首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Plant science》1986,44(1):23-28
Aminooxyacetate (AOA) was found to inhibit glycine oxidation by pea leaf mitochondria at micromolar levels. The inhibition resulted from an inhibition of both glycine decarboxylase and serine hydroxymethyltransferase (SHMT) activity. Aspartate: 2-oxoglutarate aminotransferase (AsAT) and alanine: 2-oxoglutarate aminotransferase activities of pea leaf mitochondria were also very sensitive to AOA inhibition. Inhibition of both glycine oxidation and aminotransferase activity was likely competitive with respect to the amino group substrate, but also displayed a time-dependent increase in inhibition at constant AOA concentration. In the case of glycine oxidation, this time-dependent component may be related to the rate of penetration of AOA across the inner mitochondrial membrane. Furthermore, the AOA-inhibition of glycine oxidation could be reversed by pyridoxal 5-phosphate (PLP), whereas AOA-inhibited aminotransferase activity was not reversed. The results indicate that the pyridoxal 5-phosphate antagonist, AOA, results in varying types of inhibition depending on the type of enzyme involved.  相似文献   

2.
《Phytochemistry》1987,26(6):1583-1589
Emission of hydrogen sulphide in response to D-cysteine by leaf discs of cucurbit plants or cultured tobacco cells was considerably smaller than in response to L-cysteine. Whereas hydrogen sulphide emission from L-cysteine was inhibited by 100 μM aminooxyacetic acid (AOA), emission from D-cysteine was unaffected. These results from in vivo studies were found to be inconsistant with the L- and D-cysteine desulphydrase activities measured in crude homogenates. In vitro, D-cysteine desulphydrase activity was more than one order of magnitude higher than L-cysteine desulphydrase activity; L-cysteine desulphydrase was inhibited by 100 μM AOA to a smaller, D-cysteine desulphydrase to a higher extent than in vivo. Cystine lyase activity, which may interfere in the cysteine desulphydrase assay, was not found. In cucurbit leaves, the differences between in vivo and in vitro experiments can partially be explained by differences in the influx of L- and D-cysteine into the leaf discs. Influx of L-cysteine proceeded at a rate about four times higher than the influx of D-cysteine; it was inhibited by 100 μM AOA, whereas influx of D-cysteine was unaffected. Subcellular distribution of L- and D-cysteine desulphydrase was analysed in cultured tobacco cells. Both enzyme activities were found to be soluble. The D-cysteine activity was predominantly localized in the cytoplasm whereas L-cysteine activities were also found in chloroplasts and mitochondria. The L-cysteine desulphydrase in the cytoplasmic fraction may entirely be due to broken chloroplasts and mitochondria. Inhibitor studies with ammonium, pyruvate, AOA and O-acetylserine revealed considerable differences between L- and D-cysteine desulphydrase activity and between L-cysteine desulphydrase activity in chloroplasts and mitochondria. Therefore, the present data suggest that degradation of L- and D-cysteine are catalysed by different enzymes in different compartments of the cell.  相似文献   

3.
Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. Recent research results show that ammonia-oxidizing archaea (AOA) are both abundant and diverse in a range of ecosystems. In this study, we examined the abundance and diversity of AOA and ammonia-oxidizing beta-proteobacteria (AOB) in estuarine sediments in Hong Kong for two seasons using the ammonia monooxygenase A subunit gene (amoA) as molecular biomarker. Relationships between diversity and abundance of AOA and AOB and physicochemical parameters were also explored. AOB were more diverse but less abundant than AOA. A few phylogenetically distinct amoA gene clusters were evident for both AOA and AOB from the mangrove sediment. Pearson moment correlation analysis and canonical correspondence analysis (CCA) were used to explore physicochemical parameters potentially important to AOA and AOB. Metal concentrations were proposed to contribute potentially to the distributions of AOA while total phosphorus (TP) was correlated to the distributions of AOB. Quantitative PCR estimates indicated that AOA were more abundant than AOB in all samples, but the ratio of AOA/AOB (from 1.8 to 6.3) was smaller than most other studies by one to two orders. The abundance of AOA or AOB was correlated with pH and temperature while the AOA/AOB ratio was with the concentrations of ammonium. Several physicochemical factors, rather than any single one, affect the distribution patterns suggesting that a combination of factors is involved in shaping the dynamics of AOA and AOB in the mangrove ecosystem.  相似文献   

