首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Partially purified prostacyclin synthase from pig aorta converted the prostaglandin (PG) endoperoxide PGH2 to prostacyclin (PGI2), and PGH1 to 12-hydroxy-8,10-heptadecadienoic acid (HHD). Both reactions were inhibited by 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HP) in a dose-dependent fashion. However, the reactions PGH2 → PGI2 and PGH1 → HHD appeared to differ: substrate availability was rate limiting in the latter reaction, while the enzyme became rapidly saturated with PGH2 and a steady rate of prostacyclin formation was observed at higher substrate levels.  相似文献   

2.
3.
It has been shown that subunit I of cytochrome oxidase (~ MWt. 40,000) can be resolved into a number of smaller polypeptides. This resolution apparently occurs through two stages with the generation of polypeptides of approximate molecular weights of 20,000 and 8,500.  相似文献   

4.
《Theriogenology》2013,79(9):2071-2086
Prostaglandins (PGs) are critical regulators of a number of reproductive processes, including embryo development and implantation. In the present study, prostacyclin (PGI2) synthase (PGIS) mRNA and protein expression, as well as 6-keto PGF (a PGI2 metabolite) concentration, were investigated in the pig uterus. Endometrial tissue and uterine luminal flushings were obtained on Days 4 to 18 of the estrous cycle and pregnancy. Additionally, conceptuses were collected and examined for PGIS mRNA expression and 6-keto PGF concentration. Regulation of PGI2 synthesis in the porcine endometrium by steroids, conceptus products, and cytokines was studied in vitro and/or in vivo. Endometrial PGIS protein level increased on Days 12 and 16 in pregnant but not in cyclic gilts. Moreover, higher PGIS protein expression on Day 12 of pregnancy was accompanied by a greater content of 6-keto PGF in the endometrium. The concentration of 6-keto PGF in uterine luminal flushings increased substantially on Days 16 and 18 in pregnant gilts and was higher than in cyclic animals. Greater PGIS mRNA expression and PGI2 metabolite concentration were detected in Day 12 and 14 conceptuses, respectively. Incubation of endometrial explants with conceptus-conditioned medium resulted in upregulation of PGIS protein expression and increased PGI2 secretion. Moreover, PGIS mRNA and protein expression were upregulated in the endometrium collected from gravid uterine horn on Day 14 of pregnancy. In summary, PGIS is differentially expressed in the endometrium of cyclic and pregnant gilts resulting in higher PGI2 synthesis in pregnant animals. Porcine conceptuses are important regulators of endometrial PGIS expression and PGI2 release during the implantation period.  相似文献   

5.
6.
Prostaglandin endoperoxide synthase (i.e. cyclooxygenase; PGH sythase) and prostacyclin synthase (PGI synthase were quantitated with specific immunoradimetric assays in microsomes from human placentae (n=20) obtained from 7 up to 17 weeks of gestation. Over that period, wherein trophoblastic invasion of the uterine spiral arteries occurs, the placetae showed a significant increase in concentrations of PGH synthase (r=0.73, p<0.001; n=20), but not in those of PGI synthase. While the variation between individual placentae was much larger for PGI synthase than for PGH synthase concentrations, there was no evidence for a large excess of PGI synthase over that of PGH synthase in any of these early placentae. The data indicate, first, that the developing placenta contains PGI synthase, but in amount which are relatively small and do not appear to increase with advancing gestation. Second, they seem to indicate that the capacity for bioconversion of arachidonic acid into prostaglandin endoperoxides increases markedly with placental development.  相似文献   

7.
Prostaglandin endoperoxide synthase (i.e. cyclooxygenase; PGH synthase) and prostacyclin synthase (PGI synthase) were quantitated with specific immunoradiometric assays in microsomes from human placentae (n = 20) obtained from 7 up to 17 weeks of gestation. Over that period, wherein trophoblastic invasion of the uterine spiral arteries occurs, the placentae showed a significant increase in concentrations of PGH synthase (r = 0.73, p less than 0.001; n = 20), but not in those of PGI synthase. While the variation between individual placentae was much larger for PGI synthase than for PGH synthase concentrations, there was no evidence for a large excess of PGI synthase over that of PGH synthase in any of these early placentae. The data indicate, first, that the developing placenta contains PGI synthase, but in amounts which are relatively small and do not appear to increase with advancing gestation. Second, they seem to indicate that the capacity for bioconversion of arachidonic acid into prostaglandin endoperoxides increases markedly with placental development.  相似文献   

