首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
McrBC: a multisubunit GTP-dependent restriction endonuclease.   总被引:1,自引:0,他引:1  
McrBC-mediated restriction of modified DNA has been studied extensively by genetic methods, but little is known of its molecular action. We have used overproducing plasmid constructs to facilitate purification of the McrBL and McrC proteins, and report preliminary characterization of the activity of the complex. Both proteins are required for cleavage of appropriately modified DNA in vitro, in a reaction absolutely dependent on GTP. ATP inhibits the reaction. The sequence and modification requirements for cleavage of the substrate reflect those seen in vivo. The position of cleavage was examined at the nucleotide level, revealing that cleavage occurs at multiple positions in a small region. Based upon these observations, and upon cleavage of model oligonucleotide substrates, it is proposed that the recognition site for this enzyme consists of the motif RmC(N40-80)RmC, with cleavage occurring at multiple positions on both strands, between the modified C residues. In subunit composition, cofactor requirement, and relation between cleavage and recognition site, McrBC does not fit into any of the classes (types I to IV) of restriction enzyme so far described.  相似文献   

2.
Pieper U  Pingoud A 《Biochemistry》2002,41(16):5236-5244
McrBC is a unique restriction enzyme which binds specifically to the bipartite recognition sequence R(m)CN( approximately )(30)(-)( approximately )(2000)R(m)C and in the presence of GTP translocates the DNA and cleaves both strands at multiple positions within the two R(m)C "half-sites". It is known that McrBC is composed of two subunits: McrB which binds and hydrolyzes GTP and specifically interacts with DNA and McrC whose function is not clear but which has been suspected to harbor the catalytic center for DNA cleavage. A multiple-sequence alignment of the amino acid sequence of Escherichia coli McrC and of six presumably homologous open reading frames from various bacterial species shows that a sequence motif found in many restriction enzymes, but also in other nucleases, the PD.D/EXK motif, is conserved among these sequences. A mutational analysis, in which the carboxylates (aspartic acid in McrC) of this motif were substituted with alanine or asparagine and lysine was substituted with alanine or arginine, strongly suggests that Asp244, Asp257, and Lys259 represent the catalytic center of E. coli McrC. Whereas the variants D244A (or -N), D257A (or -N), and K259A are inactive in DNA cleavage (K259R has residual DNA cleavage activity), they interact with McrB like wild-type McrC, as can be deduced from the finding that they stimulate the McrB-catalyzed GTP hydrolysis to the same extent as wild-type McrC. Thus, whereas McrC variants defective in DNA cleavage can stimulate the GTPase activity of McrB, the DNase activity of McrC is not supported by McrB variants defective in GTP hydrolysis.  相似文献   

3.
The GTP-dependent restriction endonuclease McrBC of E. coli K12, which recognizes cytosine-methylated DNA, consists of two protein subunits, McrB and McrC. We have investigated the structural assignment and interdependence of the McrB subunit functions, namely (i) specific DNA recognition and (ii) GTP binding and hydrolysis. Extending earlier work, we have produced McrB variants comprising N- and C-terminal fragments. The variants McrB1-162 and McrB1-170 are still capable of specific DNA binding. McrB169-465 shows GTP binding and hydrolysis characteristics indistinguishable from full-length McrB as well as wild-type like interaction with McrC. Thus, DNA and GTP binding are spatially separated on the McrB molecule, and the respective domains function quite independently.  相似文献   

4.
The GTP-dependent restriction enzyme McrBC consists of two polypeptides: one (McrB) that is responsible for GTP binding and hydrolysis as well as DNA binding and another (McrC) that is responsible for DNA cleavage. It recognizes two methylated or hemimethylated RC sites (R(m)C) at a distance of approximately 30 to more than 2000 base pairs and cleaves the DNA close to one of the two R(m)C sites. This process is strictly coupled to GTP hydrolysis and involves the formation of high-molecular mass complexes. We show here using footprinting techniques, surface plasmon resonance, and scanning force microscopy experiments that in the absence of McrC, McrB binds to a single R(m)C site. If a second R(m)C site is present on the DNA, it is occupied independently by McrB. Whereas the DNA-binding domain of McrB forms 1:1 complexes with each R(m)C site and shows a clear footprint on both R(m)C sites, full-length McrB forms complexes with a stoichiometry of at least 4:1 at each R(m)C site, resulting in a slightly more extended footprint. In the presence of McrC, McrB forms high-molecular mass complexes of unknown stoichiometry, which are considerably larger than the complexes formed with McrB alone. In these complexes and when GTP is present, the DNA is cleaved next to one of the R(m)C sites at distances differing by one to five helical turns, suggesting that in the McrBC-DNA complex only a few topologically well-defined phosphodiester bonds of the DNA are accessible for the nucleolytic center of McrC.  相似文献   

