首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biology of fetal wound healing: a review   总被引:13,自引:0,他引:13  
  相似文献   

2.
3.
This review covers the use of plasma technology relevant to the preparation of dressings for wound healing. The current state of knowledge of plasma treatments that have potential to provide enhanced functional surfaces for rapid and effective healing is summarized. Dressings that are specialized to the needs of individual cases of chronic wounds such as diabetic ulcers are a special focus. A summary of the biology of wound healing and a discussion of the various types of plasmas that are suitable for the customizing of wound dressings are given. Plasma treatment allows the surface energy and air permeability of the dressing to be controlled, to ensure optimum interaction with the wound. Plasmas also provide control over the surface chemistry and in cases where the plasma creates energetic ion bombardment, activation with long-lived radicals that can bind therapeutic molecules covalently to the surface of the dressing. Therapeutic innovations enabled by plasma treatment include the attachment of microRNA or antimicrobial peptides. Bioactive molecules that promote subsequent cell adhesion and proliferation can also be bound, leading to the recruitment of cells to the dressing that may be stem cells or patient-derived cells. The presence of a communicating cell population expressing factors promotes healing.  相似文献   

4.
The role of fetal surgery in the treatment of non-life-threatening congenital anomalies remains a source of much debate. Before such undertakings can be justified, models must be established that closely resemble the respective human anomalies, and the feasibility and safety of these in utero procedures must be demonstrated. The authors recently described and characterized a congenital model of cleft palate in the goat. The present work demonstrates the methodology they developed to successfully repair these congenital cleft palates in utero, and it shows palatal healing and development after repair. A surgically created cleft model was developed for comparative purposes. Palatal shelf closure normally occurs at approximately day 38 of gestation in the caprine species. Six pregnant goats were gavaged twice daily during gestational days 32 to 41 (term, 145 days) with a plant slurry of Nicotiana glauca containing the piperidine alkaloid anabasine; the 12 fetuses had complete congenital clefts of the secondary palate. Repair of the congenital clefts was performed at 85 days of gestation using a modified von Langenbeck technique employing lateral relaxing incisions with elevation and midline approximation of full-thickness, bilateral, mucoperiosteal palatal flaps followed by single-layer closure. Six congenitally clefted fetuses underwent in utero repair, six remained as unrepaired controls. Twelve normal fetuses underwent surgical cleft creation by excision of a 20 x 3 mm full-thickness midline section of the secondary palate extending from the alveolus to the uvula, at 85 days of gestation. Six surgically clefted fetuses underwent concurrent repair of the cleft at that time; six clefted fetuses remained as unrepaired controls. At 2 weeks of age, no congenitally or surgically created clefts repaired in utero demonstrated gross or histologic evidence of scar formation. A slight indentation at the site of repair was the only remaining evidence of a cleft. At 6 months of age, normal palatal architecture, including that of mucosal, muscular, and glandular elements, was seen grossly and histologically. Cross-section through the mid-portion of the repaired congenitally clefted palates demonstrated reconstitution of a bilaminar palate, with distinct oral and nasal mucosal layers, after single-layer repair. In utero cleft palate repair is technically feasible and results in scarless healing of the mucoperiosteum and velum. The present work represents the first in utero repair of a congenital cleft palate model in any species. The use of a congenital cleft palate model that can be consistently reproduced with high predictability and little variation represents the ideal experimental situation. It provides an opportunity to manipulate specific variables, assess the influence of each change on the outcome and, subsequently, extrapolate such findings to the clinical arena with a greater degree of relevance.  相似文献   

5.
The stimuli for the increase in epidermal mitosis during wound healing are not fully known. We construct a mathematical model which suggests that biochemical regulation of mitosis is fundamental to the process, and that a single chemical with a simple regulatory effect can account for the healing of circular epidermal wounds. The numerical results of the model compare well with experimental data. We investigate the model analytically by making biologically relevant approximations. We then obtain travelling wave solutions which provide information about the accuracy of these approximations and clarify the roles of the various model parameters.  相似文献   

