首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fish functional design and swimming performance   总被引:11,自引:1,他引:10  
Classifications of fish swimming are reviewed as a prelude to discussing functional design and performance in an ecological context. Webb (1984a , 1998 ) classified fishes based on body shape and locomotor mode into three basic categories: body and caudal fin (BCF) periodic, BCF transient (fast‐starts, turns) and median and paired fin (MPF) swimmers. Swimming performance and functional design is discussed for each of these categories. Webb hypothesized that specialization in any given category would limit performance in any other. For example, routine MPF swimmers should be penalized in BCF transient (fast‐start propulsion). Recent studies offer much support for Webb's construct but also suggest some necessary amendments. In particular, design and performance compromises for different swimming modes are associated with fish that employ the same propulsor for more than one task (coupled, e.g. the same propulsor for routine steady swimming and fast‐starts). For example, pike (BCF transient specialist) achieve better acceleration performance than trout (generalist). Pike steady (BCF periodic) performance, however, is inferior to that of trout. Fish that employ different propulsors for different tasks (decoupled, e.g. MPF propulsion for low‐speed routine swimming and BCF motions for fast‐starts) do not show serious performance compromises. For example, certain MPF low‐speed swimmers show comparable fast‐start performance to BCF forms. Arguably, the evolution of decoupled locomotor systems was a major factor underlying the adaptive radiation of teleosts. Low‐speed routine propulsion releases MPF swimmers from the morphological constraints imposed by streamlining allowing for a high degree of variability in form. This contrasts with BCF periodic swimming specialists where representatives of four vertebrate classes show evolutionary convergence on a single, optimal ‘thunniform’ design. However, recent experimental studies on the comparative performance of carangiform and thunniform swimmers contradict some of the predictions of hydromechanical models. This is addressed in regard to the swimming performance, energetics and muscle physiology of tuna. The concept of gait is reviewed in the context of coupled and decoupled locomotor systems. Biomimetic approaches to the development of Autonomous Underwater Vehicles have given a new context and impetus to research and this is discussed in relation to current views of fish functional design and swimming performance. Suggestions are made for possible future research directions.  相似文献   

2.
 The tetraodontiform swimming mode has recently attracted attention because puffers swim very steadily and, unlike most of the other median and paired fin (MPF) swimmers, use more than one pair of fins to propel themselves through the water. To date, only one study presenting data concerning the swimming kinematics of puffers has been published, and this study dealt only with two species of large body size. In the present study, the swimming kinematics of small puffers (<6 cm TL) Tetraodon schoutedeni is described and compared to the swimming kinematics of larger puffers and boxfish. The results show that, generally, the swimming kinematics of small puffers is similar to that of larger puffers. The main differences that were found are in the synchronization of dorsal and anal fin motion, and in the motion of the pectoral fins, which complete their adduction before the dorsal and anal fins do. Maximum fin beat frequency was 18.4 Hz, much faster than that of larger puffers. At slow and median swimming speeds, dorsal fin beat amplitude increases with swimming speed and then remains constant between median and fast swimming speeds. The results confirm previous findings that puffers swim extremely steadily. Most of the differences in swimming kinematics between large and small puffers can be attributed to the size differences, but the difference in fin synchronization should be further studied to be completely understood. Received: September 27, 2002 / Revised: January 7, 2003 / Accepted: February 6, 2003  相似文献   

3.
Ecomorphology of Locomotion in Labrid Fishes   总被引:8,自引:0,他引:8  
The Labridae is an ecologically diverse group of mostly reef associated marine fishes that swim primarily by oscillating their pectoral fins. To generate locomotor thrust, labrids employ the paired pectoral fins in motions that range from a fore-aft rowing stroke to a dorso-ventral flapping stroke. Species that emphasize one or the other behavior are expected to benefit from alternative fin shapes that maximize performance of their primary swimming behavior. We document the diversity of pectoral fin shape in 143 species of labrids from the Great Barrier Reef and the Caribbean. Pectoral fin aspect ratio ranged among species from 1.12 to 4.48 and showed a distribution with two peaks at about 2.0 and 3.0. Higher aspect ratio fins typically had a relatively long leading edge and were narrower distally. Body mass only explained 3% of the variation in fin aspect ratio in spite of four orders of magnitude range and an expectation that the advantages of high aspect ratio fins and flapping motion are greatest at large body sizes. Aspect ratio was correlated with the angle of attachment of the fin on the body (r = 0.65), indicating that the orientation of the pectoral girdle is rotated in high aspect ratio species to enable them to move their fin in a flapping motion. Field measures of routine swimming speed were made in 43 species from the Great Barrier Reef. Multiple regression revealed that fin aspect ratio explained 52% of the variation in size-corrected swimming speed, but the angle of attachment of the pectoral fin only explained an additional 2%. Labrid locomotor diversity appears to be related to a trade-off between efficiency of fast swimming and maneuverability in slow swimming species. Slow swimmers typically swim closer to the reef while fast swimmers dominate the water column and shallow, high-flow habitats. Planktivory was the most common trophic associate with high aspect ratio fins and fast swimming, apparently evolving six times.  相似文献   