8.
A simple and reliable method is described for the preparation of the endoperoxide intermediates (PGG2 and PGH2) in the biosynthesis of prostaglandins.The endoperoxides are thermolabile and easily decomposed by water ( min at 37°C). Because of this, special precautions must be taken to work at low temperature and to minimize contact with moisture.Milligram quantities of PGG2 and PGH2 were obtained by running several reactions successively and pooling the extracts before chromatographic fractionation. The method is now being developed further to scale up the procedure.  相似文献   

9.
10.
Prostaglandin production by cultured human endothelial cells varies with growth conditions. We observed a marked diminution in both spontaneous and inducible production of prostacyclin (PGI2) by human umbilical vein and saphenous vein endothelial cells when they were cultured in the presence of the heparin-binding growth factor, acidic fibroblast growth factor (aFGF) and heparin, compared with PGI2 production during culture in medium lacking these factors. Decreased PGI2 production was related to duration of exposure of the cells to aFGF and heparin and depended on the concentration of both substances. Heparin (1-100 micrograms/ml) strongly potentiated the effects of aFGF but had a limited and variable effect alone. The decrease in PGI2 production correlated with a reduction in the cellular content of immunoreactive prostaglandin H synthase and prostacyclin synthase. Arachidonate deacylation was not decreased. In addition, the eicosanoid profile of endothelial cells was changed by exposure to aFGF and heparin. These studies indicate that heparin acts as a modulator of prostaglandin synthesis in endothelial cells through its interaction with aFGF, mediated by alterations in two key enzymes in the arachidonate metabolic pathway.  相似文献   

11.
A simple, rapid radiochemical assay for prostacyclin synthesis has been used to characterize the enzyme in arterial walls which converts prostaglandin endoperoxides to prostacyclin. The enzyme displays a broad pH optimum, and catalyses a rapid conversion of saturating concentrations of the endoperoxide at 37 degrees C. Hydroperoxides of several unsaturated fatty acids are potent inhibitors of the enzyme, and act in a time dependent manner. The isomerase which converts prostaglandin endoperoxides to prostaglandin E2 or D2 was not detected in the arterial wall.  相似文献   

12.
Concentrations of prostaglandin endoperoxide synthase (i.e. cyclooxygenase; PGH synthase) and prostacyclin synthase (PGI synthase) were quantified with specific radioimmunometric assays inhuman myometrium during the last trimester of pregnancy (n=23) and in non-pregnant controls (n=8). Pregnant myometrium contained 3 times more PGH synthase per mg microsomal protein than non-pregnant myometrium (p < 0.01) but there was no increase with increasing gestational age in the third trimester nor with the onset of labor. In pregnancy, as compared to the non-pregnant state, there was no significant change in the PGI synthase content of myometrial microsomes, but significantly more PGI synthase was recovered in other subcellular fractions (p < 0.01). This suggests that pregnancy affects preferential changes in the subcellular distribution of PGI synthase in myometrial cells.Relative to its PGI synthase content pregnant myometrium contained twice as much PGH synthase as non-pregnant myometrium (p < 0.01). This may offer further evidence that PGH synthase rather than PGI synthase itself is the rate limiting factor in myometrial PGI2 production. On the other hand, the much larger increase in PGH synthase than in PGI synthase in pregnant as compared to non-pregnant myometrium, may serve to promote preferential synthesis of prostaglandins that are potent myometrial stimulants and of critical importance in human parturition.  相似文献   

13.
Concentrations of prostaglandin endoperoxide synthase (i.e. cyclooxygenase; PGH synthase) and prostacyclin synthase (PGI synthase) were quantified with specific radioimmunometric assays in human myometrium during the last trimester of pregnancy (n = 23) and in non-pregnant controls (n = 8). Pregnant myometrium contained 3 times more PGH synthase per mg microsomal protein than non-pregnant myometrium (p less than 0.01) but there was no increase with increasing gestational age in the third trimester nor with the onset of labor. In pregnancy, as compared to the non-pregnant state, there was no significant change in the PGI synthase content of myometrial microsomes, but significantly more PGI synthase was recovered in other subcellular fractions (p less than 0.01). This suggests that pregnancy affects preferential changes in the subcellular distribution of PGI synthase in myometrial cells. Relative to its PGI synthase content pregnant myometrium contained twice as much PGH synthase as non-pregnant myometrium (p less than 0.01). This may offer further evidence that PGH synthase rather than PGI synthase itself is the rate limiting factor in myometrial PGI2 production. On the other hand, the much larger increase in PGH synthase than in PGI synthase in pregnant as compared to non-pregnant myometrium, may serve to promote preferential synthesis of prostaglandins that are potent myometrial stimulants and of critical importance in human parturition.  相似文献   