6.
Nerve dependency in scarless fetal wound healing   总被引:9,自引:0,他引:9  
The human fetus is capable of healing cutaneous wounds without scar up to the third trimester of development This process of tissue repair is more akin to newt limb regeneration than classic adult scar forming wound repair. Regeneration of the newt limb is dependent on neural input in its early stages. This study was an attempt to determine whether a similar dependence on neural input exists for mammalian fetal wounds to heal without scar. The left hind limb of six fetal lambs was denervated during the early second trimester of development (day 55; term = 145 days). Two weeks after denervation, the animals were again exposed to create bilateral incisional and 6-mm-diameter excisional wounds on their innervated right and denervated left lower extremities. Five days after creation of these defects, the wounds were examined for alterations in repair. Four fetal lambs survived, and three were suitable for evaluation. There were marked alterations in wound healing seen after denervation. Excisional wounds on the innervated side contracted and decreased their surface area by 14 percent. In contrast, the denervated wounds not only failed to contract, but increased in size by 60 percent. Changes in the incisional wounds were equally distinctive. Innervated incisional wounds healed completely without scar and had a wound breaking strength comparable to that of normal skin (Table I). In contrast, two of the three denervated incisional wounds dehisced and failed to heal, even in the regions where the skin was approximated by suture. The third denervated incisional wound did heal but with a significant amount of scar. Electron microscopy confirmed this finding by clearly demonstrating thickened and irregular collagen deposition in the extracellular matrix of all the denervated incisional specimens. In summary, like the regenerating newt limb, scarless fetal skin wound repair requires neural stimulation for tissue regeneration to occur. Therefore, in the mammal, the primary regulator for this unique type of tissue repair may have a central neural, rather than a local, tissue origin.  相似文献   

7.
The ability of a fetus to heal without scar formation depends on its gestational age at the time of injury and the size of the wound defect. In general, linear incisions heal without scar until late in gestation whereas excisional wounds heal with scar at an earlier gestational age. The profiles of fetal proteoglycans, collagens, and growth factors are different from those in adult wounds. The less-differentiated state of fetal skin is probably an important characteristic responsible for scarless repair. There is minimal inflammation in fetal wounds. Fetal wounds are characterized by high levels of hyaluronic acid and its stimulator(s) with more rapid, highly organized collagen deposition. The roles of peptide growth factors such as transforming growth factor-beta and basic fibroblast growth factor are less prominent in fetal than in adult wound healing. Platelet-derived growth factor has been detected in scarless fetal skin wounds, but its role is unknown. An understanding of scarless tissue repair has possible clinical application in the modulation of adult fibrotic diseases and abnormal scar-forming conditions.  相似文献   

8.
9.
Fetal wound healing: a biochemical study of scarless healing   总被引:6,自引:0,他引:6  
Human fetal surgery is being successfully performed today in a small number of highly selected patients for conditions that may lead to irreversible damage to the fetus and threaten the viability of the newborn. Following surgical repair, fetal wounds heal without scarring. This study was initiated to characterize fetal wounds both histologically and biochemically. Gore-Tex tubing was implanted into the subcutaneous tissue of the back of fetal, newborn, and adult New Zealand white rabbits. Light microscopic examination of healed wounds revealed no evidence of scar formation. Electron microscopy demonstrated a striated fibrillar structure suggestive of collagen within the lumen of the Gore-Tex tubing implants. Amino acid analysis (sensitivity 40 pmol) confirmed the presence of hydroxylysine and hydroxyproline within the Gore-Tex wound chambers indicating the presence of collagen in fetal wounds. The small amount of collagen precluded the typing of the collagen using cyanogen bromide peptide analysis. The absence of scarring and the small amounts of detectable collagen suggest a high degree of reorganization of the connective tissues involved in repair. The fetal wound matrix is rich in hyaluronic acid. Topical hyaluronic acid has been associated experimentally with a reduced amount of scarring in postnatal wound healing. Hyaluronic acid extracted from human skin and scar tissue is associated with collagen and other proteins. We propose that a hyaluronic acid-collagen-protein complex may play a role in fetal wound healing.  相似文献   

10.
Similar to mammalian fetuses FOXN1 deficient (nude) mice are able to restore the structure and integrity of injured skin in a scarless healing process by mechanisms independent of the genetic background. Matrix metalloproteinases (MMPs) are required for regular skin wound healing and the distinctive pattern of their expression has been implicated to promote scarless healing. In this study, we analyzed the temporal and spatial expression patterns of these molecules during the incisional skin wounds in adult nude mice. Macroscopic and histological analyses of skin wounds revealed an accelerated wound healing process, minimal granulation tissue formation and markedly diminished scarring in nude mice. Quantitative RT-PCR (Mmp-2, -3, -8, -9, -10, -12, -13, -14 and Timp-1, -2, -3), Western blots (MMP-13) and gelatin zymography (MMP-9) revealed that MMP-9 and MMP-13 showed a unique, bimodal pattern of up-regulation during the early and late phases of wound healing in nude mice. Immunohistochemically MMP-9 and MMP-13 were generally detected in epidermis during the early phase and in dermis during the late (remodeling) phase. Consistent with these in vivo observations, dermal fibroblasts cultured from nude mice expressed higher levels of types I and III collagen, MMP-9 and MMP-13 mRNA levels and higher MMP enzyme activity than wild type controls. Collectively, these finding suggest that the bimodal pattern of MMP-9 and MMP-13 expression during skin repair process in nude mice could be a major component of their ability for scarless healing.  相似文献   

