共查询到20条相似文献,搜索用时 15 毫秒
1.
This work examines the methane production potential for the anaerobic co-digestion of swine manure (SM) with winery wastewater (WW). Batch and semi-continuous experiments were carried out under mesophilic conditions. Batch experiments revealed that the highest specific methane yield was 348 mL CH 4 g −1 COD added, obtained at 85.4% of WW and 0.7 g COD g −1 VS. Specific methane yield from SM alone was 27 mL CH 4 g −1 COD added d −1. Furthermore, specific methane yields were 49, 87 and 107 mL CH 4 g −1 COD added d −1 for the reactors co-digesting mixtures with 10% WW, 25% WW and 40% WW, respectively. Co-digestion with 40% WW improved the removal efficiencies up to 52% (TCOD), 132% (SCOD) and 61% (VSS) compared to SM alone. These results suggest that methane can be produced very efficiently by the co-digestion of swine manure with winery wastewater. 相似文献
2.
Spirodela oligorrhiza, a promising duckweed identified in previous studies, was examined under different cropping conditions for nutrient recovery from swine wastewater and biomass production. To prevent algae bloom during the start-up of a duckweed system, inoculating 60% of the water surface with duckweed fronds was required. In the growing season, the duckweed system was capable of removing 83.7% and 89.4% of total nitrogen (TN) and total phosphorus (TP) respectively from 6% swine lagoon water in eight weeks at a harvest frequency of twice a week. The total biomass harvested was 5.30 times that of the starting amount. In winter, nutrients could still be substantially removed in spite of the limited duckweed growth, which was probably attributed to the improved protein accumulation of duckweed plants and the nutrient uptake by the attached biofilm (algae and bacteria) on duckweed and walls of the system. 相似文献
3.
Treatment of aged (500 day, 4 °C stored) chlortetracycline (CTC; 0, 20, 40, 80 mg/L CTC)-amended swine manure using two cycle, 22 day stage anaerobic sequencing batch reactors (SBR) was assessed. Eighty milligrams per liter CTC treatment inhibited SBR treatment efficiencies, although total gas production was enhanced compared to the no-CTC treatment. The 20 and 40 mg/L CTC treatments resulted in either slight or no differences to SBR treatment efficiencies and microbial diversities compared to the no-CTC treatment, and were generally similar to no-CTC treatments upon completion of the first 22 day SBR cycle. All CTC treatments enhanced SBR gas generation, however CH 4 yields were lowest for the 80 mg/L CTC treatment (0.111 L CH 4/g tCOD) upon completion of the second SBR react cycle. After a 22 day acclimation period, the 80 mg/L CTC treatment inhibited methanogenesis due to acetate accumulation, and decreased microbial diversity and CH 4 yield compared to the no-CTC treatment. 相似文献
4.
In order to enhance performances of organics removal and nitrification for the treatment of swine wastewater containing high concentration of organic solids and nitrogen than conventional biological nitrogen removal process, a submerged membrane bioreactor (MBR) was followed by an anaerobic upflow bed filter (AUBF) reactor in this research (AUBF–MBR process). The AUBF reactor is a hybrid reactor, which is the combination of an anoxic filter for denitrification and upflow anaerobic sludge blanket (UASB) for acid fermentation. In the AUBF–MBR process, it showed a considerable enhancement of the effluent quality in terms of COD removal and nitrification. The submerged MBR could maintain more than 14,000 mg VSS/L of the biomass concentration. Total nitrogen (T-N) removal efficiency represented 60% when internal recycle ratio was three times of flow-rate ( Q), although the nitrification occurred completely. Although the volatile fatty acids produced in AUBF reactor can enhance denitrification rate, but the AUBF–MBR process showed reduction of overall removal efficiency of the nitrogen due to the reduction of carbon source by methane production in the AUBF reactor compared to that of theoretical nitrogen removal efficiency. Long-term operation of the submerged MBR showed that the throughputs of the submerged MBR were respectively 74, 63, and 31 days at 10, 15, and 30 L/m2 h (LMH) of permeate flux. Resistance to filtration by rejected solid is the primary cause of fouling, however the priority of cake resistance (Rc) and fouling resistance (Rf) with respect to filtration phenomenon was different according to the amount of permeate flux. The submerged MBR, here, achieved a steady-state flux of 15 LMH at 0.4 atm. of trans-membrane pressure (TMP) but the flux can be enhanced in the future because shear force by tangential flow will be greater when multi-layer sheets of membrane were used. 相似文献
5.
