首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bilateral common carotid artery occlusion (15 min.) followed by two hours of recirculation reduced mitochondrial superoxide dismutase (SOD) and glutathione reductase (GR) activities, and increased susceptibility of mitochondrial membranes to in vitro lipid peroxidation in brain regions (i.e., cortex, striatum and hippocampus) of Mongolian gerbil. Intraperitoneal bolus injection (2 mg/kg b.w.) of liposome-entrapped CuZn superoxide dismutase (l-SOD) increased the endogenous SOD activity in normal brain tissue and, when given at the end of ischemia, counteracted both the ischemic reduction of endogenous SOD and the increased peroxidation of mitochondrial membranes. 1-SOD treatment was ineffective in reducing brain swelling, suggesting that superoxide radicals are not a main participant in the process of (post)ischemic brain edema formation.  相似文献   

2.
Oxygen free radicals apparently play important roles in diseases of the blood vessel wall and increased secretion of superoxide radicals occurs in many situations. The vascular wall contains large amounts of extracellular superoxide dismutase (EC-SOD). The synthesis of the enzyme by the smooth muscle cells (SMC) is modulated by cytokines, growth factors, and vasoactive factors.Here we studied the effects of oxidants (pyrogallol, xanthine oxidase, Cu and Fe), antioxidants (SOD, catalase, and ascorbate), glutathione modulation (n-acetylcysteine and buthionine sulfoximine) and nitric oxide on EC-SOD expression by human vascular SMCs. Generally, the responses in EC-SOD synthesis were small, and no changes were noted in mRNA levels. High concentrations of some of the agents caused reductions in EC-SOD synthesis, mostly concomitantly with toxic effects on the cells. Cell cultures are normally ascorbate deficient, and addition of ascorbate to approach physiological levels doubled the EC-SOD content. Iron ions up-regulated EC-SOD synthesis but also blocked the secretion of the enzyme. Only down-regulation was found by NO*-releasing compounds.In conclusion, there is limited response to oxidant stress of EC-SOD synthesis by SMCs on a cell-autonomous level. The synthesis appears mainly regulated by factors coordinating concerted tissue responses.  相似文献   

3.
The objectives of this study were to determine 1) whether reactive oxygen species generated upon postischemic reperfusion lead to oxidative stress in rat hearts, and 2) whether an exogenous prooxidant present in the early phase of reperfusion causes additional injury. Isolated buffer-perfused rat hearts were subjected to 30 min of hypothermic no-flow ischemia followed by 30 min of reperfusion. Increased myocardial content of glutathione disulfide (GSSG) and increased active transport of GSSG were used as indices of oxidative stress. To impose a prooxidant load, cumene hydroperoxide (20 M) was administered during the first 10 min of reperfusion to a separate group of postischemic hearts. Reperfusion after 30 min of hypothermic ischemia resulted in a recovery of myocardial ATP from 28% at end-ischemia to 50–60%, a release of 5% of total myocardial LDH, and an almost complete recovery of both coronary flow rate and left ventricular developed pressure. After 5 and 30 min of reperfusion, neither myocardial content of GSSG nor active transport of GSSG were increased. These indices were increased, however, if cumene hydroperoxide was administered during early reperfusion. After stopping the administration of cumene hydroperoxide, myocardial GSSG content returned to control values and GSH content increased, indicating an unimpaired glutathione reductase reaction. Despite the induction of oxidative stress, reperfusion with cumene hydroperoxide did not cause additional metabolic, structural, or functional injury when compared to reperfusion without cumene hydroperoxide. We conclude that reactive oxygen species generated upon postischemic reperfusion did not lead to oxidative stress in isolated rat hearts. Moreover, even a superimposed prooxidant load during early reperfusion did not cause additional injury.  相似文献   

