首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of vesicular formation processes in the membrane transduction and nuclear transport of oligoarginine is currently a subject of controversy. In this report, a novel quantitative method which allows for the selective measurement of membrane transduction excluding concurrent endocytosis was used to determine the effects of temperature, endosomal acidification, endosomolysis, and several known inhibitors of endocytic pathways on the internalization of oligoarginine. The results show that, unlike endocytosis, transduction of oligoarginine was not affected by incubation at 16 degrees C as compared to the 37 degrees C control, and was only partially inhibited at 4 degrees C incubation. Additionally, membrane transduction was not inhibited to the same extent as endocytosis following treatment with ammonium chloride, hypertonic medium, amiloride, or filipin. The endosomolytic activity of oligoarginine was investigated by examining the leakage of FITC-dextran into the cytosolic compartment, which was not higher in the presence of oligoarginine. Furthermore, ammonium chloride showed no effect on the nuclear transport of oligoarginine. The data presented in this report indicate that membrane transduction is likely to occur at the plasma membrane without the formation of membrane vesicles, and the nuclear localization involves membrane transduction, rather than endocytosis of oligoarginine.  相似文献   

2.
Uncoating of influenza virus in endosomes   总被引:19,自引:12,他引:7       下载免费PDF全文
The intracellular uncoating site of influenza virus was studied by measuring the fluorescence intensity of probes conjugated to the virus or the isolated hemagglutinin and also by assaying virus replication under various incubation conditions. Acidification of the viral environment was monitored by the decrease in the fluorescence intensity of fluorescein isothiocyanate, and transport of the virus particles into secondary lysosomes was assayed by the increase in the fluorescence intensity of fluorescein isothiocyanate diphosphate. The intracellular pH was estimated by the ratio of fluorescence intensities excited at two different wavelengths. It was found that the viral environment became acidified to a pH value of 5.1 to 5.2 within 10 min at 37 degrees C or 1 h at 20 degrees C after endocytosis. Addition of ammonium chloride to the medium rapidly raised the pH to 6.7. Transport of the virus particles into the secondary lysosomes was slower and negligibly low during those incubation periods. Virus replication occurred when the cells were incubated for 10 min at 37 degrees C or for 1 h at 20 degrees C, followed by incubation in the presence of ammonium chloride for a total of 12 h. These results indicate the uncoating of influenza virus in endosomes before reaching the secondary lysosomes.  相似文献   

3.
We have used a lipophilic styryl dye, N-(3-triethylammoniumpropyl)-4- (p-diethylaminophenyl-hexatrienyl) pyridinium dibromide (FM 4-64), as a vital stain to follow bulk membrane-internalization and transport to the vacuole in yeast. After treatment for 60 min at 30 degrees C, FM 4- 64 stained the vacuole membrane (ring staining pattern). FM 4-64 did not appear to reach the vacuole by passive diffusion because at 0 degree C it exclusively stained the plasma membrane (PM). The PM staining decreased after warming cells to 25 degrees C and small punctate structures became apparent in the cytoplasm within 5-10 min. After an additional 20-40 min, the PM and cytoplasmic punctate staining disappeared concomitant with staining of the vacuolar membrane. Under steady state conditions, FM 4-64 staining was specific for vacuolar membranes; other membrane structures were not stained. The dye served as a sensitive reporter of vacuolar dynamics, detecting such events as segregation structure formation during mitosis, vacuole fission/fusion events, and vacuolar morphology in different classes of vacuolar protein sorting (vps) mutants. A particularly striking pattern was observed in class E mutants (e.g., vps27) where 500-700 nm organelles (presumptive prevacuolar compartments) were intensely stained with FM 4- 64 while the vacuole membrane was weakly fluorescent. Internalization of FM 4-64 at 15 degrees C delayed vacuolar labeling and trapped FM 4- 64 in cytoplasmic intermediates between the PM and the vacuole. The intermediate structures in the cytoplasm are likely to be endosomes as their staining was temperature, time, and energy dependent. Interestingly, unlike Lucifer yellow uptake, vacuolar labeling by FM 4- 64 was not blocked in sec18, sec14, end3, and end4 mutants, but was blocked in sec1 mutant cells. Finally, using permeabilized yeast spheroplasts to reconstitute FM 4-64 transport, we found that delivery of FM 4-64 from the endosome-like intermediate compartment (labeled at 15 degrees C) to the vacuole was ATP and cytosol dependent. Thus, we show that FM 4-64 is a new vital stain for the vacuolar membrane, a marker for endocytic intermediates, and a fluor for detecting endosome to vacuole membrane transport in vitro.  相似文献   

