共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Resistance to drug treatment is an important hurdle in the therapy of many brain disorders, including brain cancer, epilepsy, schizophrenia, depression and infection of the brain with HIV. Consequently, there is a pressing need to develop new and more effective treatment strategies. Mechanisms of resistance that operate in cancer and infectious diseases might also be relevant in drug-resistant brain disorders. In particular, drug efflux transporters that are expressed at the blood-brain barrier limit the ability of many drugs to access the brain. There is increasing evidence that drug efflux transporters have an important role in drug-resistant brain disorders, and this information should allow more efficacious treatment strategies to be developed. 相似文献
3.
One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette
(ABC) transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability
of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance
of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the
physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing
on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein. 相似文献
4.
Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. 总被引:3,自引:0,他引:3
Jacek Lubelski Wil N Konings Arnold J M Driessen 《Microbiology and molecular biology reviews》2007,71(3):463-476
Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukaryotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms. Predictions about the functions of genes in the growing number of sequenced genomes indicate that MDR transporters are ubiquitous in nature. The majority of described MDR transporters in bacteria use ion motive force, while only a few systems have been shown to rely on ATP hydrolysis. However, recent reports on MDR proteins from gram-positive organisms, as well as genome analysis, indicate that the role of ABC-type MDR transporters in bacterial drug resistance might be underestimated. Detailed structural and mechanistic analyses of these proteins can help to understand their molecular mode of action and may eventually lead to the development of new strategies to counteract their actions, thereby increasing the effectiveness of drug-based therapies. This review focuses on recent advances in the analysis of ABC-type MDR transporters in bacteria. 相似文献
5.
Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria 总被引:1,自引:0,他引:1
Antibiotic resistance mechanisms reported in Gram-negative bacteria are causing a worldwide health problem. The continuous dissemination of 'multidrug-resistant' (MDR) bacteria drastically reduces the efficacy of our antibiotic 'arsenal' and consequently increases the frequency of therapeutic failure. In MDR bacteria, the overexpression of efflux pumps that expel structurally unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data have indicated an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological levels, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may pave the way towards the rational development of an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms. 相似文献
6.
Phylogeny of multidrug transporters. 总被引:21,自引:0,他引:21
We currently recognize five large ubiquitous superfamilies and one small eukaryotic-specific family in which cellular multidrug efflux pumps occur. One, the ABC superfamily, includes members that use ATP hydrolysis to drive drug efflux, but the MFS, RND, MATE and DMT superfamilies include members that are secondary carriers, functioning by drug:H(+)or drug:Na(+)antiport mechanisms. The small MET family seems to be restricted to endosomal membranes of eukaryotes, and only a single such system has been functionally characterized. In this review article, these families of drug transporters are discussed and evaluated from phylogenetic standpoints. 相似文献
7.
Proteins in the small multidrug resistance (SMR) family of transport proteins are about 110 amino acids in length and are predicted to have four transmembrane helices. This family is divided into a two groups, one of which we have referred to as small multidrug pumps (Smp) and confer resistance to a wide variety of quaternary ammonium compounds through a proton-drug efflux antiport mechanism. Members of the second group within this family have, as yet, not had their substrate profile characterized and are referred to as Sug proteins. Alpha-periodicity analysis was conducted on a set of six homologous proteins of the SMR family consisting of three established Smp and three Sug proteins. Several amino acid properties were used in the analysis including hydropathy, variability, and a substitution matrix for lipid exposed amino acids. The scanning window was varied between 8 and 14 residues and the alpha-periodicity was calculated from the peaks in the Fourier transform power spectra in the region between 3.0 and 4.3 residues/turn. This analysis adds to the hydropathy analysis to give a more confident prediction of which residues are within the lipid bilayer for each of the four transmembrane helices. Information was also obtained that allowed for the identification of zones within each transmembrane helix that face the interior of the helical bundle on one side and are lipid exposed on the other face. 相似文献
8.
Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting hundreds of millions worldwide and a major global health burden. Current control of schistosomiasis depends largely on a single drug, praziquantel (PZQ). One potential physiological target for new antischistosomal drugs is the parasite's excretory system, which removes wastes and xenobiotics. Multidrug resistance (MDR) transporters that are members of the ATP-binding cassette (ABC) superfamily of proteins are ATP-dependent efflux pumps involved in removal of toxins and xenobiotics from cells. They mediate the phenomenon of multidrug resistance, in which cells resistant to one drug show cross-resistance to a broad range of other agents, and are also associated with reduced drug susceptibility in parasitic helminths. In this review, we survey the different types of ABC transporter genes present within the schistosome genome, and examine recent evidence indicating that at least some of these transporters may play a role in fine-tuning susceptibility of schistosomes to PZQ. Disruption of their function may therefore provide a strategy for enhancing drug action or overcoming or attenuating drug resistance. Furthermore, dissection of the roles these transporters may play in normal schistosome physiology could potentially lead to identification of highly "druggable" targets for new antischistosomals. 相似文献
9.
Cells are protected by multidrug resistance transporters, which remove potentially harmful chemicals entering the cells from the environment or originating endogenously from the cellular metabolism. Multidrug resistance transporters have not been investigated so far in marine eukaryotic algae like diatoms. We investigated the uptake of a calcium-sensitive dye, Fura 2 acetoxymethylester (AM), by the marine diatom Thalassiosira rotula in the presence and absence of substances known to inhibit multidrug resistance transporters (ATP-binding cassette transporters, ABC). Three inhibitors known to block transporters in living organisms were tested in the marine diatom T. rotula. We applied verapamil, which blocks multidrug resistance P-glycoprotein (MDR1), probenecid as an inhibitor of organic anion transport and the specific inhibitor of multidrug resistance-associated protein (MRP), MK571, obtaining positive results with the highly specific MK571. This leads to the assumption that the cells of T. rotula possess MRP transporters. Marine diatom cells can now be loaded by incubation with a calcium-sensitive dye, which facilitates measurements of cellular calcium signals without using methods risking injury of the cell membrane. This opens an avenue for investigation on diatom calcium signalling and perhaps how they process environmental signals. 相似文献
10.
Glucocorticoids modulate multidrug resistance transporters in the first trimester human placenta 下载免费PDF全文
Phetcharawan Lye Enrrico Bloise Lubna Nadeem William Gibb Stephen J. Lye Stephen G. Matthews 《Journal of cellular and molecular medicine》2018,22(7):3652-3660
The placental multidrug transporters, P‐glycoprotein (P‐gp, encoded by ABCB1) and breast cancer resistance protein (BCRP, ABCG2) protect the foetus from exposure to maternally derived glucocorticoids, toxins and xenobiotics. During pregnancy, maternal glucocorticoid levels can be elevated by stress or exogenous administration. We hypothesized that glucocorticoids modulate the expression of ABCB1/P‐gp and ABCG2/BCRP in the first trimester human placenta. Our objective was to examine whether dexamethasone (DEX) or cortisol modulate first trimester placental expression of multidrug transporters and determine whether cytotrophoblasts or the syncytiotrophoblast are/is responsible for mediating these effects. Three models were examined: (i) an ex‐vivo model of placental villous explants (7‐10 weeks), (ii) a model of isolated first trimester syncytiotrophoblast and cytotrophoblast cells and (iii) the BeWo immortalized trophoblast cell line model. These cells/tissues were treated with DEX or cortisol for 24 hour to 72 hour. In first trimester placental explants, DEX (48 hour) increased ABCB1 (P < .001) and ABCG2 (P < .05) mRNA levels, whereas cortisol (48 hour) only increased ABCB1 mRNA levels (P < .01). Dexamethasone (P < .05) and cortisol (P < .01) increased BCRP but did not affect P‐gp protein levels. Breast cancer resistance protein expression was primarily confined to syncytiotrophoblasts. BeWo cells, when syncytialized with forskolin, increased expression of BCRP protein, and this was further augmented by DEX (P < .05). Our data suggest that the protective barrier provided by BCRP increases as cytotrophoblasts fuse to form the syncytiotrophoblast. Increase in glucocorticoid levels during the first trimester may reduce embryo/foetal exposure to clinically relevant BCRP substrates, because of an increase in placental BCRP. 相似文献
11.