11.
Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anti-coagulant and anti-infective effects. Curcumin has also been shown to have significant wound healing properties. It acts on various stages of the natural wound healing process to hasten healing. This review summarizes and discusses recently published papers on the effects of curcumin on skin wound healing. The highlighted studies in the review provide evidence of the ability of curcumin to reduce the body's natural response to cutaneous wounds such as inflammation and oxidation. The recent literature on the wound healing properties of curcumin also provides evidence for its ability to enhance granulation tissue formation, collagen deposition, tissue remodeling and wound contraction. It has become evident that optimizing the topical application of curcumin through altering its formulation is essential to ensure the maximum therapeutical effects of curcumin on skin wounds.  相似文献   

12.
13.
Cleft of the secondary palate is one of the most common congenital birth defects in humans. The primary cause of cleft palate formation is a failure of fusion of bilateral palatal shelves, but rupture of the once fused palate has also been suggested to take place in utero. The possibility of post-fusion rupture of the palate in humans has hardly been accepted, mainly because in all the cleft palate cases, the cleft palatal edge is always covered with intact epithelium. To verify whether the intrauterine environment of the fetus plays roles in wound healing when the once fused palate is torn apart, we artificially tore apart fetal mouse palates after fusion and cultivated them in culture medium with or without mouse or human amniotic fluid. We thereby found that the wounded palatal edge became completely covered with flattened epithelium after 36 hours in culture with amniotic fluid, but not in culture without amniotic fluid. Using histological and scanning electron microscopic analyses of the healing process, it was revealed that the epithelium covering the wound was almost exclusively derived from the adjacent nasal epithelium, but not from the oral epithelium. Such actions of amniotic fluid on the fetal wound were never simulated by exogenous epidermal growth factor (EGF), albumin, or both. In addition, the rapid epithelialization induced by amniotic fluid was not prevented by either PD168393 (an inhibitor of the EGF receptor-specific tyrosine kinase) or SB431542 (a specific inhibitor of TGFbeta receptor type I/ALK5). The present study provides new insights into the unique biological actions of amniotic fluid in the repair of injured fetal palate.  相似文献   

14.
Regulation of angiogenesis: wound healing as a model   总被引:1,自引:0,他引:1  
Normal tissue function requires adequate supply of oxygen through blood vessels. Understanding how blood vessels form is a challenging objective because angiogenesis is vital to many physiological and pathological processes. Unraveling mechanisms of angiogenesis would offer therapeutic options to ameliorate disorders that are currently leading causes of mortality and morbidity, including cardiovascular diseases, cancer, chronic inflammatory disorders, diabetic retinopathy, excessive tissue defects, and chronic non-healing wounds. Restoring blood flow to the site of injured tissue is a prerequisite for mounting a successful repair response, and wound angiogenesis represents a paradigmatic model to study molecular mechanisms involved in the formation and remodeling of vascular structures. In particular, repair of skin defects offers an ideal model to analyze angiogenesis due to its easy accessibility to control and manipulate this process. Most of those growth factors, extracellular matrix molecules, and cell types, recently discovered and considered as crucial factors in blood vessel formation, have been identified and analyzed during skin repair and the process of wound angiogenesis. This article will review cellular and molecular mechanisms controlling angiogenesis in cutaneous tissue repair in light of recent reports and data from our laboratories. In this article we will discuss the contribution of growth factors, basement membrane molecules, and mural cells in wound angiogenesis. The article provides a rationale for targeting the angiogenic response in order to modulate the outcome of the healing response.  相似文献   

15.
Wound treatment in a flexible transparent chamber attached to the perimeter of the wound and containing a liquid has been extensively tested in preclinical experiments in pigs and found to offer several advantages. It protects the wound; the liquid medium or saline in the chamber provides in vivo tissue culture-like conditions; and antibiotics, analgesics, and various molecules can be delivered to the wound through the chamber. The wound chamber causes no injury to the wound itself or to the surrounding intact skin. Topical delivery of, for instance, antibiotics can provide very high concentrations at the wound site and with a favorable direction of the concentration gradient. A series of 28 wounds in 20 patients were treated with a wound chamber containing saline and antibiotics. Most patients had significant comorbidity and had not responded to conservative or surgical management with débridement and delayed primary closure or skin grafts. Six wounds had foreign bodies present; four of these were joint prostheses. Seven patients were on corticosteroids for rheumatoid arthritis, lupus, or chronic obstructive pulmonary disease, and four patients had diabetes. Most patients were treated with the wound chamber in preparation for a delayed skin graft or flap procedure, but one was treated with a wound chamber until the wound healed. Twenty-five of the wounds (89 percent) healed, and five wounds (18 percent) required additional conservative management after the initial chamber treatment and grafting procedure. Of the three wounds that did not heal, one healed after additional chamber treatment, one had a skin graft that did not take, and one required reamputation at a higher level. Antibiotic delivery was less than one intravenous dose daily, which avoided the potential for systemic absorption to toxic levels. Antibiotics such as vancomycin and gentamicin could be used in concentrations of up to 10,000 times the minimal inhibitory concentration. Forty-eight hours after application, 20 percent or more of the original antibiotic concentration was present in the wound chamber fluid. In conclusion, the wound chamber provides a safe, powerful tool in the treatment of difficult infected wounds.  相似文献   