4.
Locomotor Patterns in the Evolution of Actinopterygian Fishes   总被引:9,自引:5,他引:4  
SYNOPSIS. Locomotor adaptations in actinopterygian fishes aredescribed for (a) caudal propulsion, used in cruising and sprintswimming, acceleration, and fast turns and (b) median and pairedfin propulsion used for slow swimming and in precise maneuver.Caudal swimming is subdivided into steady (time independent)and unsteady (time dependent acceleration and turning) locomotion. High power caudal propulsion is the major theme in actinopterygianswimming morphology because of its role in predator evasionand food capture. Non-caudal slow swimming appears to be secondaryand is not exploited before the Acanthopterygii. Optimal morphological requirements for unsteady swimming are(a) large caudal fin and general body area, (b) deep caudalpeduncle, often enhanced by posterior dorsal and anal fins,(c) an anterior stabilizing body mass and\or added mass, (d)flexible body and (e) large ratio of muscle mass to body mass.Optimal morphological requirements for steady swimming are (a)high aspect ratio caudal fin, (b) narrow caudal peduncle, (c)small total caudal area, (d) anterior stabilizing body massand added mass, and (e) a stiff body. Small changes in morphologycan have large effects on performance. Exclusive morphological requirements for steady versus unsteadyswimming are partially overcome using collapsible fins, butcompromises remain necessary. Morphologies favoring unsteadyperformance are a recurring theme in actinopterygian evolution.Successive radiations at chondrostean, halecostome and teleosteanlevels are associated with modifications in the axial and caudalskeleton. Strength of ossified structures probably limited maximum propulsionforces early in actinopterygian evolution, so that specializationsfor fast cruising (carangiform and thunmform modes) followedstructural advances especially in the caudal skeleton. No suchlimits apply to eel-like forms which consequently recur in successiveactinopterygian radiations. Slow swimming using mainly non-caudal propulsion probably firstoccurred among neopterygians in association with reduced andneutral buoyancy. Slow swimming adaptations can add to and extendthe scope of caudal swimming, but specialization is associatedwith reduced caudal swimming performance. Marked exploitationof slow swimming opportunities does not occur prior to the anterodorsallocation of pectoral and pelvic girdles and the vertical rotationof the base of the pectoral fin, as found in the Acanthopterygii.  相似文献   

5.
6.
Yellow‐lipped sea kraits (Laticauda colubrina) are amphibious in their habits. We measured their locomotor speeds in water and on land to investigate two topics: (1) to what degree have adaptations to increase swimming speed (paddle‐like tail etc.) reduced terrestrial locomotor ability in sea kraits?; and (2) do a sea krait’s sex and body size influence its locomotor ability in these two habitats, as might be expected from the fact that different age and sex classes of sea kraits use the marine and terrestrial environments in different ways? To estimate ancestral states for locomotor performance, we measured speeds of three species of Australian terrestrial elapids that spend part of their time foraging in water. The evolutionary modifications of Laticauda for marine life have enhanced their swimming speeds by about 60%, but decreased their terrestrial locomotor speed by about 80%. Larger snakes moved faster than smaller individuals in absolute terms but were slower in terms of body lengths travelled per second, especially on land. Male sea kraits were faster than females (independent of the body‐size effect), especially on land. Prey items in the gut reduced locomotor speeds both on land and in water. Proteroglyphous snakes may offer exceptional opportunities to study phylogenetic shifts in locomotor ability, because (1) they display multiple independent evolutionary shifts from terrestrial to aquatic habits, and (2) one proteroglyph lineage (the laticaudids) displays considerable intraspecific and interspecific diversity in terms of the degree to which they use terrestrial vs. aquatic habitats.  相似文献   