4.
本实验采用异硫氰酸-葡聚糖荧光素(fluorescein isothiocyanate-dextran,FITC-dextran)体内标记法,研究大鼠肾近球小管细胞胞饮体(endosome)膜上 H~+-ATP 酶的活性及水的渗透性转运。通过观察在胞饮体外加入一定量 ATP 后,胞饮体内 pH 值的时间反应曲线,从而测定 ATP-依赖的 H~+在胞饮体膜上的转运情况。胞饮体内的酸化速度及 pH 的最低值与加入的 ATP 浓度有关。在加入 ATP 前,胞饮体内的 pH 值为7.4,加入不同浓度的 ATP 后,即[ATP]为0.005,0.05,0.5,5和10mmol/L,胞饮体内 pH 最低值分别为7.30,6.99,6.68,6.38和6.39。此种由 ATP 引起的酸化反应,被0.5mmol/L N-ethylmaleimide(NEM)抑制97%,但不被钒酸盐和 oligomycin 所抑制。实验还同时观察了此种胞饮体水的渗透性转运机制。通过在胞饮体膜内外建立一个蔗糖浓度梯度。观察 FITC-dextran 荧光信号的快速动力学变化过程,从而测定由于渗透压梯度引起的水在胞饮体膜上转运的特征。在230℃时,水的渗透性通透系数(osmotic water permeability coefficient,P_f)为0.03cm/s;加入0.5mmol/L HgCl_2后,水的转运被抑制70%。此抑制反应可被5mmol/L 巯基乙醇(β-Mcrcaptoethanol)完全逆转。上述结果提示:大鼠肾近球小管胞饮体膜含有H~+-ATP 酶和水的转运通道。胞饮  相似文献   

5.
H. Löppert 《Planta》1979,144(4):311-315
The cell potential of Lemna paucicostata 6746 was measured between the vacuole and the external solution. The potential in the dark (-202 mV) could be depolarized with 0.1 mM dicyclohexyl carbodiimide (DCCD) or 1 mM arsenate to-81 mV. The hyperpolarization above the latter value is therefore attributed to an ATP-dependent process. The cell potential showed a significant dependence upon the pH of the external solution. The change in the potential induced by a jump in pH between two certain values, was reversible and independent of the mode of performing the pH change (stepwise or at once). The DCCD-or arsenate-depolarized potential did not respond to external pH changes. A 0.1 mM ammonium chloride solution depolarized the cell potential reversibly to-83 mV. This potential-change could be greatly reduced by simultaneous addition of 5 mM Na isobutyrate. The pH sensitivity of the cell potential is ascribed to changes in the rate of proton extrusion upon altering the proton gradient across the plasmalemma. The effects of ammonium and isobutyrate are interpreted as being the consequence of pH shifts at the inner face of the plasmalemma, caused by the permeation of the undissociated form of the weak acid or base. A critical discussion of an alternative interpretation for the ammonium effect is presented.Abbreviation DCCD N,N-dicyclohexyl carbodiimide  相似文献   