4.
5.
Males are much more susceptible to ischemia/reperfusion (I/R)-induced kidney injury when compared with females. Recently we reported that the presence of testosterone, rather than the absence of estrogen, plays a critical role in gender differences in kidney susceptibility to I/R injury in mice. Although reactive oxygen species and antioxidant defenses have been implicated in I/R injury, their roles remain to be defined. Here we report that the orchiectomized animal had significantly less lipid peroxidation and lower hydrogen peroxide levels in the kidney 4 and 24 h after 30 min of bilateral renal ischemia when compared with intact or dihydrotestosterone-treated orchiectomized males. The post-ischemic kidney expression and activity of manganese superoxide dismutase (MnSOD) in orchiectomized mice was much greater than in intact or dihydrotestosterone-administered orchiectomized mice. Four hours after 30 min of bilateral ischemia, superoxide formation was significantly lower in orchiectomized mice than in intact mice. In Madin-Darby canine kidney cells, a kidney epithelial cell line, 1 mm H(2)O(2) decreased MnSOD activity, an effect that was potentiated by pretreatment with dihydrotestosterone. Orchiectomy prevented the post-ischemic decrease of catalase activity. Treatment of male mice with manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), a SOD mimetic, reduced the post-ischemic increase of plasma creatinine, lipid peroxidation, and tissue hydrogen peroxide. These results suggest that orchiectomy accelerates the post-ischemic activation of MnSOD and reduces reactive oxygen species and lipid peroxidation, resulting in reduced kidney susceptibility to I/R injury.  相似文献   

6.
Occurrence of oxidative stress during myocardial reperfusion   总被引:1,自引:0,他引:1  
Reperfusion, without doubt, is the most effective way to treat the ischaemic myocardium. Late reperfusion may however cause further damage. Myocardial production of oxygen free radicals above the neutralizing capacity of the myocytes is an important cause of this reperfusion damage. There is evidence that prolonged ischaemia reduces the naturally occurring defence mechanisms of the heart against oxygen free radicals, particularly mitochondrial manganese superoxide dismutase, and intracellular pool of reduced glutathione. Consequently, reperfusion results in a severe oxidative damage, as evidenced by tissue accumulation and release of oxidized glutathione.An oxygen free radical-mediated impairment of mechanical function also occurs during reperfusion of human heart. In fact we observed during surgical reperfusion of coronary artery disease (CAD) patients, a prolonged and sustained release of oxidized glutathione;the degree of oxidative stress was inversely correlated with recovery of mechanical and haemodynamic function. These findings represent the rationale for therapeutic interventions which increase the cellular antioxidant capacities and improve the efficacy of myocardial reperfusion.  相似文献   

7.
The superoxide dismutase (SOD) gene (slr 1516) from the cyanobacterium Synechocystis sp. PCC 6803 was cloned and overexpressed in Escherichia coli BL 21 (DE3) using the pET-20b(+) expression vector. E. coli cells transformed with pET-SOD overexpressed the protein in cytosol, upon induction by isopropyl beta-D-thiogalactopyranoside (IPTG). The recombinant protein was purified to near homogeneity by gel filtration and ion-exchange chromatography. The SOD activity of the recombinant protein was sensitive to hydrogen peroxide and sodium azide, confirming it to be FeSOD. The pET-FeSOD transformed E. coli showed significantly higher SOD activity and tolerance to paraquat-mediated growth inhibition compared to the empty vector transformed cells. Based on these results it is suggested that overexpression of FeSOD gene from a heterologous source like Synechocystis sp. PCC 6803 may provide protection to E. coli against superoxide radical-mediated oxidative stress mediated by paraquat.  相似文献   

8.
Superoxide dismutase (SOD) isozymes are compartmentalized in higher plants and play a major role in combating oxygen radical mediated toxicity. In this review we evaluate the mode of action and effects of the SOD isoforms with respect to oxidative stress resistance, correlating age, species, and specificity of plants during development.  相似文献   

9.
The effect of oxidative stress on the cellular uptake and nuclear translocation of extracellular superoxide dismutase (EC-SOD) was investigated. EC-SOD was incorporated from conditioned medium of stable EC-SOD expressing CHO-EK cells into 3T3-L1 cells within 15 min. The uptake was clearly inhibited by the addition of heparin at a concentration of 0.4 microg/ml. Treatment of the 3T3-L1 cells with H(2)O(2) (5 mM for 5 min), followed by incubation with CHO-EK medium downregulated the uptake of EC-SOD. Nuclear translocation of the incorporated EC-SOD was clearly enhanced by H(2)O(2) treatment following incubation with the CHO-EK medium. EC-SOD is the only anti-oxidant enzyme which is known at this time to be actively transported into nuclei. The results obtained here suggest that the upregulation of the nuclear translocation of EC-SOD by oxidative stress might play a role in the mechanism by which the nucleus is protected against oxidative damage of genomic DNA.  相似文献   