5.
McrBC, a GTP-requiring, modification-dependent endonuclease of Escherichia coli K-12, specifically recognizes DNA sites of the form 5' R(m)C 3'. DNA cleavage normally requires translocation-mediated coordination between two such recognition elements at distinct sites. We have investigated assembly of the cleavage-competent complex with gel-shift and DNase I footprint analysis. In the gel-shift system, McrB(L) binding resulted in a fast-migrating specific shifted band, in a manner requiring both GTP and Mg(2+). The binding was specific for methylated DNA and responded to local sequence changes in the same way that cleavage does. Single-stranded DNA competed for McrB(L)-binding in a modification and sequence-specific fashion. A supershifted species was formed in the presence of McrC and GTPgammaS. DNase I footprint analysis showed modest cooperativity in binding to two sites, and a two-site substrate displayed protection in non-specific spacer DNA in addition to the recognition elements. The addition of McrC did not affect the footprint obtained. We propose that McrC effects a conformational change in the complex rather than a reorganization of the DNA:protein interface.  相似文献   

6.
T Krüger  C Wild    M Noyer-Weidner 《The EMBO journal》1995,14(11):2661-2669
Restriction of DNA by the Escherichia coli K-12 McrBC restriction endonuclease, which consists of the two subunits McrB and McrC, depends on the presence of modified cytosine residues in a special constellation. From previous work by others it was known that restriction of 5-methylcytosine-containing DNA requires two methylated 5'-PuC sites separated by approximately 40-80 non-defined base pairs. Here we show that binding of the McrBC nuclease is mediated exclusively by the McrB subunit. McrB has a low affinity for non-methylated DNA, with which it forms low molecular weight complexes. The affinity for DNA is significantly increased, with variations depending on the sequence context, by hemi- or fully methylated 5'-PuC sites. Binding to such substrates yields high molecular weight complexes, presumably involving several McrB molecules. Methylation at unique 5'-PuC sites can be sufficient to stimulate DNA binding by McrB. As such substrates are not cleaved by the nuclease, restriction apparently requires the coordinated interaction of molecules bound to neighbouring 5'-PumC sites. The binding properties of McrB exhibit some similarities to recently identified eukaryotic proteins interacting in a non-sequence-specific manner with DNA containing methylated 5'-CpG sequences and might point to a common molecular origin of these proteins. In addition to DNA, McrB also binds GTP, an essential cofactor in DNA restriction by McrBC. McrC neither binds to DNA nor modulates the DNA binding potential of McrB. As McrC is essential for restriction it appears to predominantly function in catalysis.  相似文献   

7.
McrBC from Escherichia coli K-12 is a restriction enzyme that belongs to the family of AAA(+) proteins and cuts DNA containing modified cytosines. Two proteins are expressed from the mcrB gene: a full-length version, McrB(L), and a short version, McrB(S). McrB(L) binds specifically to the methylated recognition site and is, therefore, the DNA-binding moiety of the McrBC endonuclease. McrB(S) is devoid of DNA-binding activity. We observed that the quaternary structure of the endonuclease depends on binding of the cofactors. In gel filtration experiments, McrB(L) and McrB(S) form high molecular weight oligomers in the presence of Mg(2+) and GTP, GDP or GTP-gamma-S. Oligomerization did not require the presence of DNA and was independent of GTP hydrolysis. Electron micrographs of negatively stained McrB(L) and McrB(S) revealed ring-shaped particles with a central channel. Mass analysis by scanning transmission electron microscopy indicates that McrB(L) and McrB(S) form single heptameric rings as well as tetradecamers. In the presence of McrC, a subunit that is essential for DNA cleavage, the tetradecameric species was the major form of the endonuclease.  相似文献   