6.
J Kck  E M Borst    H J Schlicht 《Journal of virology》1996,70(9):5827-5831
The infectious entry pathway of duck hepatitis B virus (DHBV) was investigated with primary duck hepatocytes. Virus uptake was measured by a selective PCR technique which allows for the detection of a successful infection without the need for viral replication or gene expression. To test whether DHBV uptake occurs by endocytosis, the effects of energy depletion were analyzed. The requirement for an acidic intracellular pH was tested with the lysosomotropic agent ammonium chloride. The data show that energy depletion prevents the uptake of DHBV into primary hepatocytes whereas ammonium chloride has no effect. From these data, we conclude that DHBV is taken up by its host cells by endocytosis. However, in contrast to that of most other enveloped viruses, escape of DHBV from the endocytotic route does not depend on an acidic intracellular compartment.  相似文献   

7.
The influence of nisin on the proton motive force (delta p) generated by glucose-energized cells of the obligate putrefactive anaerobe Clostridium sporogenes PA 3679 was determined. The components of delta p, the transmembrane potential (delta psi) and the pH gradient (delta pH), were determined from the distributions of the lipophilic cation [3H]TPP+ ([3H]tetraphenylphosphonium bromide) and [14C]salicylic acid, respectively. The cells maintained a constant delta p of -111 mV, consisting of a delta pH of 0.4 to 1.0 pH units at an external pH of 5 to 7 and a delta psi of -60 to -88 mV. Nisin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and N,N'-dicyclohexylcarbodiimide (DCCD) at pH 6.0 elicited the complete release of preaccumulated [3H]tetraphenylphosphonium bromide and [14C]salicylic acid, with a concomitant depletion of delta psi and delta pH. Nisin and DCCD caused rapid drops in intracellular ATP levels from 1.2 to 0.01 and 0.06 nmol/mg of cells (dry weight), respectively. Cells exposed to nisin and DCCD lost the ability to form colonies, thus suggesting that delta psi and delta pH are necessary for cell viability. The data suggest that depletion of delta p and exhaustion of cellular ATP reserves are the basis for nisin inhibition of C. sporogenes PA 3679.  相似文献   

8.
The influence of nisin on the proton motive force (delta p) generated by glucose-energized cells of the obligate putrefactive anaerobe Clostridium sporogenes PA 3679 was determined. The components of delta p, the transmembrane potential (delta psi) and the pH gradient (delta pH), were determined from the distributions of the lipophilic cation [3H]TPP+ ([3H]tetraphenylphosphonium bromide) and [14C]salicylic acid, respectively. The cells maintained a constant delta p of -111 mV, consisting of a delta pH of 0.4 to 1.0 pH units at an external pH of 5 to 7 and a delta psi of -60 to -88 mV. Nisin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and N,N'-dicyclohexylcarbodiimide (DCCD) at pH 6.0 elicited the complete release of preaccumulated [3H]tetraphenylphosphonium bromide and [14C]salicylic acid, with a concomitant depletion of delta psi and delta pH. Nisin and DCCD caused rapid drops in intracellular ATP levels from 1.2 to 0.01 and 0.06 nmol/mg of cells (dry weight), respectively. Cells exposed to nisin and DCCD lost the ability to form colonies, thus suggesting that delta psi and delta pH are necessary for cell viability. The data suggest that depletion of delta p and exhaustion of cellular ATP reserves are the basis for nisin inhibition of C. sporogenes PA 3679.  相似文献   

9.
Smith, F. A. 1986. Short-term measurements of the cytoplasmicpH of Chara corallina derived from the intracellular equilibrationof 5,5-dimethyloxazolidine-2,4-dione (DMO).—J. exp. Bot.37: 1733–1745. Measurements of the time-course of influx of 14C-labelled 5,5-dimethyloxazolidine-2,4-dione(DMO) into the cytoplasm and vacuole of internodal cells ofChara corallina, and of efflux of DMO into non-radioactive solutions,have shown that exchange of DMO across the tonoplast is veryrapid compared with exchange across the plasma membrane. Thishas made possible calculations of cytoplasmic pH from distributionof DMO between cytoplasm and vacuole over short periods (5 or10 min) even when intracellular DMO is not at flux equilibriumwith external DMO. Using this new method, estimates have beenmade of the rates and magnitude of: (i) acidification of thecytoplasm caused by acidic growth regulators (IAA and NAA) andby metabolic inhibitors (azide, DNP, CCCP and DCMU), and (ii)alkalinization caused by uptake of ammonium and methylammoniumions. The potential application of the method to future studiesof membrane transport in charophyte cells is assessed. Key words: Charophyles, cytoplasmic pH.  相似文献   