7.
Aquatic propulsion generated by the pectoral fins occurs in many groups of perciform fishes, including numerous coral reef families. This study presents a detailed survey of pectoral fin musculoskeletal structure in fishes that use labriform propulsion as the primary mode of swimming over a wide range of speeds. Pectoral fin morphological diversity was surveyed in 12 species that are primarily pectoral swimmers, including members of all labroid families (Labridae, Scaridae, Cichlidae, Pomacentridae, and Embiotocidae) and five additional coral reef fish families. The anatomy of the pectoral fin musculature is described, including muscle origins, insertions, tendons, and muscle masses. Skeletal structures are also described, including fin shape, fin ray morphology, and the structure of the radials and pectoral girdle. Three novel muscle subdivisions, including subdivisions of the abductor superficialis, abductor profundus, and adductor medialis were discovered and are described here. Specific functional roles in fin control are proposed for each of the novel muscle subdivisions. Pectoral muscle masses show broad variation among species, particularly in the adductor profundus, abductor profundus, arrector dorsalis, and abductor superficialis. A previously undescribed system of intraradial ligaments was also discovered in all taxa studied. The morphology of these ligaments and functional ramifications of variation in this connective tissue system are described. Musculoskeletal patterns are interpreted in light of recent analyses of fin behavior and motor control during labriform swimming. Labriform propulsion has apparently evolved independently multiple times in coral reef fishes, providing an excellent system in which to study the evolution of pectoral fin propulsion.  相似文献   

8.
Batoids are a diverse clade of flat cartilaginous fishes that occur primarily in benthic marine habitats. The skates and rays typically use their flexible pectoral fins for feeding and propulsion via undulatory swimming. However, two groups of rays have adopted a pelagic or bentho‐pelagic lifestyle and utilize oscillatory swimming—the Myliobatidae and Gymnuridae. The myliobatids have evolved cephalic lobes, anteriorly extended appendages that are optimized for feeding, while their pectoral fins exhibit several modifications that likely arose in association with functional optimization of pelagic cruising via oscillatory flight. Here, we examine variation in fin ray distribution and ontogenetic timing of fin ray development in batoid pectoral fins in an evolutionary context using the following methods: radiography, computed tomography, dissections, and cleared and stained specimens. We propose an index for characterizing variation in the distribution of pectoral fin rays. While undulatory swimmers exhibit symmetry or slight anterior bias, we found a posterior shift in the distribution of fin rays that arose in two distinct lineages in association with oscillatory swimming. Undulatory and oscillatory swimmers occupy nonoverlapping morphospace with respect to fin ray distribution illustrating significant remodeling of pectoral fins in oscillatory swimmers. Further, we describe a derived skeletal feature in anterior pectoral fins of the Myliobatidae that is likely associated with optimization of oscillatory swimming. By examining the distribution of fin rays with clearly defined articulation points, we were able to infer evolutionary trends and body plan remodeling associated with invasion of the pelagic environment. Finally, we found that the number and distribution of fin rays is set early in development in the little skate, round stingray, and cownose ray, suggesting that fin ray counts from specimens after birth or hatching are representative of adults and therefore comparable among species.  相似文献   

9.
Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications).  相似文献   

10.
In present,there are increasing interests in the research on mechanical and control system of underwater vehicles.Theseongoing research efforts are motivated by more pervasive applications of such vehicles including seabed oil and gas explorations,scientific deep ocean surveys,military purposes,ecological and water environmental studies,and also entertainments.However,the performance of underwater vehicles with screw type propellers is not prospective in terms of its efficiency andmaneuverability.The main weaknesses of this kind of propellers are the production of vortices and sudden generation of thrustforces which make the control of the position and motion difficult.On the other hand,fishes and other aquatic animals are efficient swimmers,posses high maneuverability,are able to followtrajectories,can efficiently stabilize themselves in currents and surges,create less wakes than currently used underwater vehicle,and also have a noiseless propulsion.The fish’s locomotion mechanism is mainly controlled by its caudal fin and paired pectoralfins.They are classified into Body and/or Caudal Fin(BCF)and Median and/or paired Pectoral Fins(MPF).The study of highlyefficient swimming mechanisms of fish can inspire a better underwater vehicles thruster design and its mechanism.There are few studies on underwater vehicles or fish robots using paired pectoral fins as thruster.The work presented in thispaper represents a contribution in this area covering study,design and implementation of locomotion mechanisms of pairedpectoral fins in a fish robot.The performance and viability of the biomimetic method for underwater vehicles are highlightedthrough in-water experiment of a robotic fish.  相似文献   

