整的,种皮对黄曲霉侵染和产毒起着重要屏障作用。采用氯仿去除种皮蜡质,用KOH或角质酶去除种皮角质层后,种子黄曲霉感染率和黄曲霉毒素含量显著提高。种皮蜡质和角质层同时去除的与种皮破损的黄曲霉感染率和毒素含量差异不显著,表明种皮的抗性成份主要是蜡质和角质层。种皮蜡质含量测定和种皮表面扫描电镜观察表明,蜡质的含量和角质层的厚度与品种的抗性有关。抗性品种种皮蜡质含量显著高于感病品种。种皮蜡质提取物在体外抑菌效果不显著。说明蜡质的抗性作用主要是物理性阻止黄曲霉菌的穿透。  相似文献   

7.
掌叶木(Handeliodendron bodinieri)是残遗于中国的稀有单种属植物,因人为破坏、生境特殊及自身特性的影响,资源稀少,被列为国家一级重点保护野生珍稀濒危植物。该研究以掌叶木种子为材料,研究了4种不同发芽条件下(带种皮、浓硫酸处理种皮、完全去除种皮、仅露出胚根)种子萌发性、种皮透水性、掌叶木果皮、假种皮、种皮和种仁四个部位不同浓度甲醇浸提物(0、3.125、6.25、12.5、25 mg/m L)对白菜种子萌发及幼苗生长的影响以及掌叶木各部位浸提物对种子萌发的影响。结果表明:(1)掌叶木种皮具有一定的透水性,为掌叶木种子的萌发提供必要的透水透气条件,不影响种子萌发前的水分吸收,但掌叶木种皮的机械阻碍、易霉变对种子的萌发影响较大。(2)掌叶木的果皮、假种皮、种皮和种仁甲醇浸提物对白菜种子的萌发和生长都有影响,尤其对白菜幼根的生长有较强的抑制作用,抑制强度依次是种仁果皮假种皮种皮,且随着浓度的升高,抑制作用增强。该研究结果揭示了掌叶木种子难发芽、发芽率低的原因,为掌叶木的人工扩繁和保护与利用奠定了基础。  相似文献   

8.
Condensed tannins are major flavonoid end products that affect the nutritional quality of many legume seeds. They chelate minerals and interact with proteins, thus reducing their bioavailability. Tannins also contribute to seed coat color and pigment distribution or intensity. The objective of this study was to analyze the relationship between quantitative trait loci (QTL) for seed tannin concentration in common bean and Mendelian genes for seed coat color and pattern. Three populations of recombinant inbred lines, derived from crosses between the Andean and Mesoamerican genepools were used for QTL identification and for mapping STS markers associated with seed color loci. Seed coat condensed tannins were determined with a butanol–HCl method and a total of 12 QTL were identified on separate linkage groups (LGs) in each of the populations with individual QTL explaining from 10 to 64% of the phenotypic variation for this trait. Loci on linkage groups B3 and B10 were associated with the Mendelian genes Z and Bip for partly colored seed coat pattern, while a QTL on linkage group B7 was associated with the P gene which is the primary locus for the control of color expression in beans. In conclusion, this study found that the inheritance of tannin concentration fits an oligogenic model and identifies novel putative alleles at seed coat color and pattern genes that control tannin accumulation. The results will be important for the genetic improvement of nutritionally enhanced or biofortified beans that have health promoting effects from higher polyphenolics or better iron bioavailability.  相似文献   

9.
在无外源激素培养基上花生胚能继续发育.渗调物质如甘露醇可抑制胚早萌,维持胚性发育,促进贮藏蛋白质合成和累积.渗调物质对胚离体发育的调控与其提高胚内源ABA含量有关.  相似文献   