10.
Proton motive force is not obligatory for growth of Escherichia coli.   总被引:13,自引:6,他引:7       下载免费PDF全文
When 50 microM carbonyl cyanide-m-chlorophenyl hydrazone (CCCP), a protonophore, was added to growth medium containing glucose at pH 7.5, Escherichia coli TK1001 (trkD1 kdpABC5) started exponential growth after 30 min; the generation time was 70 min at 37 degrees C. Strain AS1 (acrA), another strain derived from E. coli K-12, also grew in the presence of 50 microM CCCP under the same conditions, except that the lag period was ca. 3 h. When this strain was grown in the presence of 50 microM CCCP and then transferred to fresh medium containing 50 microM CCCP, cells grew without any lag. Neither a membrane potential nor a pH gradient was detected in strain AS1 cells growing in the presence of CCCP. When either succinate or lactate was substituted for glucose, these strains did not grow in the presence of 50 microM CCCP. Thus, it is suggested that E. coli can grow in the absence of a proton motive force when glucose is used as an energy source at pH 7.5.  相似文献   

11.
Semliki Forest virus penetration from endosomes: a morphological study   总被引:6,自引:0,他引:6  
The low pH dependent membrane fusion reaction responsible for the delivery of the Semliki Forest virus genome into the host cell for replication was visualized by electron microscopy. In order to increase the frequency at which fusion images could be detected a reversible inhibitor, ammonium chloride, was used to synchronize endosomal acidification, and 20 degrees C incubation was employed to concentrate virus particles into the endosomal compartment.  相似文献   

12.
Mutations gef1, stp22, STP26, and STP27 in Saccharomyces cerevisiae were identified as suppressors of the temperature-sensitive alpha-factor receptor (mutation ste2-3) and arginine permease (mutation can1(ts)). These suppressors inhibited the elimination of misfolded receptors (synthesized at 34 degrees C) as well as damaged surface receptors (shifted from 22 to 34 degrees C). The stp22 mutation (allelic to vps23 [M. Babst and S. Emr, personal communication] and the STP26 mutation also caused missorting of carboxypeptidase Y, and ste2-3 was suppressed by mutations vps1, vps8, vps10, and vps28 but not by mutation vps3. In the stp22 mutant, both the mutant and the wild-type receptors (tagged with green fluorescent protein [GFP]) accumulated within an endosome-like compartment and were excluded from the vacuole. GFP-tagged Stp22p also accumulated in this compartment. Upon reaching the vacuole, cytoplasmic domains of both mutant and wild-type receptors appeared within the vacuolar lumen. Stp22p and Gef1p are similar to tumor susceptibility protein TSG101 and voltage-gated chloride channel, respectively. These results identify potential elements of plasma membrane quality control and indicate that cytoplasmic domains of membrane proteins are translocated into the vacuolar lumen.  相似文献   

13.
alpha-Factor, one of the mating pheromones of Saccharomyces cerevisiae, binds specifically to a receptor on the plasma membrane of a cells, is internalized and delivered to the vacuole, where it is degraded. At 15 degrees C the rate of pheromone uptake is only slightly affected while delivery to the vacuole is markedly slowed down. A transport intermediate carrying alpha-factor to the vacuole can be reversibly trapped by treatment with the metabolic inhibitors, NaN3 and NaF. This intermediate(s) is distinct from the vacuole and the plasma membrane as judged by differential and density gradient centrifugation analysis. We present evidence that the alpha-factor is protected from protease digestion by a detergent-sensitive structure, suggesting that the pheromone resides within a vesicular compartment. We propose that this intermediate(s) represents an endocytic or prevacuolar compartment(s) involved in vesicular traffic from the plasma membrane to the vacuole.  相似文献   

