首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With delineation of the photochemical events occurring in the skin after ultraviolet exposure, there has been increased interest in the skin's role in the vitamin D-3-endocrine system. We provide here in vitro conditions for the generation of both labelled (from [3H]acetate) and unlabelled vitamin D-3 in cultures of human keratinocytes and fibroblasts. Sterol precursors and photoproducts in irradiated and non-irradiated cultures are identified by co-chromatography, ultraviolet absorbance spectra, thermal conversion characteristics of previtamin D-3 and mass spectrometry. Because the conversion of 7-dehydrocholesterol to cholesterol is more efficient in vitro than in vivo, the specific delta 7 inhibitor, AY-9944, was added in non-toxic doses to modulate 7-dehydrocholesterol content. Both cell types were equally capable of generating photoproducts, depending on the amount of 7-dehydrocholesterol present. The 290 +/- 5 and 295 nm filters were much more efficient than the 305 nm filter for generating previtamin D-3 and vitamin D-3 in fibroblasts. In contrast, the 305 nm filter was as efficient as the 290 +/- 5 and 295 nm filters in keratinocytes, where it yielded previtamin D-3, with much less lumisterol and tachysterol than appeared with the shorter-wavelength filters. The amount of lumisterol and tachysterol versus previtamin D-3 formed in both cell types was dependent on the total energy applied, with lower energies (less then 1 J/cm2) favoring previtamin D-3 over the other photoproducts. The use of cultured cells provides a system whereby the regulation of vitamin D-3 synthesis by extracutaneous factors can be studied in a homogeneous setting.  相似文献   

2.
1alpha,25-Dihydroxyvitamin D(3)-3-bromoacetate (1, 25(OH)(2)D(3)-3-BE), an affinity labeling analog of 1alpha, 25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), displayed stronger antiproliferative activities than 1,25(OH)(2)D(3) at 10(-10)-10(-6) M dose levels in cultured human keratinocytes (CHK). Additionally, preincubation of the cells with 10(-6) M 1,25(OH)(2)D(3), followed by treatment with various doses of 1,25(OH)(2)D(3)-3-BE, resulted in a significantly stronger antiproliferative activity by the mixture than individual reagents at every dose level. To search for a mechanism of this observation, we determined that [(14)C]1, 25(OH)(2)D(3)-3-BE covalently labeled human recombinant 1alpha, 25-dihydroxyvitamin D(3) receptor (reVDR) swiftly (<1 min) with a 1:1 stoichiometry and induced conformational changes (in VDR) that are different from 1,25(OH)(2)D(3), by limited tryptic digestion. Furthermore, a protein band, corresponding to reVDR, was specifically labeled by [(14)C]1,25(OH)(2)D(3)-3-BE in CHK extract, indicating that VDR is the main target of [(14)C]1, 25(OH)(2)D(3)-3-BE. The above-mentioned observations suggest that a rapid covalent labeling of VDR in CHK might alter the interaction between the holo-VDR and 1,25(OH)(2)D(3)-controlled genes. Furthermore, we observed that 1,25(OH)(2)D(3)-3-BE significantly decreased the binding of VDR to human osteocalcin vitamin D responsive element (hOCVDRE), as well as the dissociation rate of VDR from hOCVDRE, compared with 1,25(OH)(2)D(3) in COS-1 cells, transiently transfected with a VDR construct. Additionally, 1, 25(OH)(2)D(3)-3-BE was found to be more potent in inducing 1alpha, 25-dihydroxyvitamin D(3)-24-hydroxylase (24-OHase) promoter activity and mRNA expression in keratinocytes. The accumulation of 24-OHase message was also prolonged by the analog. Collectively these results indicated that rapid covalent labeling of VDR in keratinocytes (by 1, 25(OH)(2)D(3)-3-BE) might result in the conversion of apo-VDR to a holo-form, with a conformation that is different from that of the 1, 25(OH)(2)D(3)-VDR complex. This resulted in an enhanced stability of the 1,25(OH)(2)D(3)-3-BE/VDR-VDRE complex and contributed to the amplified antiproliferative effect of 1,25(OH)(2)D(3)-3-BE in keratinocytes.  相似文献   