14.
15.
The development of cyclooxygenase-2 (COX-2) selective inhibitors prompted studies aimed at treating chronic inflammatory diseases and cancer by using this new generation of drugs.Yet, several recent reports pointed out that long-term treatment of patients with COX-2 selective inhibitors (especially rofecoxib) caused severe cardiovascular complicances. The aim of this study was to ascertain whether, in addition to inhibiting COX-2, rofecoxib may also affect prostacyclin (PGI2) level by inhibiting PGI2 forming enzyme (prostacyclin synthase, PGIS). In order to evaluate if selective (celecoxib, rofecoxib) and non-selective (aspirin, naproxen) anti-inflammatory compounds could decrease PGI2 production in endothelial cells by inhibiting PGIS, we analyzed the effect of anti-inflammatory compounds on the enzyme activity by ELISA assay after addition of exogenous substrate, on PGIS protein levels by Western blotting and on its subcellular distribution by confocal microscopy. We also analyzed the effect of rofecoxib on PGIS activity in bovine aortic microsomal fractions enriched in PGIS. This study demonstrates an inhibitory effect of rofecoxib on PGIS activity in human umbilical vein endothelial (HUVE) cells and in PGIS-enriched bovine aortic microsomal fractions, which is not observed by using other anti-inflammatory compounds. The inhibitory effect of rofecoxib is associated neither to a decrease of PGIS protein levels nor to an impairment of the enzyme intracellular localization. The results of this study may explain the absence of a clear relationship between COX-2 selectivity and cardiovascular side effects. Moreover, in the light of these results we propose that novel selective COX-2 inhibitors should be tested on PGI2 synthase activity inhibition.  相似文献   

16.
Prostaglandin (PG) endoperoxides (PGG2 and PGH2) contract arterial smooth muscle and cause platelet aggregation. Microsomes from pig aorta, pig mesenteric arteries, rabbit aorta and rat stomach fundus enzymically transform PG endoperoxides to an unstable product (PGX) which relaxes arterial strips and prevents platelet aggregation. Microsomes from rat stomach corpus, rat liver, rabbit lungs, rabbit spleen, rabbit brain, rabbit kidney medulla, ram seminal vesicles as well as particulate fractions of rat skin homogenates transform PG endoperoxides to PGE- and PGF- rather than to PGX-like activity.PGX differs from the products of enzymic transformation of prostaglandin endoperoxides so far identified, including PGE2, F, D2, thromboxane A2 and their metabolites.PGX is less active in contracting rat fundic strip, chick rectum, guinea pig ileum and guinea pig trachea than are PGG2 and PGH2. PGX does not contract the rat colon.PGX is unstable in aqueous solution and its anti-aggregating activity disappears within 0.25 min on boiling or within 10 min at 37° C.As an inhibitor of human platelet aggregation induced in vitro by arachidonic acid PGX was 30 times more potent than PGE1. The enzymic formation of PGX is inhibited by 15-hydroperoxy arachidonic acid (IC50 = 0.48 μg/ml), by spontaneously oxidised arachidonic acid (IC50 <100 μg/ml) and by tranylcypromine (IC50 = 160 μg/ml).We conclude that a balance between formation by arterial walls of PGX which prevents platelet aggregation and release by blood platelets of prostaglandin endoperoxides which induce aggregation is of the utmost importance for the control of thrombus formation in vessels.  相似文献   