4.
Tissue-Specific Protein Expression in Plant Mitochondria   总被引:19,自引:2,他引:17       下载免费PDF全文
Although the physiological role of plant mitochondria is thought to vary in different tissues at progressive stages of development, there has been little documentation that the complement of mitochondrial proteins is altered in different plant organs. Because the phenomenon of cytoplasmic male sterility suggests an unusual function for mitochondria in floral buds, we examined the tissue-specific expression of mitochondrial proteins in petunia buds at several stages of development, using both fertile and cytoplasmic male sterile plants. On tissue prints of cryostat-sectioned buds, antibodies recognizing subunit A of the mitochondrial ATPase (ATPA) localized very differently from antibodies recognizing subunit II of the cytochrome oxidase (COXII), which indicated that mitochondria in the same tissue could differentially express mitochondrially encoded proteins. The petunia cytoplasmic male sterility-associated fused (pcf) gene encodes a protein that colocalized with ATPA and the nuclear-encoded mitochondrial alternative oxidase (AOA) in sporogenous tissues, where little COXII protein was found. These overlapping and differential localization patterns may provide clues to the molecular mechanism of cytoplasmic male sterility.  相似文献   

5.
Aims:  Characterization of the ammonia-oxidizing archaea (AOA) community in activated sludge from a nitrogen removal bioreactor and wastewater treatment plants (WWTPs).
Methods and Results:  Three primer sets specific for ammonia mono-oxygenase α -subunit ( amoA ) were used to construct clone libraries for activated sludge sample from a nitrogen removal bioreactor. One primer set resulted in strong nonspecific PCR products. The other two clone libraries retrieved both shared and unique AOA amoA sequences. One primer set was chosen to study the AOA communities of activated sludge samples from Shatin and Stanley WWTPs. In total, 18 AOA amoA sequences were recovered and compared to the previous reported sequences. A phylogenetic analysis indicated that sequences found in this study fell into three clusters.
Conclusions:  Different primers resulted in varied AOA communities from the same sample. The AOA found from Hong Kong WWTPs were closely similar to those from sediment and soil, but distinct from those from activated sludge in other places. A comparison of clone libraries between Shatin WWTP and bioreactor indicated the AOA community significantly shifted only after 30-day enrichment.
Significance and Impact of the Study:  This study confirmed the occurrence of AOA in a laboratory scale nitrogen removal bioreactor and Hong Kong WWTPs treating saline or freshwater wastewater. AOA communities found in this study were significantly different from those found in other places. To retrieve diverse AOA communities from environmental samples, a combination of different primers for the amoA gene is needed.  相似文献   

6.
The oxidative metabolism of glutamine in HeLa cells was investigated using intact cells and isolated mitochondria. The concentrations of the cytoplasmic amino acids were found to be aspartate, 8.0 mM; glutamate, 22.2 mM; glutamine, 11.3 mM; glycine, 9.8 mM; taurine, 2.3 mM; and alanine, <1 mM. Incubation of the cells with [14C]glutamine gave steady-state recoveries of 14C-label (estimated as exogenous glutamine) in the glutamine, glutamate, and aspartate pools, of 103%, 80%, and 25%, respectively, indicating that glutamine synthetase activity was absent and that a significant proportion of glutamate oxidation proceeded through aspartate aminotransferase. No label was detected in the alanine pool, suggesting that alanine aminotransferase activity was low in these cells. The clearance rate of [14C]glutamine through the cellular compartment was 65 nmol/min per mg protein. There was a 28 s delay after [14C]glutamine was added to the cell before 14C-label was incorporated into the cytoplasm, while the formation of glutamate commenced 10 s later. Aspartate was the major metabolite formed when the mitochondria were incubated in a medium containing either glutamine, glutamate, or glutamate plus malate. The transaminase inhibitor AOA inhibited both aspartate efflux from the mitochondria and respiration. The addition of 2-oxoglutarate failed to relieve glutamate plus malate respiration, indicating that 2-oxoglutarate is part of a well-coupled truncated cycle, of which aspartate aminotransferase has been shown to be a component [Parlo and Coleman (1984): J Biol Chem 259:9997–10003]. This was confirmed by the observation that, although it inhibited respiration, AOA did not affect the efflux of citrate from the mitochondria. Thus citrate does not appear to be a cycle component and is directly transported to the medium. Therefore, it was concluded that the truncated TCA cycle in HeLa cells is the result of both a low rate of citrate synthesis and an active citrate transporter. DNP (10 μM) induced a state III-like respiration only in the presence of succinate, which supports the evidence that NAD-linked dehydrogenases were not coupled to respiration, and suggests that these mitochondria may have a defect in complex I of the electron transport chain. Arising from the present results with HeLa cells and results extant in the literature, it has been proposed that a major regulating mechanism for the flux of glutamate carbon in tumour cells is the competitive inhibition exerted by 2-oxoglutarate on aspartate and alanine aminotransferases. This has been discussed and applied to the data. J. Cell. Biochem. 68:213–225, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Ammonia-oxidizing archaea (AOA) represent an important group of ammonia-oxidizing microorganisms that are able to convert ammonia to nitrite, a function which is crucial for the removal of nitrogen from wastewater. In this study, we investigated the abundance and diversity of AOA in a full-scale wastewater treatment plant (WWTP) which used a biological aerated filter (BAF) as the main processing mode. According to the quantitative PCR results, AOA clearly outnumbered ammonia-oxidizing bacteria (AOB) during the whole process. The abundance of AOA amoA genes in the filter layer of BAF was highest with the value varied from 6.32 × 103 to 3.8 × 104 copies/ng DNA. The highest abundance of AOB amoA genes was 1.32 × 102 copies/ng DNA, recorded in the effluent of the ACTIFLO® settling tank. The ratios of AOA/AOB in the WWTP were maintained at two or three orders of magnitude. Most AOA obtained from the WWTP fell within the Nitrosopumilus cluster. The abundance of AOA and AOB was significantly correlated with ammonium nitrogen concentrations and pH value. The community structure of AOA was significantly influenced by dissolved oxygen concentrations, pH value and chemical oxygen demand.  相似文献   