3.
J K Yamamoto  R F Borch 《Biochemistry》1985,24(13):3338-3344
The incorporation of 7-dehydrocholesterol into synthetic phospholipid bilayers altered the distribution of products after photolysis. In liposomes, the relative amounts of 7-dehydrocholesterol and lumisterol were elevated, and tachysterol was reduced from the levels observed in hexane solution. Z to E isomerization of the previtamin to tachysterol is favored in organic solvents. The inhibition of this process is evidence that an ordered lipid matrix places a new constraint on the conformation of the ring B fission product--one in which the configuration is favorable for a return to a cyclized diene. Further, rate enhancements of up to 15-fold were observed for the thermal isomerization of the previtamin to vitamin D3 in liposomes. The free energies of activation for the reaction at 25 degrees C were reduced by 1.3-1.5 kcal/mol in the bilayer environment compared to that of hexane. As this reaction involves the concerted transfer of a hydrogen via a cyclic intermediate, it provides additional evidence for membrane stabilization of an all-cis conformation of the previtamin. Photoproduct ratios were also studied for 7-dehydrocholesterol adsorbed to a variety of solid supports. That nonspecific interactions of 7-dehydrocholesterol with lipid can influence product formation may have important implications with respect to the mechanism of vitamin D3 biosynthesis.  相似文献   

4.
Summary A human skin equivalent was prepared by culturing human keratinocytes on the surface of nylon filtration meshes containing human skin fibroblasts and by growing the epidermal cells at the air-liquid interface. This human skin equivalent model was used to mimic the photoproduction of vitamin D3 in human skin. It was found that the concentration of 7-dehydrocholesterol and its photoconversion to previtamin D3 and its subsequent thermal isomerization to vitamin D3 in the human skin equivalent was essentially identical to that of human skin. The 7-dehydrocholesterol content in the skin equivalent and human skin was 2187±296 and 2352±320 ng/cm2, respectively. The percentage of the major photoproducts of 7-dehydrocholesterol in the skin equivalent following ultraviolet B radiation (0.5 J/cm2) was 35% previtamin D3, 29% lumisterol, and 6% tachysterol; 30% remained as 7-dehydrocholesterol. Similarly, in human skin they were 36%, 29%, 7%, and 28%, respectively. After incubation at 37°C for 30 min, 11% and 12% of the previtamin D3 had thermally isomerized to vitamin D3 in the skin equivalent and human skin. In conclusion, compared with cultured keratinocytes or fibroblasts, the human skin equivalent model provides a superior in vitro system that better mimics the physiology and biochemistry of the photosynthesis of vitamin D3 in human skin.  相似文献   

5.
6.
Deletion of C19 in the structure of 1 alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3] does not substantially alter the biological potency but prevents the conversion between the vitamin and the previtamin form. Hence, this modification allows the study of locked previtamin and vitamin forms. The locked 19-nor-1,25(OH)2-previtamin D3 analog (19-nor-previtamin D) had a low biological activity and was a rather weak activator of the genomic signal transduction pathway. 19-Nor-trans-decalin-1,25(OH)2-vitamin D3 (19-nor-TD-vitamin D), characterized by the presence of a trans-fused decalin CD-ring system, was 10-fold more potent than the parent compound and was a potent activator of the genomic signal transduction pathway. Surprisingly, the previtamin, 19-nor-trans-decalin-1,25(OH)2-previtamin D3 (19-nor-TD-previtamin D), was as potent as 1,25(OH)2D3 in inhibiting cell proliferation and inducing cell differentiation and represents the first previtamin structure with pronounced vitamin D-like activity. Furthermore, this compound interacted as efficiently as 1,25(OH)2D3 with the vitamin D receptor (VDR), retinoid X receptor (RXR), coactivators, and DNA, which illustrated its potent ability to activate the genomic signal transduction pathway. Analysis of the transactivation potency of 12 VDR point mutants after stimulation with 19-nor-TD-previtamin D revealed that this analog used the same contact points within the receptor as did 1,25(OH)2D3. This could be confirmed by modeling analysis of this compound in the ligand binding pocket of VDR. In conclusion, a previtamin D3 analog is presented with genomic activities equivalent to 1,25(OH)2D3.  相似文献   