10.
【背景】利用微生物促进植物健康生长是农业可持续发展的重要方向之一,而种子相关的促生菌可在植物生命周期早期与植物相互作用,对植物健康生长具有重要意义。【目的】发掘与利用种子相关促生菌的前提是筛选获得促生菌菌种资源,验证其益生能力,为其进一步应用与机理研究提供依据与支持。【方法】以花生种子为研究对象,从种子表面及种子内部分离纯化多株菌,测定菌株的固氮、解磷、解钾、吲哚乙酸合成和铁载体合成等促生能力,并验证菌株对常见植物病原菌的生长抑制特性;通过16S rRNA基因序列进行系统发育分析,确定分类地位;通过生物膜形成能力及根际定殖能力测定菌株在植物根际的生存能力;最后通过催芽及盆栽试验测定菌株对花生种子发芽及幼苗生长的影响。【结果】从花生种子表面、种子内和胚根内分离筛选到41株菌,均有吲哚乙酸合成能力,其中35株有固氮能力,2株有铁载体分泌能力,14株有植物病原菌生长抑制能力。各选一株为代表的菌株,即PS3、PE5和PR5,经16S rRNA基因序列比对分析鉴定为芽孢杆菌属(Bacillus)。PS3、PE5和PR5均可在MSgg液体培养基表面形成褶皱较强的生物膜,也可在花生根际形成有效定殖。催芽试验结果表明经过促生菌浸种后花生种子萌发率明显提高,在第2天时,PS5将发芽率由14.17%提高至38.33%,PE5发芽率提高至30.83%,PR5发芽率提高至39.17%。三株菌能够明显促进花生幼苗生长,PS5对花生幼苗苗高、根长、鲜重和干重分别提高21.82%、22.20%、37.11%和35.64%,PE5分别提高17.45%、18.93%、26.10%和21.18%,PR5分别提高23.11%、23.92%、38.66%和37.47%。【结论】筛选获得的花生种子相关促生菌,具有促进植物生长的潜力,明显促进种子萌发及幼苗生长,是良好的促生菌生物资源,具有较好的应用潜力。  相似文献   

11.
  • The seed coat composition of white (JS 335) and black (Bhatt) soybean (Glycine max (L.) Merr) having different water permeability was studied.
  • Phenols, tannins and proteins were measured, as well as trace elements and metabolites in the seed coats.
  • The seed coat of Bhatt was impermeable and imposed dormancy, while that of JS 335 was permeable and seeds exhibited imbibitional injury. Bhatt seed coats contained comparatively higher concentrations of phenols, tannins, proteins, Fe and Cu than those of JS 335. Metabolites of seed coats of both genotypes contained 164 compounds, among which only 14 were common to both cultivars, while the remaining 79 and 71 compounds were unique to JS 331 and Bhatt, respectively.
  • Phenols are the main compounds responsible for seed coat impermeability and accumulate in palisade cells of Bhatt, providing impermeability and strength to the seed coat. JS 335 had more cracked seed coats, mainly due to their lower tannin content. Alkanes, esters, carboxylic acids and alcohols were common to both genotypes, while cyclic thiocarbamate (1.07%), monoterpene alcohols (1.07%), nitric esters (1.07%), phenoxazine (1.07%) and sulphoxide (1.07%) compounds were unique to the JS 335 seed coat, while aldehydes (2.35%), amides (1.17%), azoles (1.17%) and sugar moieties (1.17%) were unique to Bhatt seed coats. This study provides a platform for isolation and understanding of each identified compound for its function in seed coat permeability.
  相似文献   

12.
 The individual and combined effects of two arbuscular mycorrhizal fungi (AMF), Meloidogyne arenaria, and phosphorus (P) fertilization, (0, 25, 75, and 125 μg/g soil) on peanut plant growth and pod yield were determined in greenhouse studies. Best growth and yield usually occurred at 75 or 125 μg P regardless of inoculation treatment. Peanut growth and yield were generally stimulated by AMF development, and growth alone was suppressed by M. arenaria at 0 and 25 μg P. In challenge inoculations, VAM increased peanut plant tolerance to the nematode and offset the growth reductions caused by M. arenaria at the two lower P levels. However, VAM and added P increased galling and M. arenaria egg production/g root, thereby increasing peanut susceptibility to nematode attack. M. arenaria had only a minimal effect on root colonization by AMF and sporulation by the fungi. Accepted: 9 June 1995  相似文献   

13.
采用液相色谱研究白藜芦醇在紫斑牡丹、花生和巨峰葡萄几种经济植物各部位的分布情况。结果表明紫斑牡丹籽和果荚的含量远高于花生和巨峰葡萄。花生白藜芦醇含量最低。紫斑牡丹、花生和巨峰葡萄各部位白藜芦醇分布情况如下:紫斑牡丹叶、紫斑牡丹侧枝、紫斑牡丹茎和紫斑牡丹根中均不含有白藜芦醇,而紫斑牡丹籽和紫斑牡丹果荚中含有白藜芦醇,其中紫斑牡丹籽白藜芦醇含量为0.87‰,紫斑牡丹果荚白藜芦醇含量为0.26‰。花生叶、花生胚乳和花生胚芽中均不含有白藜芦醇,而花生侧枝、花生壳、花生皮、花生茎、花生侧根、花生主根中含有白藜芦醇含有白藜芦醇,其含量为花生侧枝3 mg·kg-1、花生茎11 mg·kg-1、花生壳12 mg·kg-1、花生皮15 mg·kg-1、花生侧根5 mg·kg-1、花生主根10 mg·kg-1。经检测发现葡萄肉,葡萄皮,葡萄籽,葡萄蒂四部分中含有白藜芦醇,其中葡萄肉白藜芦醇含量为0.017‰,葡萄皮白藜芦醇含量为0.028‰,葡萄籽白藜芦醇含量为0.005‰,葡萄蒂和其邻近枝白藜芦醇含量为0.12‰。检测说明这几种植物中花生皮、花生壳、葡萄皮、葡萄籽、葡萄蒂、牡丹籽、牡丹荚具有一定的药用价值和经济价值。  相似文献   