Molecular properties of bacterial multidrug transporters. 总被引:20,自引:0,他引:20
One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria gonorrhoeae, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Vibrio cholerae. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors which block the multidrug transporter and allow traditional antibiotics to be effective. This review gives an extensive overview of the currently known multidrug transporters in bacteria. Based on energetics and structural characteristics, the bacterial multidrug transporters can be classified into five distinct families. Functional reconstitution in liposomes of purified multidrug transport proteins from four families revealed that these proteins are capable of mediating the export of structurally unrelated drugs independent of accessory proteins or cytoplasmic components. On the basis of (i) mutations that affect the activity or the substrate specificity of multidrug transporters and (ii) the three-dimensional structure of the drug-binding domain of the regulatory protein BmrR, the substrate-binding site for cationic drugs is predicted to consist of a hydrophobic pocket with a buried negatively charged residue that interacts electrostatically with the positively charged substrate. The aromatic and hydrophobic amino acid residues which form the drug-binding pocket impose restrictions on the shape and size of the substrates. Kinetic analysis of drug transport by multidrug transporters provided evidence that these proteins may contain multiple substrate-binding sites. 相似文献
12.
Structures of multidrug and toxic compound extrusion transporters and their mechanistic implications
Min Lu 《Channels (Austin, Tex.)》2016,10(2):88-100
Multidrug resistance poses grand challenges to the effective treatment of infectious diseases and cancers. Integral membrane proteins from the multidrug and toxic compound extrusion (MATE) family contribute to multidrug resistance by exporting a wide variety of therapeutic drugs across cell membranes. MATE proteins are conserved from bacteria to humans and can be categorized into the NorM, DinF and eukaryotic subfamilies. MATE transporters hold great appeal as potential therapeutic targets for curbing multidrug resistance, yet their transport mechanism remains elusive. During the past 5 years, X-ray structures of 4 NorM and DinF transporters have been reported and guided biochemical studies to reveal how MATE transporters extrude different drugs. Such advances, although substantial, have yet to be discussed collectively. Herein I review these structures and the unprecedented mechanistic insights that have been garnered from those structure-inspired studies, as well as lay out the outstanding questions that present exciting opportunities for future work. 相似文献
13.
Mechanisms of multidrug transporters 总被引:11,自引:0,他引:11
Henk Bolhuisa Hendrik W van Veena Bert Poolmana Arnold J.M Driessena Wil N Koningsa 《FEMS microbiology reviews》1997,21(1):55-84
14.
Kevin G. Chen Julio C. Valencia Jean‐Pierre Gillet Vincent J. Hearing Michael M. Gottesman 《Pigment cell & melanoma research》2009,22(6):740-749
Because melanomas are intrinsically resistant to conventional radiotherapy and chemotherapy, many alternative treatment approaches have been developed such as biochemotherapy and immunotherapy. The most common cause of multidrug resistance (MDR) in human cancers is the expression and function of one or more A TP‐b inding c assette (ABC) transporters that efflux anticancer drugs from cells. Melanoma cells express a group of ABC transporters (such as ABCA9, ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, and ABCD1) that may be associated with the resistance of melanoma cells to a broad range of anticancer drugs and/or of melanocytes to toxic melanin intermediates and metabolites. In this review, we propose a model (termed the ABC‐M model) in which the intrinsic MDR of melanoma cells is at least in part because of the transporter systems that may also play a critical role in reducing the cytotoxicity of the melanogenic pathway in melanocytes. The ABC‐M model suggests molecular strategies to reverse MDR function in the context of the melanogenic pathway, which could open therapeutic avenues towards the ultimate goal of circumventing clinical MDR in patients with melanoma. 相似文献
15.