17.
Prostaglandin H synthase can oxidize arachidonic acid with leuco-dichlorofluorescein as reducing cosubstrate. Addition of 0.5 mM phenol increases the oxidation of leuco-dichlorofluorescein 5-fold, probably by acting as a cyclic intermediate in the oxidation. Tetramethyl-p-phenylenediamine is also oxidized as cosubstrate. Its oxidation is not influenced by phenol. A stoichiometry of close to one mole of tetramethyl-p-phenylenediamine or leuco-dichlorofluorescein consumed per mole of arachidonic acid was found in the initial phase of the reaction. In the presence of phenol + leuco-dichlorofluorescein, the oxidation rate of arachidonic acid is about 40% lower than with phenol alone as cosubstrate. Since dichlorofluorescein has a molar extinction coefficient of 91 · 103 at 502 nm, the oxidation of less than 1 μM leuco-dichlorofluorescein can be detected spectrophotometrically. The rate of extinction change with leuco-dichlorofluorescein (at 502 nm) is about 4-fold more rapid than with tetramethyl-p-phenylenediamine (at 611 nm). With this spectrophotometric assay we have confirmed that arachidonic acid, linolenic acid, adrenic acid, γ-linolenic acid, eicosapentaenoic acid, are substrates for prostaglandin H synthase with decreasing reaction rates in the mentioned order. The same order of reaction rates were found when oxygen consumption was measured. The assay also shows that docosahexaenoic acid is substrate for the enzyme. The reaction rate of the enzyme evidently is decreased both by a n − 3 double bond and by deviation from a 20 carbon chain length of the fatty acid substrate.  相似文献   

18.
In the presence of heme and reduced glutathione, prostaglandin (PG) endoperoxides underwent rapid conversion to malondialdehyde and 12l-hydroxy-5,8,10-heptadecatrienoic acid. In addition, PG endoperoxides as well as lipid peroxides produced malondialdehyde to yield a red pigment during the thiobarbituric acid reaction with different efficiencies. The relative rates of the reaction were: 1,1,3,3-tetraethoxypropane, 100; PGG2, 55; PGH2, 32; and 15-hydroperoxyarachidonic acid, 6. The thiobarbituric acid reactive materials in rabbit serum decreased by 25–60%, after intravenous administration of aspirin (a cyclo-oxygenase inhibitor) and with a concomitant decline of serum PG levels. These results, taken together, suggested that serum thiobarbituric acid values, considered to be an indicator of lipid peroxide levels, were to a significant extent due to PG endoperoxides and their derivatives.  相似文献   

19.
Conversion of 1-14C-arachidonic acid (AA) to 6-keto-PGF, the stable metabolite of prostacyclin (PGI2) was assayed kinetically by employing an aqueous sampling technique. In this way, one can arrive at a kinetic view of PGI2 synthesis from AA in intact tissue. The assay appears to be particularly suitable to tissues such as the aorta where PGI2 constitutes the major metabolite of AA. The assay avoids the need for organic solvent extraction and relies on the essential absence of tissue binding of 6-keto-PGF. The disappearance of AA can also be followed in this system but quantitation is complicated by avid tissue binding of the fatty acid. The assay, as described should be applicable to other vascular tissues and should greatly simplify kinetic analyses of prostacyclin synthesis.  相似文献   

20.
Bioactivation of xenobiotics by prostaglandin H synthase   总被引:4,自引:0,他引:4  
Prostaglandin H synthase (PHS) catalyzes the oxidation of arachidonic acid to prostaglandin H2 in reactions which utilize two activities, a cyclooxygenase and a peroxidase. These enzymatic activities generate enzyme- and substrate-derived free radical intermediates which can oxidize xenobiotics to biologically reactive intermediates. As a consequence, in the presence of arachidonic acid or a peroxide source, PHS can bioactivate many chemical carcinogens to their ultimate mutagenic and carcinogenic forms. In general, PHS-dependent bioactivation is most important in extrahepatic tissues with low monooxygenase activity such as the urinary bladder, renal medulla, skin and lung. Mutagenicity assays are useful in the detection of compounds which are converted to genotoxic metabolites during PHS oxidation. In addition, the oxidation of xenobiotics by PHS often form metabolites or adducts to cellular macromolecules which are specific for peroxidase- or peroxyl radical-dependent reactions. These specific metabolites and/or adducts have served as biological markers of xenobiotic bioactivation by PHS in certain tissues. Evidence is presented which supports a role for PHS in the bioactivation of several polycyclic aromatic hydrocarbons and aromatic amines, two classes of carcinogens which induce extrahepatic neoplasia. It should be emphasized that the toxicities induced by PHS-dependent bioactivation of xenobiotics are not limited to carcinogenicity. Examples are given which demonstrate a role for PHS in pulmonary toxicity, teratogenicity, nephrotoxicity and myelotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号