14.
A number of 21Aspergillus sp. strains isolated from cowpeas from Benin (Africa) were characterized by RAPD methodology. Seven of these strains grouped withA. flavus in the dendrogram generated with the RAPD data. Only three were able to produce aflatoxin in significant amounts. Twelve other isolates grouped withA. parasiticus. All of these strains except 3 produced aflatoxin. Two additional strains neither fit with theA. flavus group, nor theA. parasiticus group according to their RAPD pattern. Both did not produce aflatoxin in measurable amounts. Generally the aflatoxin positive strains produced high amounts of aflatoxin after growth on YES medium. However after growth on cowpea based medium aflatoxin biosynthesis was strongly ceased, albeit the growth of the colony was only partly reduced. This was true for media made either with the whole cowpea seed or with cowpea seed without seed coat. Interestingly when the cowpea medium was heat sterilized the fungus was able to produce high amounts of aflatoxin. This, however, was not the case after the use of gamma irradiation as sterilization method for the medium. The expression of thenor- 1 gene, which is one of the early genes involved in aflatoxin biosynthesis, was significantly repressed after growth on gamma irradiated cowpea medium in contrast to YES medium. This study was part of the project “Capability Building for Research and Quality Assurance in Traditional Food Processing in West Africa”  相似文献   

15.
In this work, we investigated the inhibitory effects of water-soluble phenolic compounds (WSPCs) in the coat of after-ripening wheat (Triticum aestivum L.) seeds on the processes of germination and peroxidase reactivation. Wheat bran has a WSPC content of 862.5 μg gallic acid equivalent g−1 dry weight. When seeds were incubated in the water extract of bran, germination, peroxidase reactivation, and coleoptile and radicle growth were suppressed in a WSPC concentration-dependent manner. The inhibitory effects were significantly ameliorated by removing WSPCs from bran extract by treating with 1% insoluble polyvinylpolypyrrolidone. Pretreatment of seeds with 0.1% H2O2 reduced the WSPC content in the coat, which was confirmed using Fourier transform infrared microspectroscopy. With H2O2 pretreatment, seed germination, peroxidase reactivation, and post-germination seedling growth were significantly stimulated. Application of the known phenolics caffeic acid, feruic acid, or vanillin to the germination medium blocked seed germination and suppressed peroxidase reactivation. The results described here indicate that WSPCs act as endogenous inhibitors in the coat to control germination of Triticum aestivum seeds, and that inhibition of germination is at least partially caused by suppressing peroxidase reactivation.  相似文献   

16.
Commercial roasted salted peanuts (3% NaCl), popcorn (1% NaCl), summer-squash (9% NaCl), sunflower (3% NaCl) and wild-melon (3% NaCl) seeds are polluted with fungi, mostlyAspergillus flavus, A. niger, Penicillium chrysogenum, P. corylophilum andRhizopus stolonifer. Contamination of popcorn with the fungi is about 10 times higher than in the other foods. These fungi, common also on unsalted seeds, are significantly inhibited in seeds (30% moisture content) treated with 9–21% NaCl. The halotolerantA. wentii represents the main fungus recovered from seeds treated by 15–21% NaCl. 9% NaCl stimulated emodin production byA. wentii on peanut and citrinin production byP. chrysogenum on popcorn and sunflower. Aflatoxin, citrinin and emodin production on popcorn persisted up to 15% NaCl. Popcorn is thus strongly susceptible to fungal invasion and toxin pollution. The halotolerance ofA. wentii was confirmed by its strong permanent growth in liquid medium at up to 15% NaCl. At 3% NaCl the mycelial growth and nitrogen content increased while the level of emodin and lipid production decreased. CO2 evolution strongly increased at 9–15% NaCl as a characteristic ofA. wentii salt tolerance. Emodin inhibited seed viability and the inhibition dose for 50% reduction (LD50) was 65 mg/L for popcorn and 45 mg/L for sunflower.  相似文献   