8.
McrBC specifically recognizes and cleaves methylated DNA in a reaction dependent on GTP hydrolysis. DNA cleavage requires at least two recognition sites that are optimally separated by 40-80 bp, but can be spaced as far as 3 kb apart. The nature of the communication between two recognition sites was analyzed on DNA substrates containing one or two recognition sites. DNA cleavage of circular DNA required only one methylated recognition site, whereas the linearized form of this substrate was not cleaved. However, the linearized substrate was cleaved if a Lac repressor was bound adjacent to the recognition site. These results suggest a model in which communication between two remote sites is accomplished by DNA translocation rather than looping. A mutant protein with defective GTPase activity cleaved substrates with closely spaced recognition sites, but not substrates where the sites were further apart. This indicates that McrBC translocates DNA in a reaction dependent on GTP hydrolysis. We suggest that DNA cleavage occurs by the encounter of two DNA-translocating McrBC complexes, or can be triggered by non-specific physical obstacles like the Lac repressor bound on the enzyme's path along DNA. Our results indicate that McrBC belongs to the general class of DNA "motor proteins", which use the free energy associated with nucleoside 5'-triphosphate hydrolysis to translocate along DNA.  相似文献   

9.
The methylation-dependent restriction endonuclease McrBC from Escherichia coli K12 cleaves DNA containing two R(m)C dinucleotides separated by about 40 to 2000 base-pairs. McrBC is unique in that cleavage is totally dependent on GTP hydrolysis. McrB is the GTP binding and hydrolyzing subunit, whereas MrC stimulates its GTP hydrolysis. The C-terminal part of McrB contains the sequences characteristic for GTP-binding proteins, consisting of the GxxxxGK(S/T) motif (position 201-208), followed by the DxxG motif (position 300-303). The third motif (NKxD) is present only in a non-canonical form (NTAD 333-336). Here we report a mutational analysis of the putative GTP-binding domain of McrB. Amino acid substitutions were initially performed in the three proposed GTP-binding motifs. Whereas substitutions in motif 1 (P203V) and 2 (D300N) show the expected, albeit modest effects, mutation in the motif 3 is at variance with the expectations. Unlike the corresponding EF-Tu and ras -p21 variants, the D336N mutation in McrB does not change the nucleotide specificity from GTP to XTP, but results in a lack of GTPase stimulation by McrC. The finding that McrB is not a typical G protein motivated us to perform a search for similar sequences in DNA databases. Eight microbial sequences were found, mainly from unfinished sequencing projects, with highly conserved sequence blocks within a presumptive GTP-binding domain. From the five sequences showing the highest homology, 17 invariant charged or polar residues outside the classical three GTP-binding motifs were identified and subsequently exchanged to alanine. Several mutations specifically affect GTP affinity and/or GTPase activity. Our data allow us to conclude that McrB is not a typical member of the superfamily of GTP-binding proteins, but defines a new subfamily within the superfamily of GTP-binding proteins, together with similar prokaryotic proteins of as yet unidentified function.  相似文献   

10.
Organization and function of the mcrBC genes of Escherichia coli K-12   总被引:10,自引:0,他引:10  
Many natural DNA sequences are restricted in Escherichia coli K-12, not only by the classic Type I restriction system EcoK, but also by one of three modification-specific restriction systems found in K-12. The McrBC system is the best studied of these. We infer from the base composition of the mcrBC genes that they were imported from an evolutionarily distant source. The genes are located in a hypervariable cluster of restriction genes that may play a significant role in generation of species identity in enteric bacteria. Restriction activity requires the products of two genes for activity both in vivo and in vitro. The mcrB gene elaborates two protein products, only one of which is required for activity in vitro, but both of which contain a conserved amino acid sequence motif identified as a possible GTP-binding site. The mcrC gene product contains a leucine heptad repeat that could play a role in protein-protein interactions. McrBC activity in vivo and in vitro depends on the presence of modified cytosine in a specific sequence context; three different modifications are recognized. The in vitro activity of this novel multi-subunit restriction enzyme displays an absolute requirement for GTP as a cofactor.  相似文献   

11.
Epigenetic DNA methylation is involved in many biological processes. An epigenetic status can be altered by gain or loss of a DNA methyltransferase gene or its activity. Repair of DNA damage can also remove DNA methylation. In response to such alterations, DNA endonucleases that sense DNA methylation can act and may cause cell death. Here, we explored the possibility that McrBC, a methylation-dependent DNase of Escherichia coli, cleaves DNA at a replication fork. First, we found that in vivo restriction by McrBC of bacteriophage carrying a foreign DNA methyltransferase gene is increased in the absence of homologous recombination. This suggests that some cleavage events are repaired by recombination and must take place during or after replication. Next, we demonstrated that the enzyme can cleave a model DNA replication fork in vitro. Cleavage of a fork required methylation on both arms and removed one, the other or both of the arms. Most cleavage events removed the methylated sites from the fork. This result suggests that acquisition of even rarely occurring modification patterns will be recognized and rejected efficiently by modification-dependent restriction systems that recognize two sites. This process might serve to maintain an epigenetic status along the genome through programmed cell death.  相似文献   