7.
8.
9.
The human colon carcinoma cell line, Caco-2, is the only intestinal cell line to spontaneously differentiate in culture to a population exhibiting structural and biochemical characteristics of mature enterocytes. We conducted studies to establish the presence of the vitamin D receptor (VDR), determine changes in VDR concentration and affinity with differentiation and determine whether 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) mediates a functional response in this cell line. We found that Caco-2 cells possess a specific 1,25(OH)2D3 binding protein similar to the mammalian VDR. It has an equilibrium dissociation constant (Kd) of 0.72 nM, binds vitamin D analogues in order of their biological activities in vivo (1,25(OH)2D3 greater than 25(OH)D3 greater than 24,25(OH)2D3), sediments as a single peak on sucrose density gradients at 3.7 S, and is eluted from a DNA-cellulose column by 0.16 M KCl. The maximum number of binding sites was 2.6-fold greater in the differentiated cell (Day 15) compared to the preconfluent, undifferentiated (Day 4) cell (23 fmol/mg protein vs 56 fmol/mg protein). Cell growth was reduced 59% when exposed to 10(-7) M 1,25(OH)2D3 for 8 days. Alkaline phosphatase activity significantly increased in cultures incubated with 10(-8) M 1,25(OH)2D3 for up to 4 days when treatment was started in both undifferentiated cells (Day 5) and differentiated cells (Day 11). These findings suggest that the VDR present in undifferentiated and differentiated Caco-2 cells is functional. Caco-2 cells provide a unique in vitro model to study vitamin D-regulated functions in differentiated mammalian enterocytes.  相似文献   

10.
20-hydroxyvitamin D(2) [20(OH)D(2)] inhibits DNA synthesis in epidermal keratinocytes, melanocytes, and melanoma cells in a dose- and time-dependent manner. This inhibition is dependent on cell type, with keratinocytes and melanoma cells being more sensitive than normal melanocytes. The antiproliferative activity of 20(OH)D(2) is similar to that of 1,25(OH)(2)D(3) and of newly synthesized 1,20(OH)(2)D(2) but significantly higher than that of 25(OH)D(3). 20(OH)D(2) also displays tumorostatic effects. In keratinocytes 20(OH)D(2) inhibits expression of cyclins and stimulates involucrin expression. It also stimulates CYP24 expression, however, to a significantly lower degree than that by 1,25(OH)(2)D(3) or 25(OH)D(3). 20(OH)D(2) is a poor substrate for CYP27B1 with overall catalytic efficiency being 24- and 41-fold lower than for 25(OH)D(3) with the mouse and human enzymes, respectively. No conversion of 20(OH)D(2) to 1,20(OH)(2)D(2) was detected in intact HaCaT keratinocytes. 20(OH)D(2) also demonstrates anti-leukemic activity but with lower potency than 1,25(OH)(2)D(3). The phenotypic effects of 20(OH)D(2) are mediated through interaction with the vitamin D receptor (VDR) as documented by attenuation of cell proliferation after silencing of VDR, by enhancement of the inhibitory effect through stable overexpression of VDR and by the demonstration that 20(OH)D(2) induces time-dependent translocation of VDR from the cytoplasm to the nucleus at a comparable rate to that for 1,25(OH)(2)D(3). In vivo tests show that while 1,25(OH)(2)D(3) at doses as low as 0.8 μg/kg induces calcium deposits in the kidney and heart, 20(OH)D(2) is devoid of such activity even at doses as high as 4 μg/kg. Silencing of CY27B1 in human keratinocytes showed that 20(OH)D(2) does not require its transformation to 1,20(OH)(2)D(2) for its biological activity. Thus 20(OH)D(2) shows cell-type dependent antiproliferative and prodifferentiation activities through activation of VDR, while having no detectable toxic calcemic activity, and is a poor substrate for CYP27B1.  相似文献   