8.
Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.  相似文献   

9.
白洋淀湖滨湿地岸边带氨氧化古菌与氨氧化细菌的分布特性   总被引:12,自引:0,他引:12  
摘要:本研究通过分子生物学分析方法,以amoA基因为标记,考察了氨氧化古菌(Ammonia-Oxidizing Archaea, AOA)和氨氧化细菌(Ammonia-Oxidizing Bacteria,AOB)在华北平原的白洋淀这一典型湖泊的湖滨湿地岸边带系统中的生物多样性和丰度分布。在前人的研究中,氨氧化古菌在海洋、原生态土壤和人为干扰土壤等环境中主导氨氧化过程的完成。但本研究发现,在湿地岸边带系统中氨氧化过程并不是完全由氨氧化古菌主导完成,即氨氧化古菌和氨氧化细菌在不同区域分别占据主导地位。根据主导微生物的不同,可以将湿地岸边带区域划分为陆相区、中间区和湖相区。在湿地岸边带陆相区,氨氧化古菌主导氨氧化过程,氨氧化古菌的amoA基因丰度是氨氧化细菌的526倍(AOA:1.23?108每克干土;AOB:2.34?105每克干土);在岸边带湖相区,氨氧化细菌主导氨氧化过程,氨氧化古菌的amoA基因丰度只有氨氧化细菌的1/50倍(AOA:3.17?106每克干土;AOB:1.39?108每克干土);在岸边带中间区,两种微生物对氨氧化过程的贡献相当,二者的amoA基因丰度也相当 (AOA:9.83?106, AOB:4.08?106)。研究还发现,湿地中间区的微生物生物多样性高于陆相区和湖相区。在湿地中间区,氨氧化古菌和氨氧化细菌的生物多样性都最高,分别有5和7个操作分类单元(OTUs);相比之下,岸边带陆相区和湖相区的多样性依次降低,陆相区的氨氧化古菌和氨氧化细菌分别有3和6个操作分类单元,湖相区的氨氧化古菌和氨氧化细菌分别有2和6个分类单元。本研究的两个结论进一步反映了湿地岸边带极强的空间异质性。  相似文献   

