首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are described. Kinetic differences between the older and more recent preparations of the enzyme most probably arise from differences in intrinsic turnover rates. 2. The time-courses of cytochrome c peroxidation by the enzyme follow essentially first-order kinetics in phosphate buffer. Deviations from first-order kinetics occur in acetate buffer, and are due to a higher enzymic turnover rate in this medium accompanied by a greater tendency to autocatalytic peroxidation of cytochrome c. 3. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are interpreted in terms of a mechanism postulating formation of reversible complexes between the peroxidase and both reduced and oxidized cytochrome c. Formation of these complexes is inhibited at high ionic strengths and by polycations. 4. Oxidized cytochrome c can act as a competitive inhibitor of ferrocytochrome c peroxidation by peroxidase. The K(i) for ferricytochrome c is approximately equal to the K(m) for ferrocytochrome c and thus probably accounts for the observed apparent first-order kinetics even at saturating concentrations of ferrocytochrome c. 5. The results are discussed in terms of a possible analogy between the oxidations of cytochrome c catalysed by yeast peroxidase and by mammalian cytochrome oxidase.  相似文献   

2.
3.
4.
1. Physical studies of complex-formation between cytochrome c and yeast peroxidase are consistent with kinetic predictions that these complexes participate in the catalytic activity of yeast peroxidase towards ferrocytochrome c. Enzyme-ferricytochrome c complexes have been detected both by the analytical ultracentrifuge and by column chromatography, whereas an enzyme-ferrocytochrome c complex was demonstrated by column chromatography. Estimated binding constants obtained from chromatographic experiments were similar to the measured kinetic values. 2. The physicochemical study of the enzyme-ferricytochrome c complex, and an analysis of its spectrum and reactivity, suggest that the conformation and reactivity of neither cytochrome c nor yeast peroxidase are grossly modified in the complex. 3. The peroxide compound of yeast cytochrome c peroxidase was found to have two oxidizing equivalents accessible to cytochrome c but only one readily accessible to ferrocyanide. Several types of peroxide compound, differing in available oxidizing equivalents and in reactivity with cytochrome c, seem to be formed by stoicheiometric amounts of hydrogen peroxide. 4. Fluoride combines not only with free yeast peroxidase but also with peroxidase-peroxide and accelerates the decomposition of the latter compound. The ligand-catalysed decomposition provides evidence for one-electron reduction pathways in yeast peroxidase, and the reversible binding of fluoride casts doubt upon the concept that the peroxidase-peroxide intermediate is any form of peroxide complex. 5. A mechanism for cytochrome c oxidation is proposed involving the successive reaction of two reversibly bound molecules of cytochrome c with oxidizing equivalents associated with the enzyme protein.  相似文献   

5.
Bacterial cytochrome c peroxidases contain an electron transferring (E) heme domain and a peroxidatic (P) heme domain. All but one of these enzymes are isolated in an inactive oxidized state and require reduction of the E heme by a small redox donor protein in order to activate the P heme. Here we present the structures of the inactive oxidized and active mixed valence enzyme from Paracoccus pantotrophus. Chain flexibility in the former, as expressed by the crystallographic temperature factors, is strikingly distributed in certain loop regions, and these coincide with the regions of conformational change that occur in forming the active mixed valence enzyme. On the basis of these changes, we postulate a series of events that occur to link the trigger of the electron entering the E heme from either pseudoazurin or cytochrome c(550) and the dissociation of a coordinating histidine at the P heme, which allows substrate access.  相似文献   