11.
Wojtkielewicz A  Morzycki JW 《Steroids》2007,72(6-7):552-558
New synthetic pathway towards 19-functionalized derivatives of 1alpha-hydroxy-5,6-trans-vitamin D3 was described. Ring-closing metathesis (RCM) of 1alpha-hydroxy-5,6-trans-vitamin D3 1-omega-alkenoates was a key-step. Hydride reduction of resulting lactones led to the new vitamin D3 analogues.  相似文献   

12.
The process of the photolytic activation of vitamin D precursor(s) in the skin has been elucidated by a detailed analysis of the products formed after ultraviolet light exposure. The photolytic product isolated from the skin of rats exposed to ultraviolet irradiation was identified as previtamin D3 by several criteria including its (a) characteristic ultraviolet absorption spectrum, (b) mass spectrum, and (c) thermal isomerization to vitamin D3, which itself was identified also by mass spectroscopy. Vitamin D3 per se was not formed by ultraviolet irradiation--vitamin D3 arises exclusively from the thermal conversion of previtamin D3. Detectable amounts of lumisterol3 or tachysterol3 were not seen.  相似文献   

13.
Exposure to sunlight continues to play a major role in providing adequate vitamin D nutrition for most of the population of the world, including those who live in countries that practice fortification of dairy, margarine, and cereal products with vitamin D. During exposure to sunlight, the high-energy UV photons (290-315 nm) penetrate the epidermis and photolyze 7-dehydrocholesterol (provitamin D3) to previtamin D3. Once formed, previtamin D3 undergoes a thermally induced isomerization to vitamin D3 that takes 2-3 days to reach completion. Melanin effectively competes with provitamin D3 for the UV radiation that enters the epidermis and limits its photolysis to previtamin D3. However, this is not the major factor that prevents excess production of vitamin D in the skin of people who are constantly exposed to sunlight. During the initial exposure to sunlight, provitamin D3 is efficiently converted to previtamin D3. However, because previtamin D3 is photolabile, continued exposure to sunlight causes the isomerization of previtamin D3, principally to lumisterol. Thus, no more than 10-20% of the initial provitamin D3 concentrations ultimately end up as previtamin D3. Aging, sunscreens, seasonal changes, time of day, and latitude also significantly affect the cutaneous production of this vitamin-hormone.  相似文献   

14.
Rats treated with varying amounts of 19-hydroxy-10(S),19-dihydrovitamin D3 prior to administration of physiologic doses of vitamin D3 exhibit normal intestinal calcium transport but are unable to mobilize bone calcium. In contrast, 19-hydroxy-10(R),19-dihydrovitamin D3 had no inhibitory activity. Circulating serum levels of 25-hydroxy[3H]vitamin D3 and 1 alpha, 25-dihydroxy[3H]vitamin D3 are markedly suppressed but not totally eliminated in animals predosed with 19-hydroxy-10(S),19-dihydrovitamin D3 before [3H]vitamin D3. Hepatic 25-hydroxy[3H]vitamin D3 levels were approximately equal in both 19-hydroxy-10(S),19-dihydroviotamin D3 treated and untreated rats. However, the rate of conversion of [3H]vitamin D3 to 25-hydroxyvitamin D3 in vivo is greatly reduced in the treated rats. The inhibitory vitamin analogue was also show to block hepatic microsomal 25-hydroxylation in vitro. These results indicate that 19-hydroxy-10(S),19-dihydrovitamin D3 is a specific inhibitor for a hepatic microsomal vitamin D3-25-hydroxylase system.  相似文献   