10.
Glycerol dibiphytanyl glycerol tetraether (GDGT)-based intact membrane lipids are increasingly being used as complements to conventional molecular methods in ecological studies of ammonia-oxidizing archaea (AOA) in the marine environment. However, the few studies that have been done on the detailed lipid structures synthesized by AOA in (enrichment) culture are based on species enriched from nonmarine environments, i.e., a hot spring, an aquarium filter, and a sponge. Here we have analyzed core and intact polar lipid (IPL)-GDGTs synthesized by three newly available AOA enriched directly from marine sediments taken from the San Francisco Bay estuary ("Candidatus Nitrosoarchaeum limnia"), and coastal marine sediments from Svalbard, Norway, and South Korea. Like previously screened AOA, the sedimentary AOA all synthesize crenarchaeol (a GDGT containing a cyclohexane moiety and four cyclopentane moieties) as a major core GDGT, thereby supporting the hypothesis that crenarchaeol is a biomarker lipid for AOA. The IPL headgroups synthesized by sedimentary AOA comprised mainly monohexose, dihexose, phosphohexose, and hexose-phosphohexose moieties. The hexose-phosphohexose headgroup bound to crenarchaeol was common to all enrichments and, in fact, the only IPL common to every AOA enrichment analyzed to date. This apparent specificity, in combination with its inferred lability, suggests that it may be the most suitable biomarker lipid to trace living AOA. GDGTs bound to headgroups with a mass of 180 Da of unknown structure appear to be specific to the marine group I.1a AOA: they were synthesized by all three sedimentary AOA and "Candidatus Nitrosopumilus maritimus"; however, they were absent in the group I.1b AOA "Candidatus Nitrososphaera gargensis."  相似文献   

11.
Aerobic biological ammonia oxidation is carried out by two groups of microorganisms, ammonia-oxidizing bacteria (AOB) and the recently discovered ammonia-oxidizing archaea (AOA). Here we present a study using cultivation-based methods to investigate the differences in growth of three AOA cultures and one AOB culture enriched from freshwater environments. The strain in the enriched AOA culture belong to thaumarchaeal group I.1a, with the strain in one enrichment culture having the highest identity with "Candidatus Nitrosoarchaeum koreensis" and the strains in the other two representing a new genus of AOA. The AOB strain in the enrichment culture was also obtained from freshwater and had the highest identity to AOB from the Nitrosomonas oligotropha group (Nitrosomonas cluster 6a). We investigated the influence of ammonium, oxygen, pH, and light on the growth of AOA and AOB. The growth rates of the AOB increased with increasing ammonium concentrations, while the growth rates of the AOA decreased slightly. Increasing oxygen concentrations led to an increase in the growth rate of the AOB, while the growth rates of AOA were almost oxygen insensitive. Light exposure (white and blue wavelengths) inhibited the growth of AOA completely, and the AOA did not recover when transferred to the dark. AOB were also inhibited by blue light; however, growth recovered immediately after transfer to the dark. Our results show that the tested AOB have a competitive advantage over the tested AOA under most conditions investigated. Further experiments will elucidate the niches of AOA and AOB in more detail.  相似文献   

12.
In the present study, the influence of the land use intensity on the diversity of ammonia oxidizing bacteria (AOB) and archaea (AOA) in soils from different grassland ecosystems has been investigated in spring and summer of the season (April and July). Diversity of AOA and AOB was studied by TRFLP fingerprinting of amoA amplicons. The diversity from AOB was low and dominated by a peak that could be assigned to Nitrosospira. The obtained profiles for AOB were very stable and neither influenced by the land use intensity nor by the time point of sampling. In contrast, the obtained patterns for AOA were more complex although one peak that could be assigned to Nitrosopumilus was dominating all profiles independent from the land use intensity and the sampling time point. Overall, the AOA profiles were much more dynamic than those of AOB and responded clearly to the land use intensity. An influence of the sampling time point was again not visible. Whereas AOB profiles were clearly linked to potential nitrification rates in soil, major TRFs from AOA were negatively correlated to DOC and ammonium availability and not related to potential nitrification rates.  相似文献   

13.
The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidizing populations in nitrifying rotating biological contactors (RBCs) from a municipal wastewater treatment plant. Individual RBC stages are arranged in series, with nitrification at each stage creating an ammonia gradient along the flowpath. This RBC system provides a valuable experimental system for testing the hypothesis that ammonia concentration determines the relative abundance of AOA and AOB. The results demonstrate that AOA increased as ammonium decreased across the RBC flowpath, as indicated by qPCR for thaumarchaeal amoA and 16S rRNA genes, and core lipid (CL) and intact polar lipid (IPL) crenarchaeol abundances. Overall, there was a negative logarithmic relationship (R(2) =?0.51) between ammonium concentration and the relative abundance of AOA amoA genes. A single AOA population was detected in the RBC biofilms; this phylotype shared low amoA and 16S rRNA gene homology with existing AOA cultures and enrichments. These results provide evidence that ammonia availability influences the relative abundances of AOA and AOB, and that AOA are abundant in some municipal wastewater treatment systems.  相似文献   