6.
Cytochrome c (horse heart) was covalently linked to yeast cytochrome c peroxidase by using the cleavable bifunctional reagent dithiobis-succinimidyl propionate in 5 mM-sodium phosphate buffer, pH 7.0. A cross-linked complex of molecular weight 48 000 was purified in approx. 10% yield from the reaction mixture, which contained 1 mol of cytochrome c and 1 mol of cytochrome c peroxidase/mol. Of the total 40 lysine residues, four to six were blocked by the cross-linking agent. Dithiobis-succinimidylpropionate can also cross-link cytochrome c to ovalbumin, but cytochrome c peroxidase is the preferred partner for cytochrome c in a mixture of the three proteins. The cytochrome c cross-linked to the peroxidase can be rapidly reduced by free cytochrome c-557 from Crithidia oncopelti, and the equilibrium obtained can be used to calculate a mid-point oxidation-reduction potential for the cross-linked cytochrome of 243 mV. Mitochondrial NADH-cytochrome c reductase will reduce the bound cytochrome only very slowly, but the rate of reduction by ascorbate at high ionic strength approaches that for free cytochrome c. Bound cytochrome c reduced by ascorbate can be re-oxidized within 10s by the associated peroxidase in the presence of equimolar H2O2. In the standard peroxidase assay the cross-linked complex shows 40% of the activity of the free peroxidase. Thus the intrinsic ability of each partner in the complex to take part in electron transfer is retained, but the stable association of the two proteins affects access of reductants.  相似文献   

7.
The interaction between cytochrome c and cytochrome c peroxidase was investigated using sedimentation equilibrium at pH 6,20 degrees C, in a number of buffer systems varying in ionic strength between 1 and 100 mM. Between 10 and 100 mM ionic strengths, the sedimentation of the individual proteins was essentially ideal, and sedimentation equilibrium experiments on mixtures of the two proteins were analyzed assuming ideal solution behavior. Analysis of the distribution of mixtures of cytochrome c and cytochrome c peroxidase in the ultracentrifuge cell based on a model involving the formation of a 1:1 cytochrome c-cytochrome c peroxidase complex gave values of the equilibrium dissociation constant ranging from 2.3 +/- 2.7 microM at 10 mM ionic strength to infinity (no detectable interaction) at 100 mM ionic strength. Attempts to determine the presence of complexes involving two cytochrome c molecules bound to cytochrome c peroxidase were inconclusive.  相似文献   

8.
Erv1 is a flavin-dependent sulfhydryl oxidase in the mitochondrial intermembrane space (IMS) that functions in the import of cysteine-rich proteins. Redox titrations of recombinant Erv1 showed that it contains three distinct couples with midpoint potentials of -320, -215, and -150 mV. Like all redox-active enzymes, Erv1 requires one or more electron acceptors. We have generated strains with erv1 conditional alleles and employed biochemical and genetic strategies to facilitate identifying redox pathways involving Erv1. Here, we report that Erv1 forms a 1:1 complex with cytochrome c and a reduced Erv1 can transfer electrons directly to the ferric form of the cytochrome. Erv1 also utilized molecular oxygen as an electron acceptor to generate hydrogen peroxide, which is subsequently reduced to water by cytochrome c peroxidase (Ccp1). Oxidized Ccp1 was in turn reduced by the Erv1-reduced cytochrome c. By coupling these pathways, cytochrome c and Ccp1 function efficiently as Erv1-dependent electron acceptors. Thus, we propose that Erv1 utilizes diverse pathways for electron shuttling in the IMS.  相似文献   

9.
Deuterium exchangeable hyperfine proton NMR resonances of cytochrome c peroxidase (EC 1.11.1.5) are identified in H2O solutions of the enzyme. One of these is assigned to the proximal histidine's imidazole N-H. Its shift and pH dependence indicate that an imidazolate form, which has been postulated for peroxidases, is ruled out for cytochrome c peroxidase-cyanide. A qualitative comparison of relative heme-pocket dynamics is also possible. When the bulk water resonance is irradiated with a continuous, but off acquisition, decoupler frequency the N-H resonance shows no intensity loss, indicating that saturation transfer between the proximal histidine and solvent water is either minimal, or extremely slow.  相似文献   