11.
The tail (caudal fin) is one of the most prominent characteristics of fishes, and the analysis of the flow pattern it creates is fundamental to understanding how its motion generates locomotor forces. A mechanism that is known to greatly enhance locomotor forces in insect and bird flight is the leading edge vortex (LEV) reattachment, i.e. a vortex (separation bubble) that stays attached at the leading edge of a wing. However, this mechanism has not been reported in fish-like swimming probably owing to the overemphasis on the trailing wake, and the fact that the flow does not separate along the body of undulating swimmers. We provide, to our knowledge, the first evidence of the vortex reattachment at the leading edge of the fish tail using three-dimensional high-resolution numerical simulations of self-propelled virtual swimmers with different tail shapes. We show that at Strouhal numbers (a measure of lateral velocity to the axial velocity) at which most fish swim in nature (approx. 0.25) an attached LEV is formed, whereas at a higher Strouhal number of approximately 0.6 the LEV does not reattach. We show that the evolution of the LEV drastically alters the pressure distribution on the tail and the force it generates. We also show that the tail''s delta shape is not necessary for the LEV reattachment and fish-like kinematics is capable of stabilising the LEV. Our results suggest the need for a paradigm shift in fish-like swimming research to turn the focus from the trailing edge to the leading edge of the tail.  相似文献   

12.
Maneuvering and stability performance of a robotic tuna   总被引:1,自引:0,他引:1  
The Draper Laboratory Vorticity Control Unmanned Undersea Vehicle(VCUUV) is the first mission-scale, autonomous underwater vehiclethat uses vorticity control propulsion and maneuvering. Builtas a research platform with which to study the energetics andmaneuvering performance of fish-swimming propulsion, the VCUUVis a self-contained free swimming research vehicle which followsthe morphology and kinematics of a yellowfin tuna. The forwardhalf of the vehicle is comprised of a rigid hull which housesbatteries, electronics, ballast and hydraulic power unit. Theaft section is a freely flooded articulated robot tail whichis terminated with a lunate caudal fin. Utilizing experimentallyoptimized body and tail kinematics from the MIT RoboTuna, theVCUUV has demonstrated stable steady swimming speeds up to 1.2m/sec and aggressive maneuvering trajectories with turning ratesup to 75 degrees per second. This paper summarizes the vehiclemaneuvering and stability performance observed in field trialsand compares the results to predicted performance using theoreticaland empirical techniques.  相似文献   

13.
The skeleton of the "wings" of skates and rays consists of a series of radially oriented cartilaginous fin rays emanating from a modified pectoral girdle. Each fin ray consists of small, laterally oriented skeletal elements, radials, traditionally represented as simple cylindrical building blocks. High-resolution radiography reveals the pattern of calcification in batoid wing elements, and their organization within the fin ray, to be considerably more complex and phylogenetically variable than previously thought. Calcification patterns of radials varied between families, as well as within individual pectoral fins. Oscillatory swimmers show structural interconnections between fin rays in central areas of the wing. Morphological variation was strongly predictive of locomotor strategy, which we attribute to oscillatory swimmers needing different areas of the wing stiffened than do undulatory swimmers. Contributions of various forms of calcification to radial stiffness were calculated theoretically. Results indicate that radials completely covered by mineralized tissue ("crustal calcification") were stiffer than those that were calcified in chain-like patterns ("catenated calcification"). Mapping this functionally important variation onto a phylogeny reveals a more complicated pattern than the literature suggests for the evolution of locomotor mode. Therefore, further investigation into the phylogenetic distribution of swimming mode is warranted.  相似文献   