14.
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in bridging the input of fixed nitrogen, through N-fixation and remineralization, to its loss by denitrification and anammox. Yet the major environmental factors determining AOB and AOA population dynamics are little understood, despite both groups having a wide environmental distribution. This study examined the relative abundance of both groups of ammonia-oxidizing organisms (AOO) and the diversity of AOA across large-scale gradients in temperature, salinity and substrate concentration and dissolved oxygen. The relative abundance of AOB and AOA varied across environments, with AOB dominating in the freshwater region of the Chesapeake Bay and AOA more abundant in the water column of the coastal and open ocean. The highest abundance of the AOA amoA gene was recorded in the oxygen minimum zones (OMZs) of the Eastern Tropical South Pacific (ETSP) and the Arabian Sea (AS). The ratio of AOA : AOB varied from 0.7 in the Chesapeake Bay to 1600 in the Sargasso Sea. Relative abundance of both groups strongly correlated with ammonium concentrations. AOA diversity, as determined by phylogenetic analysis of clone library sequences and archetype analysis from a functional gene DNA microarray, detected broad phylogenetic differences across the study sites. However, phylogenetic diversity within physicochemically congruent stations was more similar than would be expected by chance. This suggests that the prevailing geochemistry, rather than localized dispersal, is the major driving factor determining OTU distribution.  相似文献   

15.
艾比湖湿地芦苇根际土壤氨氧化古菌的多样性和群落结构   总被引:1,自引:0,他引:1  
【目的】旨在揭示耐盐植物芦苇根际与非根际土壤AOA群落结构间的差异,为深入研究盐生植物根际土壤微生物与耐盐性之间的关系提供理论基础。【方法】应用高通量测序技术以氨单加氧酶基因(amoA)为分子标记,对新疆艾比湖湿地荒漠生态系统不同季节(春、夏、秋)芦苇根际与非根际土壤氨氧化古菌(AOA)的多样性和群落结构进行研究。【结果】结果表明,不同季节芦苇根际土壤AOA多样性和丰富度存在差异,相比非根际土壤,夏季和秋季芦苇根际土壤AOA多样性较低丰富度较高,春季多样性较高丰富度较低。芦苇根际土壤中AOA的多样性为春季夏季秋季。AOA群落组成分析表明,土壤样品中AOA群落主要集中在泉古菌门(Crenarchaeota)和奇古菌门(Thaumarchaeota),其中泉古菌门为主要优势菌门。RDA分析表明,含水量(SM)、有机质(SOM)、总氮(TN)和pH是影响芦苇根际土壤AOA群落多样性和丰富度的主要环境因子。【结论】不同季节芦苇根际土壤AOA多样性及丰富度存在差异,相比非根际土壤,芦苇根际土壤AOA更丰富。  相似文献   

16.
Synthesis of glucose from 10 mM D-glycerate by hepatocytes isolated from rats fasted 24 h was inhibited by 3-aminopicolinate (3AP), 3-mercaptopicolinate (3MP), and aminoxyacetate (AOA). The inhibition by AOA can be exerted over that caused by either of the picolinates. The effects of 3AP and 3MP were not additive, and cannot be ascribed totally to inhibition of reducing equivalent transfer by their inhibitory effect on phosphoenolpyruvate carboxykinase. The time course and dependence on substrate concentration of gluconeogenesis from L-glycerate was similar to those from D-glycerate, even though the cellular content of D-glycerate was markedly less when L-glycerate was the substrate. Gluconeogenesis from L-glycerate was not significantly affected by 3AP or 3MP, but was inhibited by AOA. The degree of inhibition by AOA of glucose synthesis from L-glycerate was greater than that from D-glycerate. Studies employing [14C]paraformaldehyde revealed that hydroxypyruvate may be converted to dihydroxyacetone in the hepatocyte. A hitherto unknown inhibition site of 3AP and 3MP is inferred and a dual pathway of D- and L-glycerate gluconeogenesis consistent with these results is proposed.  相似文献   