10.
The size, visible absorption spectra, nature of haem and haem content suggest that the cytochrome c peroxidase of Paracoccus denitrificans is related to that of Pseudomonas aeruginosa. However, the Paracoccus enzyme shows a preference for cytochrome c donors with a positively charged 'front surface' and in this respect resembles the cytochrome c peroxidase from Saccharomyces cerevisiae. Paracoccus cytochrome c-550 is the best electron donor tested and, in spite of an acidic isoelectric point, has a markedly asymmetric charge distribution with a strongly positive 'front face'. Mitochondrial cytochromes c have a much less pronounced charge asymmetry but are basic overall. This difference between cytochrome c-550 and mitochondrial cytochrome c may reflect subtle differences in their electron transport roles. A dendrogram of cytochrome c1 sequences shows that Rhodopseudomonas viridis is a closer relative of mitochondria than is Pa. denitrificans. Perhaps a mitochondrial-type cytochrome c peroxidase may be found in such an organism.  相似文献   

11.
Reduced azurin reacts with the resting, oxidized cytochrome c peroxidase of Pseudomonas aeruginosa to yield time courses observed at 420 nm, which consist of the sum of two exponential processes. Each process exhibits a hyperbolic dependence of the observed rate constant on the reduced azurin concentration. The fraction of the total optical density change which each process contributes is found to be dependent on the reduced azurin concentration. This pattern of reactivity is maintained at pH values between 5.5 and 8.0. The data has been analyzed in terms of a complex formation between the two proteins followed by an intramolecular electron exchange reaction. This analysis yields values for the binding constants at each pH value. The intramolecular exchange reaction is independent of pH, whilst the pH dependence of the binding reaction suggests the involvement of a histidine residue in this process.  相似文献   

12.
A pH titration study of cytochrome c peroxidase and apocytochrome c peroxidase was carried out at 25 degrees C and 0.1 M ionic strength. The net charge on cytochrome c peroxidase due to proton association and dissociation varies from +32 at pH 2 to --50.2 at pH 12, while that of apocytochrome c peroxidase varies between +24.5 at pH 3 to --48 at pH 12. The apoprotein tented to aggregate below pH 3. Between pH 4 and 8, the titration behavior of both the native enzyme and the apoenzyme are consistent with the semi-empirical Linderstr?m-Lang theory. Between pH 9 and 12, the titration behavior of both the holo- and apoproteins suggest they assume a more extended conformation which reduces the electrostatic interaction charged groups on the surface. In the acid region, between pH 4 and 3, a similar transition occurs in which the protein expands 40% based on the electrostatic factor of the Linderstr?m-Lang theory.  相似文献   

13.
A Gengenbach  S Syn  X Wang  Y Lu 《Biochemistry》1999,38(35):11425-11432
Trp191Phe and Trp51Phe mutations have been introduced into an engineered cytochrome c peroxidase (CcP) containing a Mn(II)-binding site reported previously (MnCcP; see Yeung, B. K.-S., et al. (1997) Chem. Biol. 5, 215-221). The goal of the present study is to elucidate the role of tryptophans in peroxidase activity since CcP contains both Trp51 and Trp191 while manganese peroxidase (MnP) contains phenylalanine residues at the corresponding positions. The presence of Trp191 in CcP allows formation of a unique high-valent intermediate containing a ferryl oxo and tryptophan radical called compound I'. The absence of a tryptophan residue at this position in MnP is the main reason for the formation of an intermediate called compound I which contains a ferryl oxo and porphyrin pi-cation radical. In this study, we showed that introduction of the Trp191Phe mutation to MnCcP did not improve MnP activity (specific activity: MnCcP, 0.750 micromol min-1 mg-1; MnCcP(W191F), 0.560 micromol min-1 mg-1. k(cat)/K(m): MnCcP, 0.0517 s-1 mM-1; MnCcP(W191F), 0.0568 s-1 mM-1) despite the fact that introduction of the same mutation to WTCcP caused the formation of a transient compound I (decay rate, 60 s-1). However, introducing both the Trp191Phe and Trp51Phe mutations not only resulted in a longer lived compound I in WTCcP (decay rate, 18 s-1), but also significantly improved MnP activity in MnCcP (MnCcP(W51F, W191F): specific activity, 8.0 micromol min-1 mg-1; k(cat)/K(m), 0. 599 s-1 mM-1). The increase in activity can be attributed to the Trp51Phe mutation since MnCcP(W51F) showed significantly increased MnP activity relative to MnCcP (specific activity, 3.2 micromol min-1 mg-1; k(cat)/K(m), 0.325 s-1 mM-1). As with MnP, the activity of MnCcP(W51F, W191F) was found to increase with decreasing pH. Our results demonstrate that, while the Trp191Phe and Trp51Phe mutations both play important roles in stabilizing compound I, only the Trp51Phe mutation contributes significantly to increasing the MnP activity because this mutation increases the reactivity of compound II, whose oxidation of Mn(II) is the rate-determining step in the reaction mechanism.  相似文献   