14.
The kinetics of corn root plasma membrane-catalyzed Mg-ATP hydrolysis may be satisfactorily described by a simple Michaelis-Menten scheme. It was found that the Km of the process was relatively insensitive to changes in temperature. This property allowed us to conveniently estimate the activation energy of the enzyme turnover process as approximately 14 kcal mol-1 in the temperature range of 10 to 45 degrees C. The enzyme activity was inhibited by the presence of diethystilbestrol (DES), miconazole, vanadate, and dicyclohexylcarbodiimide (DCCD). The inhibition caused by DES and miconazole was strictly uncompetitive and inhibition by vanadate was noncompetitive. The inhibition by DCCD showed a substrate concentration dependence, i.e., competitive at high and uncompetitive at low concentrations of Mg-ATP. The 1/V vs [I] plots suggested that there were different but unique binding sites for DES, vanadate, and miconazole. However, the modification of the plasma membrane by DCCD exhibited interaction with multiple sites. Unlike yeast plasma membrane ATPase, the enzyme of corn root cells was not affected by the treatment with N-ethylmaleimide. Although the enzyme activity was regulated by ADP, a product of the reaction, the presence of inorganic phosphate showed no inhibition to the hydrolysis of Mg-ATP.  相似文献   

15.
ATPase activity was investigated in phloem-containing tissuesof Ricinus communis in relation to its proposed role in phloemloading. Cytochemical staining of cotyledons revealed an ATP-hydrolysingactivity on the plasma membrane of the sieve tube/companioncell complex. Microsomal fractions prepared from cotyledonsand main veins contained a Mg2+-dependent ATPase activity whichshowed low stimulation by KC1 particularly at pH 6.5. The pHoptimum was at pH 8.5 to 90, although the effect of azide indicatedthe presence of mitochondrial ATPase. At pH 6.5, the cited optimumfor plasma membrane ATPase, the activity showed strong inhibitionby PCMBS, vanadate and DCCD. A high pyrophosphatase activitywas observed at pH 8.5. Acidification of the medium by intactcotyledons was increased by fusicoccin and inhibited by PCMBS,NEM and vanadate. Proton pumping by microsomal vesicles as measuredby quinacrine fluorescence was also inhibited by PCMBS, NEMand vanadate. Sucrose uptake by cotyledon discs showed stronginhibition by PCMBS, NEM and CCCP but was little affected byvanadate. Sucrose uptake varied with the developmental stageof the cotyledons and this correlated with microsomal ATPaseactivity measured at pH 6.5, although the precise cellular originof this activity is not certain. The results are discussed inrelation to the role of ATPase activity and proton pumping inphloem loading. Key words: ATPase, phlocm loading, proton pumping, Ricinus communis, sucrose  相似文献   

16.
In cultured human lung fibroblasts treated with Clostridium difficile cytotoxin, the latency before appearance of the cytopathogenic effect was dose-related with a minimum of 45 min. At 37 degrees C, the toxin was accessible on all cells to inactivation with trypsin or neutralization with antitoxin during the first tenth of the latency. At 0 degrees C, the toxin was accessible considerably longer. The cytopathogenic effect was reversibly prevented by the lysosomotropic agents chloroquine and ammonium chloride, which had to be added within one-fifth of the latency to protect all cells. In the presence of chloroquine, but not of ammonium chloride, the time period during which the toxin remained amenable to neutralization with antitoxin was prolonged. The protective effect of ammonium chloride was not influenced by dropping the extracellular pH to 4.5, but that of chloroquine was abolished. The expression of the intoxication was not affected by inhibitors of the DNA, RNA or protein synthesis. Inhibitors of the energy metabolism prevented the cytopathogenic effect when added before the last phase of the latency. The results suggest that expression of the cytopathogenic effect requires internalization of the toxin, and that metabolic energy but no macromolecular synthesis is needed for the action of the toxin after this internalization.  相似文献   