15.
16.
17.
Synthesis of a C-24-epimeric mixture of 25-hydroxy-[26,27-3H]vitamin D2 and a C-24-epimeric mixture of 1,25-dihydroxy-[26,27-3H]vitamin D2 by the Grignard reaction of the corresponding 25-keto-27-nor-vitamin D2 and 1 alpha-acetoxy-25-keto-27-nor-vitamin D3 with tritiated methyl magnesium bromide is described. Separation of epimers by high-performance liquid chromatography afforded pure radiolabeled vitamins of high specific activity (80 Ci/mmol). The identities and radiochemical purities of 25-hydroxy-[26,27-3H[vitamin D2 and 1,25-dihydroxy-[26,27-3H]vitamin D2 D2 were established by cochromatography with synthetic 25-hydroxyvitamin D2 or 1,25-dihydroxyvitamin D2. Biological activity of 25-hydroxy-[26,27-3H]vitamin D2 was demonstrated by its binding to the rat plasma binding protein for vitamin D compounds, and by its in vitro conversion to 1,25-dihydroxy-[26,27-3H]vitamin D2 by kidney homogenate prepared from vitamin D-deficient chickens. The biological activity of 1,25-dihydroxy-[26,27-3H]vitamin D2 was demonstrated by its binding to the chick intestinal receptor for 1,25-dihydroxyvitamin D3.  相似文献   

18.
The skin fulfills an important role in the vitamin D photo-endocrine system. Epidermis is not only the site of vitamin D3 photoproduction. In addition, epidermal keratinocytes contain the vitamin D receptor (VDR) and possess 25-hydroxylase and 1alpha-hydroxylase activity indicating that all components of the vitamin D system are present. We investigated whether these components cooperate in inducing vitamin D activity upon treatment with physiological UVB doses. Upon irradiation, 24-hydroxylase mRNA was induced in keratinocytes pretreated with a sterol Delta7-reductase inhibitor (BM15766) whereby the 7-dehydrocholesterol content increased by 300-fold. Transfection experiments with a vitamin D response element containing construct confirmed VDR-dependent gene activation. Furthermore, the UVB-dependent induction of 24-hydroxylase was blocked by the cytochrome-P450 inhibitor ketoconazole. The 24-hydroxylase inducing photoproduct was transferable to unirradiated keratinocytes by medium and cellular homogenates of UVB-irradiated, BM15766-pretreated cells and was identified as 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] by high-performance liquid chromatography with tandem mass spectrometric detection. Addition of vitamin D binding protein blunted UVB-induced 24-hydroxylase suggesting the possibility of a paracrine or autocrine role for 1,25(OH)2D3. In conclusion, epidermal keratinocytes can produce vitamin D3, convert it to 1,25(OH)2D3 and respond to it upon UVB irradiation in the absence of exogenous 7-dehydrocholesterol and therefore contain a unique and complete photo-endocrine vitamin D system.  相似文献   

19.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

20.
In the context of our ongoing study of vitamin D structure-function relationships and in an attempt to obtain a better dissociation of their prodifferentiating (HL-60) and/or antiproliferative (MCF-7) activities and their calcemic activity, further 20-epi and 14-epi modifications were made to three trans-decalin CD-ring analogs of 1,25-dihydroxyvitamin D(3), the hormonally active metabolite of vitamin D(3), possessing a natural 20R side chain and featuring additional structural modifications in the seco-B-ring and in the A-ring. Following a previously observed trend and in agreement with the conformational analysis results, all three 20-epi derivatives show substantially lower biological activities, opposite to what is usually observed for analogs having the natural CD-ring. The 14-epi modification (cis-decalins) has little effect on the biological activity of the ynediene type and the saturated derivative, but results in an approximate 10-fold reduction in activity of the previtamin derivative. No better dissociation of the prodifferentiating and/or antiproliferative activities and the calcemic activity was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号