首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Drug resistance in brain diseases and the role of drug efflux transporters   总被引:12,自引:0,他引:12  
Resistance to drug treatment is an important hurdle in the therapy of many brain disorders, including brain cancer, epilepsy, schizophrenia, depression and infection of the brain with HIV. Consequently, there is a pressing need to develop new and more effective treatment strategies. Mechanisms of resistance that operate in cancer and infectious diseases might also be relevant in drug-resistant brain disorders. In particular, drug efflux transporters that are expressed at the blood-brain barrier limit the ability of many drugs to access the brain. There is increasing evidence that drug efflux transporters have an important role in drug-resistant brain disorders, and this information should allow more efficacious treatment strategies to be developed.  相似文献   

3.
One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC) transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.  相似文献   

4.
Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukaryotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms. Predictions about the functions of genes in the growing number of sequenced genomes indicate that MDR transporters are ubiquitous in nature. The majority of described MDR transporters in bacteria use ion motive force, while only a few systems have been shown to rely on ATP hydrolysis. However, recent reports on MDR proteins from gram-positive organisms, as well as genome analysis, indicate that the role of ABC-type MDR transporters in bacterial drug resistance might be underestimated. Detailed structural and mechanistic analyses of these proteins can help to understand their molecular mode of action and may eventually lead to the development of new strategies to counteract their actions, thereby increasing the effectiveness of drug-based therapies. This review focuses on recent advances in the analysis of ABC-type MDR transporters in bacteria.  相似文献   

5.
Antibiotic resistance mechanisms reported in Gram-negative bacteria are causing a worldwide health problem. The continuous dissemination of 'multidrug-resistant' (MDR) bacteria drastically reduces the efficacy of our antibiotic 'arsenal' and consequently increases the frequency of therapeutic failure. In MDR bacteria, the overexpression of efflux pumps that expel structurally unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data have indicated an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological levels, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may pave the way towards the rational development of an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms.  相似文献   

6.
Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting hundreds of millions worldwide and a major global health burden. Current control of schistosomiasis depends largely on a single drug, praziquantel (PZQ). One potential physiological target for new antischistosomal drugs is the parasite's excretory system, which removes wastes and xenobiotics. Multidrug resistance (MDR) transporters that are members of the ATP-binding cassette (ABC) superfamily of proteins are ATP-dependent efflux pumps involved in removal of toxins and xenobiotics from cells. They mediate the phenomenon of multidrug resistance, in which cells resistant to one drug show cross-resistance to a broad range of other agents, and are also associated with reduced drug susceptibility in parasitic helminths. In this review, we survey the different types of ABC transporter genes present within the schistosome genome, and examine recent evidence indicating that at least some of these transporters may play a role in fine-tuning susceptibility of schistosomes to PZQ. Disruption of their function may therefore provide a strategy for enhancing drug action or overcoming or attenuating drug resistance. Furthermore, dissection of the roles these transporters may play in normal schistosome physiology could potentially lead to identification of highly "druggable" targets for new antischistosomals.  相似文献   

7.
Proteins in the small multidrug resistance (SMR) family of transport proteins are about 110 amino acids in length and are predicted to have four transmembrane helices. This family is divided into a two groups, one of which we have referred to as small multidrug pumps (Smp) and confer resistance to a wide variety of quaternary ammonium compounds through a proton-drug efflux antiport mechanism. Members of the second group within this family have, as yet, not had their substrate profile characterized and are referred to as Sug proteins. Alpha-periodicity analysis was conducted on a set of six homologous proteins of the SMR family consisting of three established Smp and three Sug proteins. Several amino acid properties were used in the analysis including hydropathy, variability, and a substitution matrix for lipid exposed amino acids. The scanning window was varied between 8 and 14 residues and the alpha-periodicity was calculated from the peaks in the Fourier transform power spectra in the region between 3.0 and 4.3 residues/turn. This analysis adds to the hydropathy analysis to give a more confident prediction of which residues are within the lipid bilayer for each of the four transmembrane helices. Information was also obtained that allowed for the identification of zones within each transmembrane helix that face the interior of the helical bundle on one side and are lipid exposed on the other face.  相似文献   

8.
Cells are protected by multidrug resistance transporters, which remove potentially harmful chemicals entering the cells from the environment or originating endogenously from the cellular metabolism. Multidrug resistance transporters have not been investigated so far in marine eukaryotic algae like diatoms. We investigated the uptake of a calcium-sensitive dye, Fura 2 acetoxymethylester (AM), by the marine diatom Thalassiosira rotula in the presence and absence of substances known to inhibit multidrug resistance transporters (ATP-binding cassette transporters, ABC). Three inhibitors known to block transporters in living organisms were tested in the marine diatom T. rotula. We applied verapamil, which blocks multidrug resistance P-glycoprotein (MDR1), probenecid as an inhibitor of organic anion transport and the specific inhibitor of multidrug resistance-associated protein (MRP), MK571, obtaining positive results with the highly specific MK571. This leads to the assumption that the cells of T. rotula possess MRP transporters. Marine diatom cells can now be loaded by incubation with a calcium-sensitive dye, which facilitates measurements of cellular calcium signals without using methods risking injury of the cell membrane. This opens an avenue for investigation on diatom calcium signalling and perhaps how they process environmental signals.  相似文献   