16.
Overexpression of the response regulator evgA of the two-component signal transduction system modulates multidrug resistance conferred by multidrug resistance transporters 下载免费PDF全文
Overexpression of evgA, a response regulator of a two-component system, increased multidrug efflux in Escherichia coli. Since overexpression of the emrKY operon, which is controlled by evgAS, could account only for deoxycholate resistance, the evgAS locus apparently controls expression of at least one other multidrug efflux operon. 相似文献
17.
18.
Following the unequivocal demonstration that plants contain at least two types of vacuoles, scientists studying this organelle have realized that the plant 'vacuome' is far more complex than they expected. Some fully developed cells contain at least two large vacuoles, with different functions. Remarkably, even a single vacuole may be subdivided and fulfil several functions, which are supported in part by the vacuolar membrane transport systems. Recent studies, including proteomic analyses for several plant species, have revealed the tonoplast transporters and their involvement in the nitrogen storage, salinity tolerance, heavy metal homeostasis, calcium signalling, guard cell movements, and the cellular pH homeostasis. It is clear that vacuolar transporters are an integrated part of a complex cellular network that enables a plant to react properly to changing environmental conditions, to save nutrients and energy in times of plenty, and to maintain optimal metabolic conditions in the cytosol. An overview is given of the main features of the transporters present in the tonoplast of plant cells in terms of their function, regulation, and relationships with the microheterogeneity of the vacuome. 相似文献
19.
目的检测多重耐药伤寒沙门菌对抗菌药物的敏感性及其耐药基因携带情况,为伤寒沙门菌引起的腹泻治疗提供科学依据。方法采用微量肉汤稀释的方法测定大连地区临床分离的78株伤寒沙门菌对12种抗生素的敏感性;用PCR方法检测TEM型β内酰胺酶基因、catA和catB氯霉素乙酰基转移酶基因以及cmlA氯霉素外排泵蛋白基因、aac(6′)Ⅰb和aac3Ⅱ型氨基糖苷类修饰酶基因、qacEΔ1sul1耐消毒剂和磺胺基因、多重耐药外排基因acrB等8种耐药基因。结果78株沙门菌对12种药物有不同程度耐药(1.28%~74.35%)。得到9株多重耐药菌株,其中5株检出TEM型β内酰胺酶基因;7株耐氯霉素的伤寒沙门菌菌株中,2株仅检出catA基因,1株仅检出catB基因,1株仅检出cmlA氯霉素外排泵蛋白基因,2株同时检出catA基因和cmlA氯霉素外排泵蛋白基因;2株检出aac(6′)Ⅰb基因,1株检出aac3Ⅱ型氨基糖苷类修饰酶基因;4株检出耐消毒剂和磺胺基因qacEΔ1sul1;6株检出多重耐药外排基因acrB。结论大连地区临床分离的伤寒沙门菌存在严峻的耐药现象,多种耐药基因存在于耐药伤寒沙门菌中,可能是导致菌株对多种抗菌药物耐药的原因。 相似文献
20.
Magnesium transporters and their role in Al tolerance in plants 总被引:2,自引:0,他引:2
Magnesium (Mg) is an essential macronutrient for plant growth, which has diverse biological functions. However, little is known about the transport system of this nutrient in plants. In the genome of plants such as rice and Arabidopsis, there are homologues of bacterial Mg transporters (CorA) and some of them have been functionally characterized, but the physiological role of these transporters are poorly understood. On the other hand, Mg is able to alleviate Al toxicity in a number of plant species, but the mechanisms underlying this alleviation are not well understood. Recently, this alleviation has been associated with a Mg transporter in rice. In this paper, we present our opinions on Mg transporters, which are required for uptake, translocation, distribution and storage in plants. Possible mechanisms for Mg-mediated alleviation of Al toxicity are also discussed. 相似文献