17.
Radiolabel pulse-chase and subcellular fractionation procedures were used to analyze the transport, proteolytic processing, and sorting of two lysosomal enzymes in Dictyostelium discoideum cells treated with the weak bases ammonium chloride and chloroquine. Dictyostelium lacks detectable cation-independent mannose-6-phosphate receptors and represents an excellent system to investigate alternative mechanisms for lysosomal enzyme targeting. Exposure of growing cells to ammonium chloride, which increased the pH in intracellular vacuoles from 5.4 to 5.8-6.1, slowed but did not prevent the proteolytic processing and correct localization of pulse-radiolabeled precursors to the lysosomal enzymes alpha-mannosidase and beta-glucosidase. Additionally, ammonium chloride did not affect transport of the enzymes to the Golgi complex, as they acquired resistance to the enzyme endoglycosidase H at the same rate as in control cells. When the pH of lysosomal and endosomal organelles was raised to 6.4 with higher concentrations of ammonium chloride, the percentage of secreted (apparently mis-sorted) precursor polypeptides increased slightly, but proteolytic processing of intermediate forms of lysosomal enzymes to mature forms was greatly reduced. The intermediate and mature forms of alpha-mannosidase and beta-glucosidase did, however, accumulate intracellularly in vesicles similar in density to lysosomes. In contrast, in cells exposed to low concentrations of chloroquine the intravacuolar pH increased only slightly (to 5.7); however, enzymes were inefficiently processed and, instead, rapidly secreted as precursor molecules. Experiments involving the addition of chloroquine at various times during the chase of pulse-radiolabeled cells demonstrated that this weak base acted on a distal Golgi or prelysosomal compartment to prevent the normal sorting of lysosomal enzymes. These results suggest that although acidic endosomal/lysosomal compartments may be important for the complete proteolytic processing of lysosomal enzymes in Dictyostelium, low pH is not essential for the proper targeting of precursor polypeptides. Furthermore, certain amines may induce mis-sorting of these enzymes by pH-independent mechanisms.  相似文献   

18.
The mechanism for the extrusion of Na+ from Mycoplasma gallisepticum cells was examined. Na+ efflux from cells was studied by diluting 22Na+-loaded cells into an isoosmotic NaCl solution and measuring the residual 22Na+ in the cells. Uphill 22Na+ efflux was found to be glucose dependent and linear with time over a 60-s period and showed almost the same rate in the pH range of 6.5 to 8.0. 22Na+ efflux was markedly inhibited by dicyclohexylcarbodiimide (DCCD, 10 microM), but not by the proton-conducting ionophores SF6847 (0.5 microM) or carbonyl cyanide m-chlorophenylhydrazone (CCCP, 10 microM) over the entire pH range tested. An ammonium diffusion potential and a pH gradient were created by diluting intact cells or sealed membrane vesicles of M. gallisepticum loaded with NH4Cl into a choline chloride solution. The imposed H+ gradient (inside acid) was not affected by the addition of either NaCl or KCl to the medium. Dissipation of the proton motive force by CCCP had no effect on the growth of M. gallisepticum in the pH range of 7.2 to 7.8 in an Na+-rich medium. Additionally, energized M. gallisepticum cells were stable in an isoosmotic NaCl solution, even in the presence of proton conductors, whereas nonenergized cells tended to swell and lyse. These results show that in M. gallisepticum Na+ movement was neither driven nor inhibited by the collapse of the electrochemical gradient of H+, suggesting that in this organism Na+ is extruded by an electrogenic primary Na+ pump rather than by an Na+-H+ exchange system energized by the proton motive force.  相似文献   