17.
The development of fruit, seed and plastids in the inner seed coat of Cyclanthera explodens Naud. was studied. Large amounts of protochlorophyll, in at least three different in vivo-forms, accumulated during maturation and was 14 mg/g fresh weight of the inner seed coat in mature seeds. In earlier stages plastid-membrane-lipids increased simultaneously with the pigment. This could also be seen in electron micrographs as an increased amount of membranes. During later stages the amount of pigment continued to increase without an increase in the lipids. At this stage large crystalloids were found in the plastids. The data presented led to the conclusion that the protochlorophyll form fluorescing at 691 nm is crystalline.  相似文献   

18.
The role of enzyme amylase in two germinating seed morphs, i.e. black and brown, of Halopyrum mucronatum in saline and non-saline environment was examined. Both seed morphs of this halophytic grass have variations in their moisture content, total lipid, protein, sugar, phenol and tannin contents. Black seed exhibited higher activity compared to brown in saline medium. Sugar mobilization in both seed morphs was also affected due to the difference in amylase activity. However, exogenous application of GA3 in saline medium enhanced the amylase activity and sugar mobilization. Phenolic contents were similar except for vanillic acid which was found only in brown seeds while catechol was present only in black seeds. Phenols extracted from both seed morphs were applied to determine their effects on amylase activity. Phenolic extracts obtained from brown seeds showed higher degree of inhibition of amylase activity. Results are discussed in relation to seed coat phenols, leaching, amylase activity and sugar mobilization.  相似文献   

19.
三种根系分泌脂肪酸对花生生长和土壤酶活性的影响   总被引:4,自引:0,他引:4  
刘苹  赵海军  仲子文  孙明  庞亚群  马征  万书波 《生态学报》2013,33(11):3332-3339
为了探讨花生连作后土壤中脂肪酸类物质的累积与花生连作障碍间的关系,为花生连作障碍机理的研究提供新的理论依据,以田间土壤为介质,采用盆栽试验的方法研究了花生根系分泌物中3种长链脂肪酸,即:豆蔻酸、软脂酸和硬脂酸的混合物,对花生植株生长、产量和土壤酶活性的影响。结果表明,当土壤中脂肪酸的初始含量较低时(80 mg/kg土),对花生植株的生长和产量有微弱的促进作用(P>0.05),当土壤中脂肪酸的初始含量较高时(160 mg/kg土和240 mg/kg土),显著抑制了花生植株的生长和产量(P<0.05)。叶片叶绿素含量、根系活力、土壤酶(蔗糖酶、脲酶、磷酸酶)活性在低脂肪酸含量处理下升高,在高脂肪酸含量处理下显著降低(P<0.001)。光合产物、根际有效养分的减少和根系养分吸收能力的降低,可能是导致花生植株生长和产量降低的原因之一。花生连作土壤中豆蔻酸、软脂酸和硬脂酸的累积与花生的连作障碍有着密切关系。  相似文献   

20.
Seed characteristics were measured in 71 Eastern Australian rainforest species representing 30 families. Sensitivity to desiccation to low moisture contents (< 10%) occurred in 42% of species. We estimate, based on findings from 100 species from this present study and previously published reports, that 49% of Eastern Australian rainforest species have non‐orthodox seeds. Germination level and time to 50% germination were not significantly different between desiccation sensitive (DS) and desiccation tolerant (DT) seeds. The estimation of seed desiccation sensitivity based on predictors is an important tool underpinning ex situ conservation efforts. Seed characteristics differed significantly between DS and DT seeds; that is, DS seeds had: (i) larger fruits (19 949 mg vs 8322 mg); (ii) larger seeds (1663 mg vs 202 mg); (iii) higher seed moisture contents (49.7% vs 35.5% fresh weight); (iv) lower oil content (7.3% vs 24.8% yield); and (v) less investment in seed coats (0.19 vs 0.48 seed coat ratio). Only 25% of DS seeded species had oily seeds compared with 87% of DT seeded species. Most green embryos were DS. Seed coat ratio was the best predictor of seed DS (80% correctly predicted). Seed moisture content at maturity was also related to germination time. Mean seed size was correlated (?0.657, P = 0.01) with mean seed oil content in 46 species. Further research on seed storage physiology of possible oily and/or DS seeded species is crucial to ensure future long‐term security of this biodiversity, particularly for species currently threatened in situ and/or of socioeconomic importance in Eastern Australian rainforests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号