The aim of this study was to monitor the changes in methanogenic community structures in an anaerobic digester (250 m 3 working volume) during start-up including prolonged starvation periods. Redundancy analysis was performed to investigate the correlations between environmental variables and microbial community structures. The anaerobic digester was operated for 591 days at alternating operating temperatures. In initial start-up period at stage I (35 °C), growth of various species of mesophilic aceticlastic methanogens (AMs) and hydrogenotrophic methanogens (HMs) was observed. Methanobacteriales species survived better than other methanogens under long-term starvation conditions. In stage II (50 °C), HMs became dominant over AMs as the operating temperature changed from mesophilic to thermophilic due to increase of ammonia inhibition. In stage III (35 °C), only the Methanomicrobiales population significantly increased during 50 days of HRT while Methanobacteriales dominated over 15 days of HRT. The influent pH negatively correlated with all methanogenic populations especially in stage II. 相似文献
6.
AbstractThe importance of highly efficient wastewater treatment is evident from aggravated water crises. With the development of green technology, wastewater treatment is required in an eco-friendly manner. Biotechnology is a promising solution to address this problem, including treatment and monitoring processes. The main directions and differences in biotreatment process are related to the surrounding environmental conditions, biological processes, and the type of microorganisms. It is significant to find suitable biotreatment methods to meet the specific requirements for practical situations. In this review, we first provide a comprehensive overview of optimized biotreatment processes for treating wastewater during different conditions. Both the advantages and disadvantages of these biotechnologies are discussed at length, along with their application scope. Then, we elaborated on recent developments of advanced biosensors (i.e. optical, electrochemical, and other biosensors) for monitoring processes. Finally, we discuss the limitations and perspectives of biological methods and biosensors applied in wastewater treatment. Overall, this review aims to project a rapid developmental path showing a broad vision of recent biotechnologies, applications, challenges, and opportunities for scholars in biotechnological fields for “green” wastewater treatment. 相似文献
7.
Pollution from concentrated animal feeding operations (CAFOs) are the most serious pollution source in China now, and swine wastewater contains high concentrations of nutrients such as chemical oxygen demand (COD), biochemical oxygen demand 5 (BOD5), ammonium, and emergent contaminants related to public health. Biological processes are the most popular treatment methods for COD and ammonium removal. Considering the low operation cost, easy maintenance and high removal rate of contaminants in recent years, nitrogen removal via nitrite and real-time control processes using oxidation-reduction potential (ORP) and/or pH as parameters to control the aerobic and anaerobic cycles of a system has received much attention for animal wastewater treatment. During the biological treatment process, the emergent contaminants such as estrogen, antibiotics, and disinfec-tion reagents have been the focus of research recently, and degradation bacteria and resistance bacteria have also been extracted from activated sludge. The microbial analysis technique is also advancement in the field of biodegrada-tion bacteria and resistance bacteria. All of these advance-ments in research serve to improve wastewater treatment and decrease environmental hazards, especially for using manure as a fertilizer source for crop production. 相似文献
8.
Aerobic granular sludge can be classified as a type of self-immobilized microbial consortium, consisting mainly of aerobic and facultative bacteria and is distinct from anaerobic granular methanogenic sludge. Aerobic granular technology has been proposed as a promising technology for wastewater treatment, but is not yet established as a large-scale application. Aerobic granules have been cultured mainly in sequenced batch reactors (SBR) under hydraulic selection pressure. The factors influencing aerobic granulation, granulation mechanisms, microbial communities and the potential applications for the treatment of various wastewaters have been studied comprehensively on the laboratory-scale. Aerobic granular sludge has shown a potential for nitrogen removal, but is less competitive for the high strength organic wastewater treatments. This technology has been developed from the laboratory-scale to pilot scale applications, but with limited and unpublished full-scale applications for municipal wastewater treatment. The future needs and limitations for aerobic granular technology are discussed. 相似文献
9.
Animal production has changed from subsistence to an industrial model, lowering production costs but giving rise to higher potential environmental impact. When the effluents are not correctly managed, serious pollution events can occur. In Brazil liquid manure is commonly stored in reception pits or covered lagoons (biodigestors), followed by land application as a biofertilizer. In some regions there is an excess of manure due to low soil support capacities, and in these cases new technologies have to be adopted to export or treat the excess effluent. Manure storage time in pits/covered lagoons and new polymers to separate the solid fraction have been studied in Brazil. Treatment technologies, like swine manure treatment systems (SMTS), have been developed from a technical and economical point of view to optimize the processes and give a technological alternative to pork producers increasing production while reducing environmental impact. 相似文献
10.