9.
Molecular properties of bacterial multidrug transporters.   总被引:20,自引:0,他引:20  
One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria gonorrhoeae, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Vibrio cholerae. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors which block the multidrug transporter and allow traditional antibiotics to be effective. This review gives an extensive overview of the currently known multidrug transporters in bacteria. Based on energetics and structural characteristics, the bacterial multidrug transporters can be classified into five distinct families. Functional reconstitution in liposomes of purified multidrug transport proteins from four families revealed that these proteins are capable of mediating the export of structurally unrelated drugs independent of accessory proteins or cytoplasmic components. On the basis of (i) mutations that affect the activity or the substrate specificity of multidrug transporters and (ii) the three-dimensional structure of the drug-binding domain of the regulatory protein BmrR, the substrate-binding site for cationic drugs is predicted to consist of a hydrophobic pocket with a buried negatively charged residue that interacts electrostatically with the positively charged substrate. The aromatic and hydrophobic amino acid residues which form the drug-binding pocket impose restrictions on the shape and size of the substrates. Kinetic analysis of drug transport by multidrug transporters provided evidence that these proteins may contain multiple substrate-binding sites.  相似文献   

10.
11.
12.
Overexpression of evgA, a response regulator of a two-component system, increased multidrug efflux in Escherichia coli. Since overexpression of the emrKY operon, which is controlled by evgAS, could account only for deoxycholate resistance, the evgAS locus apparently controls expression of at least one other multidrug efflux operon.  相似文献   

13.
14.
Vacuolar transporters and their essential role in plant metabolism   总被引:4,自引:0,他引:4  
Following the unequivocal demonstration that plants contain at least two types of vacuoles, scientists studying this organelle have realized that the plant 'vacuome' is far more complex than they expected. Some fully developed cells contain at least two large vacuoles, with different functions. Remarkably, even a single vacuole may be subdivided and fulfil several functions, which are supported in part by the vacuolar membrane transport systems. Recent studies, including proteomic analyses for several plant species, have revealed the tonoplast transporters and their involvement in the nitrogen storage, salinity tolerance, heavy metal homeostasis, calcium signalling, guard cell movements, and the cellular pH homeostasis. It is clear that vacuolar transporters are an integrated part of a complex cellular network that enables a plant to react properly to changing environmental conditions, to save nutrients and energy in times of plenty, and to maintain optimal metabolic conditions in the cytosol. An overview is given of the main features of the transporters present in the tonoplast of plant cells in terms of their function, regulation, and relationships with the microheterogeneity of the vacuome.  相似文献   

15.
Molecular mechanism of multidrug resistance in tumor cells   总被引:2,自引:0,他引:2  
The ability of tumor cells to develop simultaneous resistance to multiple lipophilic cytotoxic compounds represents a major problem in cancer chemotherapy. This review describes recent molecular biological studies which resulted in the identification and cloning of the gene responsible for multidrug resistance in human tumor cells. This gene, designated mdr1, is overexpressed in all and amplified in many of the multidrug-resistant cell lines analyzed. Gene transfer and expression assays have indicated that the mdr1 gene is both necessary and sufficient for multidrug resistance. The product of the mdr1 gene is P-glycoprotein, a transmembrane protein which shares homology with several bacterial proteins involved in active membrane transport. P-glycoprotein appears to function as an energy-dependent efflux pump responsible for the removal of drugs from multidrug-resistant cells. The functions of the mdr system in normal cells and its potential clinical implications are discussed.  相似文献   

16.
Magnesium transporters and their role in Al tolerance in plants   总被引:2,自引:0,他引:2  
Magnesium (Mg) is an essential macronutrient for plant growth, which has diverse biological functions. However, little is known about the transport system of this nutrient in plants. In the genome of plants such as rice and Arabidopsis, there are homologues of bacterial Mg transporters (CorA) and some of them have been functionally characterized, but the physiological role of these transporters are poorly understood. On the other hand, Mg is able to alleviate Al toxicity in a number of plant species, but the mechanisms underlying this alleviation are not well understood. Recently, this alleviation has been associated with a Mg transporter in rice. In this paper, we present our opinions on Mg transporters, which are required for uptake, translocation, distribution and storage in plants. Possible mechanisms for Mg-mediated alleviation of Al toxicity are also discussed.  相似文献   