10.
Hypertension is closely associated with progressive kidney dysfunction, manifested as glomerulosclerosis, interstitial fibrosis, proteinuria, and eventually declining glomerular filtration. The postulated mechanism for development of glomerulosclerosis is barotrauma caused by increased capillary pressure, but the reason for development of interstitial fibrosis and the subsequently reduced kidney function is less clear. However, it has been hypothesized that tissue hypoxia induces fibrogenesis and progressive renal failure. This is very interesting, since recent reports highlight several different mechanisms resulting in altered oxygen handling and availability in the hypertensive kidney. Such mechanisms include decreased renal blood flow due to increased vascular tone induced by ANG II that limits oxygen delivery and increases oxidative stress, resulting in increased mitochondrial oxygen usage, increased oxygen usage for tubular electrolyte transport, and shunting of oxygen from arterial to venous blood in preglomerular vessels. It has been shown in several studies that interventions to prevent oxidative stress and to restore kidney tissue oxygenation prevent progression of kidney dysfunction. Furthermore, inhibition of ANG II activity, by either blocking ANG II type 1 receptors or angiotensin-converting enzyme, or by preventing oxidative stress by administration of antioxidants also results in improved blood pressure control. Therefore, it seems likely that tissue hypoxia in the hypertensive kidney contributes to progression of kidney damage, and perhaps also persistence the high blood pressure.  相似文献   

11.
Extracellular superoxide dismutase (EC-SOD) contributes only a small fraction to total SOD activity in the heart but is strategically located to scavenge free radicals in the extracellular compartment. EC-SOD expression is decreased in myocardial-infarction (MI)-induced heart failure, but whether EC-SOD can abrogate oxidative stress or modify MI-induced ventricular remodeling has not been previously studied. Consequently, the effects of EC-SOD gene deficiency (EC-SOD KO) on left ventricular (LV) oxidative stress, hypertrophy, and fibrosis were studied in EC-SOD KO and wild-type mice under control conditions, and at 4 and 8 weeks after permanent coronary artery ligation. EC-SOD KO had no detectable effect on LV function in normal hearts but caused small but significant increases of LV fibrosis. At 8 weeks after MI, EC-SOD KO mice developed significantly more LV hypertrophy (LV mass increased 1.64-fold in KO mice compared to 1.35-fold in wild-type mice; p<0.01) and more fibrosis and myocyte hypertrophy which was more prominent in the peri-infarct region than in the remote myocardium. EC-SOD KO mice had greater increases of nitrotyrosine in the peri-infarct myocardium, and this was associated with a greater reduction of LV ejection fraction, a greater decrease of sarcoplasmic or endoplasmic reticulum calcium2+ ATPase, and a greater increase of atrial natriuretic peptide in the peri-infarct zone compared to wild-type mice. EC-SOD KO was associated with more increases of phosphorylated p38 (p-p38(Thr180/Tyr182)), p42/44 extracellular signal-regulated kinase (p-Erk(Thr202/Tyr204)), and c-Jun N-terminal kinase (p-JNK(Thr183/Tyr185)) both under control conditions and after MI, indicating that EC-SOD KO increases activation of mitogen-activated protein kinase signaling pathways. These findings demonstrate that EC-SOD plays an important role in protecting the heart against oxidative stress and infarction-induced ventricular hypertrophy.  相似文献   

12.
Mitochondria are indispensable for bioenergetics and for the regulation of physiological/signaling events in cellular life. Although TNF-alpha-induced oxidative stress and mitochondrial dysfunction are evident in several pathophysiological states, the molecular mechanisms coupled with impaired cardiac function and its potential reversal by drugs such as Tempol or apocyanin have not yet been explored. Here, we hypothesize that TNF-alpha-induced oxidative stress compromises cardiac function by altering the mitochondrial redox state and the membrane permeability transition pore (MPTP) opening, thereby causing mitochondrial dysfunction. We measured the redox states in the cytosol and mitochondria of the heart to understand the mechanisms related to the MPTP and the antioxidant defense system. Our studies demonstrate that TNF-alpha-induced oxidative stress alters redox homeostasis by impairing the MPTP proteins adenine nucleotide translocator and voltage-dependent anion channel, thereby resulting in the pore opening, causing uncontrolled transport of substances to alter mitochondrial pH, and subsequently leading to dysfunction of mitochondria and attenuated cardiac function. Interestingly, we show that the supplementation of Tempol along with TNF-alpha restores mitochondrial and cardiac function.  相似文献   