19.
31P NMR spectra were obtained from suspensions of Candida utilis, Saccharomyces cerevisiae and Zygosaccharomyces bailii grown aerobically on glucose. Direct introduction of substrate into the cell suspension, without interruption of the measurements, revealed rapid changes in pH upon addition of the energy source. All 31P NMR spectra of the yeasts studied indicated the presence of two major intracellular inorganic phosphate pools at different pH environments. The pool at the higher pH was assigned to cytoplasmic phosphate from its response to glucose addition and iodoacetate inhibition of glycolysis. After addition of substrate the pH in the compartment containing the second phosphate pool decreased. A parallel response was observed for a significant fraction of the terminal and penultimate phosphates of the polyphosphate observed by 31P NMR. This suggested that the inorganic phosphate fraction at the lower pH and the polyphosphates originated from the same intracellular compartment, most probably the vacuole. In this vacuolar compartment, pH is sensitive to metabolic conditions. In the presence of energy source a pH gradient as large as 0.8 to 1.5 units could be generated across the vacuolar membrane. Under certain conditions net transport of inorganic phosphate across the vacuolar membrane was observed during glycolysis: to the cytoplasm when the cytoplasmic phosphate concentration had become very low due to sugar phosphorylation, and into the vacuole when the former concentration had become high again after glucose exhaustion.Non-Standard Abbreviations NMR nuclear magnetic resonance - ppm parts per million - PP polyphosphate - Pi,c cytoplasmic inorganic phosphate - Pi,v vacuolar inorganic phosphate - pHin,c cytoplasmic pH - pHin,v vacuolar pH - FCCP carbonyl p-trifluoromethoxyphenylhydrazone  相似文献   

20.
The effects of chlorpromazine on various properties of the F1-ATPases from bovine heart mitochondria (MF1), the plasma membranes of Escherichia coli (EF1), and plasma membranes of the thermophilic bacterium PS3 (TF1) have been examined. While chlorpromazine inhibited MF1 with an I0.5 of about 50 microM and EF1 with an I0.5 of about 150 microM at 23 degrees C, the ATPase activity of TF1 was stimulated by chlorpromazine concentrations up to 0.6 mM at this temperature. Maximal activation of about 20% was observed at 0.2 mM chlorpromazine at 23 degrees C. Chlorpromazine concentrations greater than 0.6 mM inhibited TF1 at 23 degrees C. At 37 degrees C the ATPase activity of TF1 was doubled in the presence of 0.5 mM chlorpromazine, the concentration at which maximal stimulation was observed at this temperature. Chlorpromazine inhibited the rate of inactivation of EF1 by dicyclohexylcarbodiimide (DCCD) at 23 degrees C and pH 6.5. Concentrations of chlorpromazine which inhibited the ATPase activity of TF1 at pH 7.0 accelerated the rate of inactivation of the enzyme by DCCD at pH 6.5, while lower concentrations of the phenothiazine, which stimulated the ATPase, had no effect on DCCD inactivation. Chlorpromazine concentrations up to 1.0 mM had no effect on the rate of inactivation of TF1 by DCCD at 37 degrees C and pH 6.5. Chlorpromazine at 0.5 mM accelerated the rate of inactivation of MF1 by 5'-p-fluorosulfonylbenzoyladenosine (FSBA), while it slowed the rate of inactivation of EF1 by FSBA. The inactivation of TF1 by FSBA in the absence of chlorpromazine was complex and was not included in this comparison. Chlorpromazine protected MF1 and EF1 against cold inactivation. Whereas 100 microM chlorpromazine afforded about 90% stabilization of MF1 at 4 degrees C, only about 30% stabilization of EF1 was observed under the same conditions in the presence of 400 microM chlorpromazine. Each of the ATPases was inactivated by the structural analog of chlorpromazine, quinacrine mustard. Whereas 5 mM ATP and 5 mM ADP protected MF1 and TF1 against inactivation by 0.5 mM quinacrine mustard, the rate of inactivation of EF1 by quinacrine mustard was accelerated fourfold by 5 mM ATP and slightly accelerated by 5 mM ADP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号