14.
15.
Mutagenesis studies have been used to investigate the role of a heme ligand containing protein loop (67-79) in the activation of di-heme peroxidases. Two mutant forms of the cytochrome c peroxidase of Pseudomonas aeruginosa have been produced. One mutant (loop mutant) is devoid of the protein loop and the other (H71G) contains a non-ligating Gly at the normal histidine ligand site. Spectroscopic data show that in both mutants the distal histidine ligand of the peroxidatic heme in the un-activated enzyme is lost or is exchangeable. The un-activated H71G and loop mutants show, respectively, 75% and 10% of turnover activity of the wild-type enzyme in the activated form, in the presence of hydrogen peroxide and the physiological electron donor cytochrome c(551). Both mutant proteins show the presence of constitutive reactivity with peroxide in the normally inactive, fully oxidised, form of the enzyme and produce a radical intermediate. The radical product of the constitutive peroxide reaction appears to be located at different sites in the two mutant proteins. These results show that the loss of the histidine ligand from the peroxidatic heme is, in itself, sufficient to produce peroxidatic activity by providing a peroxide binding site and that the formation of radical intermediates is very sensitive to changes in protein structure. Overall, these data are consistent with a major role for the protein loop 67-79 in the activation of di-heme peroxidases and suggest a "charge hopping" mechanism may be operative in the process of intra-molecular electron transfer.  相似文献   

16.
Recombinant cytochrome c peroxidase (CcP) and a W51A mutant of CcP, in contrast to other classical peroxidases, react with phenylhydrazine to give sigma-bonded phenyl-iron complexes. The conclusion that the heme iron is accessible to substrates is supported by the observation that CcP and W51A CcP oxidize thioanisole to the racemic sulfoxide with quantitative incorporation of oxygen from H2O2. Definitive evidence for an open active site is provided by stereoselective epoxidation by both enzymes of styrene, cis-beta-methylstyrene, and trans-beta-methylstyrene. trans-beta-methylstyrene yields exclusively the trans-epoxide, but styrene yields the epoxide and phenylacetaldehyde, and cis-beta-methylstyrene yields both the cis- and trans-epoxides and 1-phenyl-2-propanone. The sulfoxide, stereoretentive epoxides, and 1-phenyl-2-propanone are formed by ferryl oxygen transfer mechanisms because their oxygen atom derives from H2O2. In contrast, the oxygen in the trans-epoxide from the cis-olefin derives primarily from molecular oxygen and is probably introduced by a protein cooxidation mechanism. cis-[1,2-2H]-1-Phenyl-1-propene is oxidized to [1,1-2H]-1-phenyl-2-propanone without a detectable isotope effect on the epoxide:ketone product ratio. The phenyl-iron complex is not formed and substrate oxidation is not observed when the prosthetic group is replaced by delta-meso-ethylheme. CcP thus has a sufficiently open active site to form a phenyl-iron complex, to oxidize thioanisole to the sulfoxide, and to epoxidize styrene and beta-methylstyrene. The results indicate that a ferryl (Fe(IV) = O)/protein radical pair can be coupled to achieve two-electron oxidations. The unique ability of CcP to catalyze monooxygenation reactions does not conflict with its peroxidase function because cytochrome c is oxidized at a distinct surface site (DePillis, G. D., Sishta, B. P., Mauk, A. G., and Ortiz de Montellano, P. R. (1991) J. Biol. Chem. 266, 19334-19341).  相似文献   