14.
Labriform locomotion is the primary swimming mode for many fishesthat use the pectoral fins to generate thrust across a broadrange of speeds. A review of the literature on hydrodynamics,kinematics, and morphology of pectoral fin mechanisms in fishesreveals that we lack several kinds of morphological and kinematicdata that are critical for understanding thrust generation inthis mode, particularly at higher velocities. Several needsinclude detailed three-dimensional kinematic data on speciesthat are pectoral fin swimmers across a broad range of speeds,data on the motor patterns of pectoral fin muscles, and thedevelopment of a mechanical model of pectoral fin functionalmorphology. New data are presented here on pectoral fin locomotionin Gomphosus varius, a labrid fish that uses the pectoral finsat speeds of 1 –6 total body lengths per second. Three-dimensionalkinematic data for the pectoral fins of G. varius show thata typical "drag-based" mechanism is not used in this species.Instead, the thrust mechanics of this fish are dominated bylift forces and acceleration reaction forces. The fin is twistedlike a propeller during the fin stroke, so that angles of attackare variable along the fin length. Electromyographic data onsix fin muscles indicate the sequence of muscle activity thatproduces antagonistic fin abduction and adduction and controlsthe leading edge of the fin. EMG activity in abductors and adductorsis synchronous with the start of abduction and adduction, respectively,so that muscle mechanics actuate the fin with positive work.A mechanical model of the pectoral fin is proposed in whichfin morphometrics and computer simulations allow predictionsof fin kinematics in three dimensions. The transmission of forceand motion to the leading edge of the fin depends on the mechanicaladvantage of fin ray levers. An integrative program of researchis suggested that will synthesize data on morphology, physiology,kinematics, and hydrodynamics to understand the mechanics ofpectoral fin swimming.  相似文献   

15.
《Zoology (Jena, Germany)》2014,117(5):337-348
The maneuverability demonstrated by the weakly electric ghost knifefish (Apteronotus albifrons) is a result of its highly flexible ribbon-like anal fin, which extends nearly three-quarters the length of its body and is composed of approximately 150 individual fin rays. To understand how movement of the anal fin controls locomotion we examined kinematics of the whole fin, as well as selected individual fin rays, during four locomotor behaviors executed by free-swimming ghost knifefish: forward swimming, backward swimming, heave (vertical) motion, and hovering. We used high-speed video (1000 fps) to examine the motion of the entire anal fin and we measured the three-dimensional curvature of four adjacent fin rays in the middle of the fin during each behavior to determine how individual fin rays bend along their length during swimming. Canonical discriminant analysis separated all four behaviors on anal fin kinematic variables and showed that forward and backward swimming behaviors contrasted the most: forward behaviors exhibited a large anterior wavelength and posterior amplitude while during backward locomotion the anal fin exhibited both a large posterior wavelength and anterior amplitude. Heave and hover behaviors were defined by similar kinematic variables; however, for each variable, the mean values for heave motions were generally greater than for hovering. Individual fin rays in the middle of the anal fin curved substantially along their length during swimming, and the magnitude of this curvature was nearly twice the previously measured maximum curvature for ray-finned fish fin rays during locomotion. Fin rays were often curved into the direction of motion, indicating active control of fin ray curvature, and not just passive bending in response to fluid loading.  相似文献   

16.
Only a limited amount of research has gone into evaluating the contribution made by the upper arm to the propulsion of elite swimmers with an amputation at elbow level. With assistance of computational fluid dynamics (CFD) modelling, the swimming technique of competitive arm amputee swimmers can be assessed through numerical simulations which test the effect of various parameters on the effectiveness of the swimming propulsion.This numerical study investigates the effect of body roll amplitude and of upper arm rotation speed on the propulsion of an arm amputee swimmer, at different mean swimming speeds. Various test cases are simulated resulting in a thorough analysis of the complex body/fluid interaction with a detailed quantitative assessment of the effect of the variation of each parameter on the arm propulsion. It is found that a body roll movement with an amplitude of 45° enhances greatly the propulsive contribution from the upper arm with an increase of about 70% in the propulsive force compared to the no roll condition. An increase in the angular velocity of the upper arm also leads to a concomitant increase in the propulsive forces produced by the arm.Such results have direct implications for competitive arm amputee front crawl swimmers and for those who coach them. One important message that emerges in this present work is that there exists, for any given swimming speed, a minimum angular velocity at which the upper arm must be rotated to generate effective propulsion. Below this velocity, the upper arm will experience a net resistive drag force which adversely affects swimming performance.  相似文献   

17.
Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave‐swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification—a winged pectoral fin that facilitates efficient underwater flight in high‐flow environments—is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high‐intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high‐speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.  相似文献   