13.
Survival of cardiac patients undergoing heart surgery depends critically upon the recovery of myocardial energy metabolism during reperfusion of ischemic myocardium. The present study compares various parameters of myocardial energy metabolism using an isolated in situ pig heart. The left anterior descending (LAD) coronary artery was occluded for 60 min, followed by 60 min of global hypothermic cardioplegic arrest and 60 min of reperfusion. Free radical scavengers [superoxide dismutase SOD and catalase] were used to protect the ischemic heart from reperfusion injury. In both control and SOD plus catalase-treated groups, ATP, creatine phosphate (CP), ATP/ADP ratio, energy charge and phosphorylation potential dropped significantly during ischemic insult. After reperfusion, CP, ATP/ADP ratio and phosphorylation potential improved significantly, but they were restored to control level only in treated animals. In either case, free energy of ATP hydrolysis (delta G) lowered only by 5% during ischemia, but recovered promptly upon reperfusion. SOD and catalase also improved coronary blood flow and reduced creatine kinase release compared to those of untreated animals, suggesting improved myocardial recovery upon reperfusion. Our results suggest that SOD and catalase significantly improve the myocardial recovery during reperfusion by enhancing rephosphorylation steps, and the value of delta G is more critical compared to those of ATP and CP for myocardial recovery.  相似文献   

14.
The retina experiences mitochondrial dysfunction in diabetes, superoxide levels are elevated, and mitochondrial superoxide dismutase (MnSOD) activity is decreased. Inhibition of superoxide accumulation in diabetes prevents mitochondrial dysfunction, apoptosis of retinal capillary cells, and the development of retinal histopathology. The purpose of this study is to examine the effect of overexpression of MnSOD on oxidative stress, DNA damage, and nitrative stress in the retina of diabetic mice. After 7 weeks of diabetes in MnSOD overexpressing (hemizygous) mice (MnSOD-Tg) and in their age-matched nontransgenic mice, parameters of oxidative stress and nitrative stress were measured in the retina. Overexpression of MnSOD prevented diabetes-induced decreases in retinal GSH levels and the total antioxidant capacity. In the same retina, MnSOD overexpression also inhibited diabetes-induced increases in the levels of 8-OHdG and nitrotyrosine. This suggests that MnSOD could be implicated in the pathogenesis of retinopathy by protecting the retina from increased oxidative damage experienced in diabetic conditions. Thus, understanding how changes in mitochondrial function result in the development of diabetic retinopathy could help identify SOD mimics to inhibit its development.  相似文献   

15.
Superoxide dismutases (SOD) play a major role in the intracellular defense against oxygen radical damage to aerobic cells. In eucaryotes, the cytoplasmic form of the enzyme is a 32-kDa dimer containing two copper and two zinc atoms (CuZn SOD) that catalyzes the dismutation of the superoxide anion (O2-) to H2O2 and O2. Superoxide-mediated damage has been implicated in a number of biological processes, including aging and cancer; however, it is not certain whether endogenously elevated levels of SOD will reduce the pathological events resulting from such damage. To understand the in vivo relationship between an efficient dismutation of O2- and oxidative injury to biological structures, we generated transgenic strains of Drosophila melanogaster overproducing CuZn SOD. This was achieved by microinjecting Drosophila embryos with P-elements containing bovine CuZn SOD cDNA under the control of the Drosophila actin 5c gene promoter. Adult flies of the resulting transformed lines which expressed both mammalian and Drosophila CuZn SOD were then used as a novel model for evaluating the role of oxygen radicals in aging. Our data show that expression of enzymatically active bovine SOD in Drosophila flies confers resistance to paraquat, an O2(-)-generating compound. This is consistent with data on adult mortality, because there was a slight but significant increase in the mean lifespan of several of the transgenic lines. The highest level of expression of the active enzyme in adults was 1.60 times the normal value. Higher levels may have led to the formation of toxic levels of H2O2 during development, since flies that died during the process of eclosion showed an unusual accumulation of lipofuscin (age pigment) in some of their cells. In conclusion, our data show that free-radical detoxification has a minor by positive effect on mean longevity for several strains.  相似文献   