17.
P-Glycoprotein and homologous multidrug transporters contain a phosphorylatable linker sequence that was proposed to control drug efflux on the basis that it was indeed phosphorylated in vitro and in vivo, and that inhibitors of protein kinase C (PKC) inhibited both P-glycoprotein phosphorylation and activity. However, site-directed mutagenesis of all phosphorylatable residues did not alter the drug resistance. The present work shows that PKC effectors are able to bind directly to multidrug transporters, from either cancer cells (mouse P-glycoprotein), yeast (Saccharomyces cerevisiae Pdr5p), or protozoan parasite (Leishmania tropica ltmdr1), and to inhibit their energy-dependent drug-efflux activity. The binding of staurosporine and derivatives such as CGP 41251 is prevented by preincubation with ATP, suggesting at least partial interaction at the ATP-binding site. In contrast, more hydrophobic compounds such as calphostin C and CGP 42700 bind outside the ATP-binding site and strongly interfere with drug interaction. A direct correlation is obtained between the efficiencies of PKC effectors to inhibit energy-dependent interaction of rhodamine 6G with yeast Pdr5p, to promote intracellular drug accumulation in various multidrug resistant cells, and to chemosensitize growth of resistant cells. The noncompetitive inhibition by PKC effectors of rhodamine 6G interaction with Pdr5p suggests that the binding might interfere with signal transduction between nucleotide hydrolysis and drug interaction. The overall results indicate that the multidrug transporters from different species display common features for interaction with PKC inhibitors. The hydrophobic derivative of staurosporine, CGP 42700, constitutes a potentially powerful modulator of P-glycoprotein-mediated multidrug resistance.  相似文献   

18.
Wang Y  Liu TB  Delmas G  Park S  Perlin D  Xue C 《Eukaryotic cell》2011,10(5):618-628
Cryptococcus neoformans is an AIDS-associated human fungal pathogen and the most common cause of fungal meningitis, with a mortality rate over 40% in AIDS patients. Significant advances have been achieved in understanding its disease mechanisms. Yet the underlying mechanism of a high frequency of cryptococcal meningitis remains unclear. The existence of high inositol concentrations in brain and our earlier discovery of a large inositol transporter (ITR) gene family in C. neoformans led us to investigate the potential role of inositol in Cryptococcus-host interactions. In this study, we focus on functional analyses of two major ITR genes to understand their role in virulence of C. neoformans. Our results show that ITR1A and ITR3C are the only two ITR genes among 10 candidates that can complement the growth defect of a Saccharomyces cerevisiae strain lacking inositol transporters. Both S. cerevisiae strains heterologously expressing ITR1A or ITR3C showed high inositol uptake activity, an indication that they are major inositol transporters. Significantly, itr1a itr3c double mutants showed significant virulence attenuation in murine infection models. Mutating both ITR1A and ITR3C in an ino1 mutant background activates the expression of several remaining ITR candidates and does not show more severe virulence attenuation, suggesting that both inositol uptake and biosynthetic pathways are important for inositol acquisition. Overall, our study provides evidence that host inositol and fungal inositol transporters are important for Cryptococcus pathogenicity.  相似文献   

19.
P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) are ATP-dependent transporters involved in efflux of toxins and xenobiotics from cells. When overexpressed, these transporters can mediate multidrug resistance (MDR) in mammalian cells, and changes in Pgp expression and sequence are associated with drug resistance in helminths. In addition to the role they play in drug efflux, MDR transporters are essential components of normal cellular physiology, and targeting them may prove a useful strategy for development of new therapeutics or of compounds that enhance the efficacy of current anthelmintics. We previously showed that expression of Schistosoma mansoni MDR transporters increases in response to praziquantel (PZQ), the current drug of choice against schistosomiasis, and that reduced PZQ sensitivity correlates with higher levels of these parasite transporters. We have also shown that PZQ inhibits transport by SMDR2, a Pgp orthologue from S. mansoni, and that PZQ is a likely substrate of SMDR2. Here, we examine the physiological roles of SMDR2 and SmMRP1 (the S. mansoni orthologue of MRP1) in S. mansoni adults, using RNAi to knock down expression, and pharmacological agents to inhibit transporter function. We find that both types of treatments disrupt parasite egg deposition by worms in culture. Furthermore, administration of different MDR inhibitors to S. mansoni-infected mice results in a reduction in egg burden in host liver. These schistosome MDR transporters therefore appear to play essential roles in parasite egg production, and can be targeted genetically and pharmacologically. Since eggs are responsible for the major pathophysiological consequences of schistosomiasis, and since they are also the agents for transmission of the disease, these results suggest a potential strategy for reducing disease pathology and spread.  相似文献   

20.
The cellular vaults have been described for the first time in 1986 as ribonucleoprotein complexes composed of three proteins, MVP, TEP1 and vPARP and several vRNA strains. Biochemical and structural studies revealed their ubiquitous existence in the cytoplasm of many eukaryotic cells and their barrel-like structure indicating their engagement in the intracellular transport. Furthermore, the high homology between MVP and LRP which was already known to be involved in multidrug resistance mechanism opened a discussion about the role of vaults in both normal and cancer cells. The histopathology research demonstrated an increased amount of MVP/LRP proteins in the cancer as well as showed translocation possibility between cytoplasm and nuclear envelope, which can be of crucial point in the prevention of nucleus against anticancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号