18.
Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion by cubomedusae, we quantified size related changes in wake dynamics, bell shape, swimming and turning kinematics of two species of cubomedusae, Chironex fleckeri and Chiropsella bronzie. During growth, these cubomedusae transitioned from using jet propulsion at smaller sizes to a rowing-jetting hybrid mode of propulsion at larger sizes. Simple modifications in the flexibility and kinematics of their velarium appeared to be sufficient to alter their propulsive mode. Turning occurs during both bell contraction and expansion and is achieved by generating asymmetric vortex structures during both stages of the swimming cycle. Swimming characteristics were considered in conjunction with the unique foraging strategy used by cubomedusae.  相似文献   

19.
In fishes the shape of the body and the swimming mode generally are correlated. Slender-bodied fishes such as eels, lampreys, and many sharks tend to swim in the anguilliform mode, in which much of the body undulates at high amplitude. Fishes with broad tails and a narrow caudal peduncle, in contrast, tend to swim in the carangiform mode, in which the tail undulates at high amplitude. Such fishes also tend to have different wake structures. Carangiform swimmers generally produce two staggered vortices per tail beat and a strong downstream jet, while anguilliform swimmers produce a more complex wake, containing at least two pairs of vortices per tail beat and relatively little downstream flow. Are these differences a result of the different swimming modes or of the different body shapes, or both? Disentangling the functional roles requires a multipronged approach, using experiments on live fishes as well as computational simulations and physical models. We present experimental results from swimming eels (anguilliform), bluegill sunfish (carangiform), and rainbow trout (subcarangiform) that demonstrate differences in the wakes and in swimming performance. The swimming of mackerel and lamprey was also simulated computationally with realistic body shapes and both swimming modes: the normal carangiform mackerel and anguilliform lamprey, then an anguilliform mackerel and carangiform lamprey. The gross structure of simulated wakes (single versus double vortex row) depended strongly on Strouhal number, while body shape influenced the complexity of the vortex row, and the swimming mode had the weakest effect. Performance was affected even by small differences in the wakes: both experimental and computational results indicate that anguilliform swimmers are more efficient at lower swimming speeds, while carangiform swimmers are more efficient at high speed. At high Reynolds number, the lamprey-shaped swimmer produced a more complex wake than the mackerel-shaped swimmer, similar to the experimental results. Finally, we show results from a simple physical model of a flapping fin, using fins of different flexural stiffness. When actuated in the same way, fins of different stiffnesses propel themselves at different speeds with different kinematics. Future experimental and computational work will need to consider the mechanisms underlying production of the anguilliform and carangiform swimming modes, because anguilliform swimmers tend to be less stiff, in general, than are carangiform swimmers.  相似文献   

20.
Despite enormous progress during the last twenty years in understandingthe mechanistic basis of aquatic animal propulsion—a taskinvolving the construction of a substantial data base on patternsof fin and body kinematics and locomotor muscle function—thereremains a key area in which biologists have little information:the relationship between propulsor activity and water movementin the wake. How is internal muscular force translated intoexternal force exerted on the water? What is the pattern offluid force production by different fish fins (e.g., pectoral,caudal, dorsal) and how does swimming force vary with speedand among species? These types of questions have received considerableattention in analyses of terrestrial locomotion where forceoutput by limbs can be measured directly with force plates.But how can forces exerted by animals moving through fluid bemeasured? The advent of digital particle image velocimetry (DPIV)has provided an experimental hydrodynamic approach for quantifyingthe locomotor forces of freely moving animals in fluids, andhas resulted in significant new insights into the mechanismsof fish propulsion. In this paper we present ten "lessons learned"from the application of DPIV to problems of fish locomotionover the last five years. (1) Three-dimensional DPIV analysisis critical for reconstructing wake geometry. (2) DPIV analysisreveals the orientation of locomotor reaction forces. (3) DPIVanalysis allows calculation of the magnitude of locomotor forces.(4) Swimming speed can have a major impact on wake structure.(5) DPIV can reveal interspecific differences in vortex wakemorphology. (6) DPIV analysis can provide new insights intothe limits to locomotor performance. (7) DPIV demonstrates thefunctional versatility of fish fins. (8) DPIV reveals hydrodynamicforce partitioning among fins. (9) DPIV shows that wake interactionamong fins may enhance thrust production. (10) Experimentalhydrodynamic analysis can provide insight into the functionalsignificance of evolutionary variation in fin design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号