16.
Saccharomyces cerevisiae lacking Cu,Zn superoxide dismutase (SOD1) show several metabolic defects including aerobic blockages in methionine and lysine biosynthesis. We have previously shown that mutations in genes implicated in the formation of iron-sulfur clusters, designated seo (suppressors of endogenous oxidation), reverse the oxygen-dependent methionine and lysine auxotrophies of a sod1Delta strain. We now report the surprising finding that seo mutants do not reduce oxidative damage as shown by the lack of reduction of EPR-detectable "free" iron, which is characteristic of sod1Delta mutants. In fact, they exhibit increased oxidative damage as evidenced by increased accumulation of protein carbonyls. The seo class of mutants overaccumulates mitochondrial iron, and this iron accumulation is critical for suppression of the sod1Delta biosynthetic defects. Blocking overaccumulation of mitochondrial iron abolished the ability of the seo mutants to suppress the sod1Delta auxotrophies. By contrast, increasing the mitochondrial iron content of sod1Delta yeast using high copy MMT1, which encodes a mitochondrial iron transporter, was sufficient to mimic the seo mutants. Our studies indicated that suppression of the sod1Delta methionine auxotrophy was dependent on the pentose phosphate pathway, which is a major source of NADPH production. By comparison, the sod1Delta lysine auxotrophy appears to be reversed in the seo mutants by increased expression of genes in the lysine biosynthetic pathway, perhaps through sensing of mitochondrial damage by the retrograde response.  相似文献   

17.
18.
Reactivity, thrombogeneity, and thromboresistance of the rat mesentery microvessels were studied in postischemic reperfusion of the intestine, the brain, an extremity. Irrespective of ischemia localisation, an augmentation of the microvessels reactivity and reduction of their thromboresistance, were found. The microvessels thrombogeneity was depended on the ischemia localisation: an augmentation of the thrombogenity occurred in arterioles whereas it was reduced in venules following the brain and intestine reperfusion. A possible mechanism of the phenomenon may involve a deficiency of the nitric oxide synthesis.  相似文献   

19.
The aim of the study was to investigate the pathological role of free radicals during myocardial reperfusion. Low (0.5 mg/kg body weight) and high doses (5 mg/kg) of superoxide dismutase (SOD) were infused into the left atrium of mongrel dogs for 4 min starting 29 min after ligation and 1 min before reperfusion of the left anterior descending coronary artery (LAD). Arterial blood pressure, heart rate, electrocardiogram, and the regional contractile force of the left ventricle were monitored throughout the ligation (30 min) and reperfusion periods (20 min). Concentrations of creatine kinase (CK) and malondialdehyde (MDA) in the coronary sinus blood were determined before (0 min) and during ligation (15 and 25 min) and during reperfusion of the LAD (2, 7, and 20 min). In other groups of dogs, the effect of the two doses of SOD on epicardial blood flow was investigated during ligation and reperfusion by the measurement of epicardial temperature using a thermocardiograph. Experimental subjects were mongrel dogs of either sex (n = 25), weight 10-35 kg. Compared to controls (mean +/- SEM, 43.1 +/- 1.2; n = 7), the number of ventricular extrasystoles during the first 5 min of reperfusion was significantly (p < .001) decreased in dogs treated with the high dose (15.01 +/- 2.14; n = 5), but not in those receiving the low dose of the drug (34.6 +/- 5.66; n = 5). The concentrations of CK increased gradually until the end of reperfusion without differences among the different groups. Plasma MDA was the highest in control dogs 7 min after reperfusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Alterations in phospholipid content and Cu/Zn superoxide dismutase (SOD) activity were examined in rat brain after 15 min of global ischemia (four-vessel occlusion) followed by 2-, 24- or 48-h reperfusion. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE), the main brain phospholipids, were markedly decreased in ischemic rats and remained decreased during the whole reperfusion period. Concentrations of phosphatidylinositol (PI) and sphingomyelin (SM) were also significantly reduced during ischemia but recovered during reperfusion period. In contrast, phosphatidylserine (PS) and lysophospholipids (LysoPL) were unchanged during ischemia but were elevated after 24 h of reperfusion. Significant reductions in blood plasma phospholipids were also demonstrated. 24-48 h of reperfusion markedly decreased PE, PC and PS contents, while the concentrations were almost unchanged by ischemia alone. Brain SOD activity decreased significantly during ischemia and was recovered to control value already after 2 h of reperfusion. These results suggest that ischemia/reperfusion is accompanied by a significant and selective degradation of brain phospholipids that may be attributable to oxidative stress and activation of phospholipases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号