17.
Although S-nitrosothiols are regarded as important elements of many NO-dependent signal transduction pathways, the physiological mechanism of their formation remains elusive. Here, we demonstrate a novel mechanism by which cytochrome c may represent an efficient catalyst of S-nitrosation in vivo. In this mechanism, initial binding of glutathione to ferric cytochrome c is followed by reaction of NO with this complex, yielding ferrous cytochrome c and S-nitrosoglutathione (GSNO). We show that when submitochondrial particles or cell lysates are exposed to NO in the presence of cytochrome c, there is a robust formation of protein S-nitrosothiols. In the case of submitochondrial particles protein S-nitrosation is paralleled by an inhibition of mitochondrial complex I. These observations raise the possibility that cytochrome c is a mediator of S-nitrosation in biological systems, particularly during hypoxia, and that release of cytochrome c into the cytosol during apoptosis potentially releases a GSNO synthase activity that could modulate apoptotic signaling.  相似文献   

18.
A hypothetical three-dimensional model of the cytochrome c peroxidase . tuna cytochrome c complex is presented. The model is based on known x-ray structures and supported by chemical modification and kinetic data. Cytochrome c peroxidase contains a ring of aspartate residues with a spatial distribution on the molecular surface that is complementary to the distribution of highly conserved lysines surrounding the exposed edge of the cytochrome c heme crevice, namely lysines 13, 27, 72, 86, and 87. These lysines are known to play a functional role in the reaction with cytochrome c peroxidase, cytochrome oxidase, cytochrome c1, and cytochrome b5. A hypothetical model of the complex was constructed with the aid of a computer-graphics display system by visually optimizing hydrogen bonding interactions between complementary charged groups. The two hemes in the resulting model are parallel with an edge separation of 16.5 A. In addition, a system of inter- and intramolecular pi-pi and hydrogen bonding interactions forms a bridge between the hemes and suggests a mechanism of electron transfer.  相似文献   

19.
20.
The effect of cytochrome c peroxidase (CCP) and apoCCP on the fluorescence and phosphorescence of Zn and Sn cytochrome c (cyt c) and the effect of cyt c on the fluorescence and phosphorescence of Zn CCP were examined. We found the following: The fluorescence yields of Zn and Sn cyt c were quenched by about 20% by CCP, consistent with energy transfer between the two chromophores with a separation of about 1.8 nm. The phosphorescence spectrum of Zn cyt c (but not Sn cyt c) shifts by 20 nm to the blue upon complexation with either CCP or apoCCP; at the same time the phosphorescence lifetime of Zn cyt c decreases from 12 +/- 2 to 6 ms with apoCCP addition. Zn CCP phosphorescence decay increases from 8.3 to 9.1 ms upon addition of poly(L-lysine) used to mimic cyt c. It is concluded from these results that binding of the redox partner or an analogue to Zn CCP and Zn cyt c results in a conformational change. The respective phosphorescence lifetimes of Zn and Sn cyt c were 13 and 3 ms in the absence of CCP and 1.6 and 1.1 ms in the presence of CCP; this corresponds to a quenching rate due to CCP of 519 and 570 s-1, for Zn and Sn cyt c, respectively. The phosphorescence of Zn CCP is also affected by native cyt c but is dramatically less than the complementary pair; the quenching rate constant is 17 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号