12.
Tsai CL  Schatz DG 《The EMBO journal》2003,22(8):1922-1930
The RAG1 and RAG2 proteins perform critical DNA recognition and cleavage functions in V(D)J recombination, and also catalyze efficient DNA transposition in vitro. No transposition in vivo by the RAG proteins has been reported, suggesting regulation of the reaction by as yet unknown mechanisms. Here we report that RAG-mediated transposition is suppressed by physiological concentrations of the guanine nucleotide GTP, and by the full-length RAG2 protein. Both GTP and full-length RAG2 inhibit transposition by blocking the non-covalent 'capture' of target DNA, and both are capable of inhibiting RAG-mediated hybrid joint formation in vitro. We also observe that another intracellular signaling molecule, Ca(2+), stimulates RAG-mediated transposition and is capable of activating transposition even in reactions containing full-length RAG2 and GTP. RAG-mediated transposition has been proposed to contribute to the chromosomal translocations that underlie the development of lymphoid malignancies, and our findings highlight regulatory mechanisms that might prevent such occurrences, and circumstances in which these regulatory mechanisms could be overcome.  相似文献   

13.
The cleavage of the DNAs of the B95-8 and P3HR-1 virus strains of Epstein-Barr virus by the restriction endonucleases EcoRI, HindIII and BamI was investigated using a new technique for quantitative evaluation of the fluorescence of ethidium stained DNA fragments separated on agarose gels. The results obtained with B95-8 DNA showed that in addition to the limited repetitions of nucleotide sequences observed in the EcoRI and HindIII cleavage patterns, the molecule contained a BamI fragment with a molecular mass of 2.0 megadaltons which was present in a total of about 11 copies and localized to a limited part of the DNA molecule. The same sequences were also present in the P3HR-1 DNA albeit in a lower molar ratio. P3HR-1 DNA yielded restriction enzyme cleavage patterns suggesting DNA sequence heterogeneity of P3HR-1 virus. No fragment was present in more than about 4 copies per molecule of P3HR-1 DNA. Comparison of the restriction enzyme cleavage patterns of P3HR-1 and B95-8 DNA revealed a high degree of structural homology emphasized by nucleic acid hybridization experiments with EBV complementary RNA synthesized in vitro.  相似文献   

14.

Background  

Alteration in epigenetic methylation can affect gene expression and other processes. In Prokaryota, DNA methyltransferase genes frequently move between genomes and present a potential threat. A methyl-specific deoxyribonuclease, McrBC, of Escherichia coli cuts invading methylated DNAs. Here we examined whether McrBC competes with genome methylation systems through host killing by chromosome cleavage.  相似文献   

15.
A Richter  M Kapitza 《FEBS letters》1991,294(1-2):125-128
Histone H1 inhibits the catalytic activity of topoisomerase I in vitro. The relaxation activity of the enzyme is partially inhibited at a molar ratio of one histone H1 molecule per 40 base pairs (bp) of DNA and completely inhibited at a molar ratio of one histone H1 molecule per 10 base pairs of DNA. Increasing the amount of enzyme at a constant histone H1 to DNA ratio antagonizes the inhibition. This indicates that topoisomerase I and histone H1 compete for binding sites on the substrate DNA molecules. Consistent with this we show on the sequence level that histone H1 inhibits the cleavage reaction of topoisomerase I on linear DNA fragments.  相似文献   

16.
Custom-designed zinc finger nucleases (ZFNs) are becoming powerful tools in gene targeting-the process of replacing a gene within a genome by homologous recombination. Here, we have studied the DNA cleavage by one such ZFN, DeltaQNK-FN, in order to gain insight into how ZFNs cleave DNA and how two inverted sites promote double-strand cleavage. DNA cleavage by DeltaQNK-FN is greatly facilitated when two DeltaQNK-binding sites are close together in an inverted orientation. Substrate cleavage was not first order with respect to the concentration of DeltaQNK-FN, indicating that double-strand cleavage requires dimerization of the FokI cleavage domain. Rates of DNA cleavage decrease as the substrate concentrations increase, suggesting that the DeltaQNK-FN molecules are effectively "trapped" in a 1:1 complex on DNA when the DNA is in excess. The physical association of two ZFN monomers on DNA was monitored by using the biotin-pull-down assay, which showed that the formation of DeltaQNK-FN active complex required both binding of the two DeltaQNK-FN molecules to specific DNA sites and divalent metal ions.  相似文献   