A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate,
biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted
of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause
the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and
the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the
gas phase. The difference of settling velocity along the column height due to the distributions of size and number of bioparticle
was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along
the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained
from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with
experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated
based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration
was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected
by the superficial gas velocity.
An erratum to this article can be found online at . 相似文献
11.
The performance of an anaerobic hybrid reactor (AHR) for treating penicillin-G wastewater was investigated at the ambient temperatures of 30-35 °C for 245 days in three phases. The experimental data were analysed by adopting an adaptive network-based fuzzy inference system (ANFIS) model, which combines the merits of both fuzzy systems and neural network technology. The statistical quality of the ANFIS model was significant due to its high correlation coefficient R2 between experimental and simulated COD values. The R2 was found to be 0.9718, 0.9268 and 0.9796 for the I, II and III phases, respectively. Furthermore, one to one correlation among the simulated and observed values was also observed. The results showed the proposed ANFIS model was well performed in predicting the performance of AHR. 相似文献
12.
An approximated analytical solution of mathematical model for the three phase fluidized bed bioreactor (TFBBR) was proposed using the linearization technique to describe oxygen utilization rate in wastewater treatment. The validation of the model was done in comparison with the experimental results. Satisfactory agreement was obtained in the comparison of approximated analytical solution and numerical solution in the oxygen concentration profile of a TFBBR. The approximated solutions for three modes of the liquid phase flow were compared. The proposed model was able to predict the biomass concentration, dissolved oxygen concentration the height of efficient column, and the removal efficiency. 相似文献
13.
Three strains of phototrophic, purple, non-sulfur bacteria, isolated from eutrophic ponds, were used to treat odorous swine wastewater. One isolate, Rhodopseudomonas palustris, when cultured in swine wastewater without supplementation for 7 d, removed odorous organic acids (170 mg l(-1)), COD (10,000 mg l(-1)) and phosphate (180 mg l(-1)). 相似文献
14.
A pilot-scale Sequencing Batch Reactor was operated during 307 days in order to treat swine slurry characterized by its high variable composition: organic and nitrogen applied loading rates and C/N ratio were 1.4–6.3 kg COD s/(m 3 d), 0.5–2.5 kg N/(m 3 d) and 1.9–9.4 g COD s/(g N), respectively. Aerobic granules successfully developed in the reactor and their physical properties remained rather stable despite the feeding composition variability. Organic and ammonia removal efficiency reached 61–73% and 56–77%, respectively, however ammonia was mainly oxidized to nitrite. The reactor had a good biomass retention capacity to select for granular biomass. However, its efficiency to retain the solids present in the feeding was low. Aerobic granulation in SBR systems appears as an interesting alternative to treat slurry in small livestock facilities where the implementation of anaerobic digestion systems is not a feasible option or the removal of nitrogenous compounds is required. 相似文献
15.
Flow cytometric separation of X and Y chromosome-bearing spermatozoa has been demonstrated to be effective in pigs, allowing the use of boar sexed semen in in vitro trials. Sperm Mediated Gene Transfer (SMGT) is a widely used and efficient technique for the creation of transgenic animals. The present research intended to prove that it is possible to associate sperm sexing with the SMGT technique in order to speed up the assessment of homozygous lines of transgenic pigs. In the first experiment, the sorting protocol was modified in order to obtain the highest DNA uptake by sorted spermatozoa. In the second experiment, spermatozoa that had undergone only sperm sorting, only SMGT, or both procedures (Sorted-SMGT) were used for in in vitro fertilization of in vitro matured oocytes. In the third experiment, transformed blastocysts of the desired gender (male) were obtained with Sorted-SMGT in an in vitro fertilization trial. The method we developed here allowed us to produce transgenic swine blastocysts of pre-determined gender, giving a positive answer at the aim to couple SMGT and sperm sorting in swine, obtaining fertile spermatozoa able to produce transgenic embryos of pre-determined gender. 相似文献
16.
The feasibility of treating low-strength wastewater with an up-flow anaerobic sludge blanket (UASB) reactor, using a poly(vinyl alcohol)-gel carrier, at various temperatures and hydraulic retention times (HRTs) was examined. The temperature was decreased from 35°C to 25°C and then to 15°C. The HRT was reduced from 2.0 h to 0.22 h. The COD removal rate reached 28 kg-COD m(-3)d(-1) at 35°C, 16 kg-COD m(-3)d(-1) at 25°C, and 6 kg-COD m(-3)d(-1) at 15°C. The COD removal rate was reduced by half for each temperature reduction of 10°C. 相似文献
17.