17.
Crucial steps in geochemical cycles are in many cases performed by more than one group of microorganisms, but the significance of this functional redundancy with respect to ecosystem functioning is poorly understood. Ammonia-oxidizing archaea (AOA) and their bacterial counterparts (AOB) are a perfect system to address this question: although performing the same transformation step, they belong to well-separated phylogenetic groups. Using pig manure amended with different concentrations of sulfadiazine (SDZ), an antibiotic that is frequently used in veterinary medicine, it was possible to affect AOB and AOA to different degrees. Addition of manure stimulated growth of AOB in both soils and, interestingly, also growth of AOA was considerably stimulated in one of the soils. The antibiotic treatments decreased the manure effect notably on AOB, whereas AOA were affected to a lower extent. Model calculations concerning the respective proportions of AOA and AOB in ammonia oxidation indicate a substantial contribution of AOA in one of the soils that further increased under the influence of SDZ, hence indicating functional redundancy between AOA and AOB.  相似文献   

18.
Ammonia-oxidizing archaea (AOA) are ubiquitous in natural ecosystems, and they are responsible for a significant fraction of ammonia oxidation globally. Since the first AOA isolate was established a decade ago, molecular surveys of their environmental distribution [based primarily on amplicon sequencing of the amoA, which codes for the alpha subunit of ammonia monooxygenase (AMO)], show that their habitats are believed to range from marine to terrestrial environments. However, the mechanisms of adaptation underpinning to their habitat expansion remain poorly understood. Here, we report that AOA accounts for almost all of the ammonia oxidizers in the shelf water adjacent to the Pearl River estuary (PRE), with the Nitrosopumilus maritimus SCM1-like (SCM1-like) being the main amoA genotype. Using a metagenomic approach, seven high-quality AOA genomes were reconstructed from the PRE. Phylogenetic analysis indicated that four of these genomes with high completeness were closely affiliated with the Nitrosomatrinus catalina strain SPOT01, which was originally isolated off the coast of California. Genomic comparison revealed that the PRE AOA genomes encoded genes functioning in amino acid synthesis, xenobiotic biodegradation metabolism and transportation of inorganic phosphate and heavy metals. This illustrates the different adaptations of AOA in one of the largest estuaries in China, which is strongly influenced by anthropogenic input. Overall, this study provides additional genomic information about estuarine AOA and highlights the importance of their contribution to nitrification in eutrophic coastal environments.  相似文献   

19.
The diversity and spatio-temporal distribution of ammonia-oxidizing Archaea (AOA) and Bacteria (AOB) were investigated along a salinity gradient in sediments of the Westerschelde estuary. Sediment samples were collected from three sites with different salinities, and at six time points over the year. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA and amoA gene fragments was used to identify the AOA and AOB present. Members of the AOA were mainly belonging to the Crenarchaeota Group 1, which were found at all sites, while members of the genus Nitrosomonas, which were abundant at the brackish sites, and of the genus Nitrosospira, which were present in early spring at the marine sites, were found to be the dominant AOB. Statistical analysis indicated that salinity and temperature were the main factors controlling the diversity and distribution of both AOA and AOB. Variability in net primary production rates was also correlated with species composition of both groups, but changes in the nitrite concentration only to the distribution of the AOA.  相似文献   

20.
Anaerobic ammonium-oxidizing (anammox) bacteria, aerobic ammonia-oxidizing archaea (AOA) and bacteria (AOB) are three groups of ammonia/ammonium-oxidizing prokaryotes (AOPs) involved in the biochemical nitrogen cycling. In this study, the effects of allylthiourea (ATU), pH, and salinity on these three groups from mangrove sediment were investigated through microcosm incubation in laboratory. ATU treatments (50, 100, and 500 mg L?1) obviously affected the community structure of anammox bacteria and AOB, but only slightly for AOA. ATU began to inhibit anammox bacteria growth slightly from day 10, but had an obvious inhibition on AOA growth from the starting of the study. At 100 mg L?1 of ATU or higher, AOB growth was inhibited, but only lasted for 5 days. The pH treatments showed that acidic condition (pH 5) had a slight effect on the community structure of anammox bacteria and AOA, but an obvious effect on AOB. Acidic condition promoted the growth of all groups of AOPs in different extent, but alkaline condition (pH 9) had a weak effect on AOB community structure and a strong effect on both anammox bacteria and AOA. Alkaline condition obviously inhibited anammox bacteria growth, slightly promoted AOA, and slightly promoted AOB in the first 20 days, but inhibited afterward. Salinity treatment showed that higher salinity (20 and 40?‰) resulted in higher anammox bacteria diversity, and both AOA and AOB might have species specificity to salinity. High salinity promoted the growth of both anammox bacteria and AOB, inhibited AOA between 5 and 10 days, but promoted afterward. The results help to understand the role of these microbial groups in biogeochemical nitrogen cycling and their responses to the changing environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号