17.
Purified phi X gene A* protein cleaves phi X single stranded DNA. The cleavage appears to be stoichiometric, whereby a gene A* protein molecule cleaves a phosphodiester bond and binds to the DNA fragment. The size of the cleavage product was inversely proportional to the ratio of A* protein to DNA in the reaction mixture. The cleavage of the DNA resulted in the formation of an A* protein - ssDNA complex identified on SDS-polyacrylamide gels and by banding in CsCl. An A* protein-ssDNA complex was isolated by gel filtration and shown to be active in a ligating reaction in which the two ends of the DNA fragment were joined to form a covalently closed circle. The joining reaction required Mg++ ions and was accompanied by the release of the protein from the DNA.  相似文献   

18.
《The Journal of cell biology》1993,122(6):1169-1184
Many peptide hormones are synthesized as larger precursors which undergo endoproteolytic cleavage at paired basic residues to generate a bioactive molecule. Morphological evidence from several laboratories has implicated either the TGN or immature secretory granules as the site of prohormone cleavage. To identify the site where prohormone cleavage is initiated, we have used retrovirally infected rat anterior pituitary GH3 cells which express high levels of prosomatostatin (proSRIF) (Stoller, T. J., and D. Shields. J. Cell Biol. 1988. 107:2087- 2095). By incubating these cells at 20 degrees C, a temperature that prevents exit from the Golgi apparatus, proSRIF accumulated quantitatively in the TGN and no proteolytic processing was evident; processing resumed upon shifting the cells back to 37 degrees C. After the 20 degrees C block, the cells were mechanically permeabilized and pro-SRIF processing determined. Cleavage of proSRIF to the mature hormone was approximately 35-50% efficient, required incubation at 37 degrees C and ATP hydrolysis, but was independent of GTP or cytosol. The in vitro ATP-dependent proSRIF processing was inhibited by inclusion of chloroquine, a weak base, CCCP, a protonophore, or by preincubating the permeabilized cells with low concentrations of N- ethylmaleimide, an inhibitor of vacuolar-type ATP-dependent proton pumps. These data suggest that: (a) proSRIF cleavage is initiated in the TGN, and (b) this reaction requires an acidic pH which is facilitated by a Golgi-associated vacuolar-type ATPase. A characteristic feature of polypeptide hormone-producing cells is their ability to store the mature hormone in dense core secretory granules. To investigate the mechanism of protein sorting to secretory granules, the budding of nascent secretory vesicles from the TGN was determined. No vesicle formation occurred at 20 degrees C; in contrast, at 37 degrees C, the budding of secretory vesicles was approximately 40% efficient and was dependent on ATP, GTP, and cytosolic factors. Vesicle formation was inhibited by GTP gamma S suggesting a role for GTP- binding proteins in this process. Vesicle budding was dependent on cytosolic factors that were tightly membrane associated and could be removed only by treating the permeabilized cells with high salt. After high salt treatment, vesicle formation was dependent on added cytosol or the dialyzed salt extract. The formation of nascent secretory vesicles contrasts with prosomatostatin processing which required only ATP for efficient cleavage. Our results demonstrate that prohormone cleavage which is initiated in the TGN, precedes vesicle formation and that processing can be uncoupled from the generation of nascent secretory vesicles.  相似文献   

19.
20.
Initiation of simian virus 40 (SV40) DNA replication is facilitated by two auxiliary sequences that flank the minimally required origin (ori) core sequence. In monkey cells, the replication rate of each of the four ori configurations changed with time after transfection in a characteristic pattern. This pattern was reproduced in an extract from SV40-infected monkey cells by varying the ratio of DNA substrate to cell extract; DNA replication in vitro depended on ori auxiliary sequences to the same extent as they did in vivo. Facilitation by ori auxiliary sequences was lost at high ratios of DNA to cell extract, revealing that the activity of these sequences required either multiple initiation factors or a molar excess of one initiation factor bound to ori. This parameter, together with ionic strength and the method used to measure DNA replication, determined the level of facilitation by ori auxiliary sequences in vitro. The activity of ori auxiliary sequences was not diminished in vivo or in vitro by increasing amounts of large tumor antigen. Therefore, ori auxiliary sequences promoted initiation of replication at some step after tumor antigen binding to ori. Furthermore, although cellular factors could modulate the activity of ori auxiliary sequences in vitro, these factors did not appear to involve nucleosome assembly because no correlation was observed between the number of nucleosomes assembled per DNA molecule and facilitation by ori auxiliary sequences. These results demonstrate that SV40 ori auxiliary sequences can function in vitro as they do in vivo and begin to elucidate their role in initiating DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号