Biocatalyst behavior was comparatively evaluated under diverse microenvironments viz., self-induced electrogenic (bioelectrochemical treatment, BET) and anaerobic treatment (AnT) microenvironments, with real-field pharmaceutical wastewater. Relatively higher treatment efficiency was observed with BET (COD removal, 78.70%) over AnT (32%) along with the power output. Voltammetric profiles of AnT showed persistent reduction behavior, while BET depicted simultaneous redox behavior. BET operation documented significantly higher bio-electrocatalytic activity (k app, 245.22 s −1) than AnT (k app, 7.35 s −1). The electron accepting conditions due to the presence of electrode in the BET might contributed to higher electrogenesis leading to enhanced substrate degradation along with the removal of multiple pollutants accounting for the effective reduction of toxicity levels of wastewater. Even at higher organic loads, BET operation showed good treatment efficiency without process inhibition. Introduction of electrode-membrane assembly in anaerobic microenvironment showed significant change in the electrocatalytic behavior of biocatalyst resulting in enhanced treatment of complex wastewater. 相似文献
18.
论述了人工湿地污水处理技术的机理和优点,人工湿地利用基质、植物和微生物这个复合生态系统的物理、化学和生物的三重协调作用,通过过滤,吸附、共沉淀、离子交换,植物吸收和微生物分解来实现对废水的高效净化,同时通过营养物质和水分的生物地球化学循环,促进绿色植物生长并使其增产,实现废水的资源化与无害化;人工湿地污水处理系统具有出水水质稳定,对营养物质去除能力强,基建和运行费用低,技术含量低,维护管理方便,耐冲击负荷强,适于处理间歇排放的污水和具有美学价值等优点,该技术不仅能够在发展中国家和发达国家的城市生活污水处理中广泛应用,其在工业废水处理中的应用也正在不断受到重视,根据人工湿地在工业废水处理中的研究和应用现状,指出了人工湿地处理特殊工业废水的前景及今后的研究方向。 相似文献
19.
The poor quality of effluent discharged by municipal wastewater treatment plants (WWTPs) is threatening the safety of water ecology. This study, which integrated a field survey, batch tests, and microbial community identification, was designed to improve the effectiveness of the enhanced biological phosphorus removal (EBPR) process for WWTPs. Over two-thirds of the investigated WWTPs could not achieve total P in effluent lower than 0.5 mg/L, mainly due to the high ratio of chemical oxygen demand to P (28.6-196.2) in the influent. The rates of anaerobic P release and aerobic P uptake for the activated sludge varied from 0.22 to 7.9 mg/g VSS/h and 0.43 to 8.11 mg/g VSS/h, respectively. The fraction of Accumulibacter (PAOs: polyphosphate accumulating organisms) was 4.8 ± 2.0% of the total biomass, while Competibacter (GAOs: glycogen-accumulating organisms) accounted for 4.8 ± 6.4%. The anaerobic P-release rate was found to be an effective indicator of EBPR. Four classifications of the principal components were identified to improve the EBPR effluent quality and sludge activity. 相似文献
20.
Over the last few decades, there has been an increase in consumer demand for shrimp, which has resulted in its worldwide aquaculture
production. In the United States, the stringent enforcement of environmental regulations encourages shrimp farmers to develop
new technologies, such as recirculating raceway systems. This is a zero-water exchange system capable of producing high-density
shrimp yields. The system also produces wastewater characterized by high levels of ammonia, nitrate, nitrite, and organic
carbon, which make waste management costs prohibitive. Shrimp farmers have a great need for a waste management method that
is effective and economical. One such method is the sequencing batch reactor (SBR). A SBR is a variation of the activated
sludge biological treatment process. This process uses multiple steps in the same reactor to take the place of multiple reactors
in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in
a single reactor system. This is achieved through reactor operation in sequences, which includes fill, react, settle, decant,
and idle. A laboratory scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high
concentrations of carbon and nitrogen. By operating the reactors sequentially, namely, aerobic and anoxic modes, nitrification
and denitrification were achieved as well as removal of carbon. Ammonia in the waste was nitrified within 4 days. The denitrification
of nitrate was achieved by the anoxic process, and 100% removal of nitrate was observed within 15 days of reactor operation. 相似文献
|