16.
Fibronectin and wound healing   总被引:19,自引:0,他引:19  
I have tried to briefly review the evidence (summarized in Table II) indicating that fibronectin is important in cutaneous wound healing. Fibronectin appears to be an important factor throughout this process. It promotes the spreading of platelets at the site of injury, the adhesion and migration of neutrophils, monocytes, fibroblasts, and endothelial cells into the wound region, and the migration of epidermal cells through the granulation tissue. At the level of matrix synthesis, fibronectin appears to be involved both in the organization of the granulation tissue and basement membrane. In terms of tissue remodeling, fibronectin functions as a nonimmune opsonin for phagocytosis of debris by fibroblasts, keratinocytes, and under some circumstances, macrophages. Fibronectin also enhances the phagocytosis of immune-opsonized particles by monocytes, but whether this includes phagocytosis of bacteria remains to be determined. In general, phagocytosis of bacteria has not appeared to involve fibronectin. On the contrary, the presence of fibronectin in the wound bed may promote bacterial attachment and infection. Because of the ease of experimental manipulations, wound healing experiments have been carried out on skin more frequently than other tissues. As a result, the possible role of fibronectin has not been investigated thoroughly in the repair of internal organs and tissues. Nevertheless, it seems reasonable to speculate that fibronectin plays a central role in all wound healing situations. Finally, the wound healing problems of patients with severe factor XIII deficiencies may occur because of their inability to incorporate fibronectin into blood clots.  相似文献   

17.
Nutrition has always been noted to be one of the major influences on the successful outcome of wound healing. The exuberant cellular and biochemical events that constitute the wound-healing cascade require energy, amino acids, oxygen, metals, trace minerals, and vitamins for successful completion. Many nutritional deficiencies impact on wound healing by impeding fibroblast proliferation, collagen synthesis, and epithelialization. There are also nutrients that can enhance wound-healing responses. It is imperative for physicians to obtain a complete nutritional history and consider nutritional intervention as a means of affecting the course of healing. This review examines many of the advances that have occurred in understanding nutrition/wound interactions.  相似文献   

18.
19.
Two-photon confocal microscopy is a new technology useful in nondestructive analysis of tissue. The pattern generated from laser-excited autofluorescence and second harmonic signals can be analyzed to construct a three-dimensional, microanatomical, structural image. The healing of full-thickness guinea pig skin wounds was studied over a period of 28 days using two-photon confocal microscopy. Three-dimensional data were rendered from two-dimensional images and compared with conventional, en face, histologic sections. Two-photon confocal microscopy images show resolution of muscle, fascia fibers, collagen fibers, inflammatory cells, blood vessels, and hair. Although these images do not currently have the resolution of standard histology, the ability to noninvasively acquire three-dimensional images of skin promises to be an important tool in wound-healing studies.  相似文献   

20.
Control of tissue composition and organization will be a key feature in the development of successful products through tissue engineering. However, the mechanism of collagen fibril formation, growth, and organization is not yet fully understood. In this study we have examined collagen fibril formation in a wound healing model in which the newly formed fibrils were kept distinct from preexisting tissue through use of a porous tubular biomaterial implant. Samples were examined after 4, 6, 14, and 28 days by light microscopy, in situ hybridization, and immunofluorescence microscopy. These showed a normal wound healing response, with significant collagen formation at 14 and 28 days. Individual collagen fibrils were isolated from these samples by gentle extraction in a gentamicin-containing buffer which allowed extraction of a large proportion of intact fibrils. Examination by transmission electron microscopy showed that approximately 80% of the intact fibrils showed a single polarity reversal, with both ends of each fibril comprising collagen amino-terminal domains; the remaining fibrils had no polarity reversal. All fibrils had similar diameters at both time points. Immunoelectron microscopy showed that all labeled fibrils contained both type I and III collagens. These data indicate that this wound healing model provides a system in which collagen fibril formation can be readily followed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号