首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A plausible architecture of an ancient genetic code is derived from an extended base triplet vector space over the Galois field of the extended base alphabet {D, A, C, G, U}, where symbol D represents one or more hypothetical bases with unspecific pairings. We hypothesized that the high degeneration of a primeval genetic code with five bases and the gradual origin and improvement of a primeval DNA repair system could make possible the transition from ancient to modern genetic codes. Our results suggest that the Watson-Crick base pairing G ≡ C and A = U and the non-specific base pairing of the hypothetical ancestral base D used to define the sum and product operations are enough features to determine the coding constraints of the primeval and the modern genetic code, as well as, the transition from the former to the latter. Geometrical and algebraic properties of this vector space reveal that the present codon assignment of the standard genetic code could be induced from a primeval codon assignment. Besides, the Fourier spectrum of the extended DNA genome sequences derived from the multiple sequence alignment suggests that the called period-3 property of the present coding DNA sequences could also exist in the ancient coding DNA sequences. The phylogenetic analyses achieved with metrics defined in the N-dimensional vector space (B3)N of DNA sequences and with the new evolutionary model presented here also suggest that an ancient DNA coding sequence with five or more bases does not contradict the expected evolutionary history.  相似文献   

3.
4.
5.
6.
It has been reported earlier that the relative di-nucleotide frequency (RDF) in different parts of a genome is similar while the frequency is variable among different genomes. So RDF is termed as genome signature in bacteria. It is not known if the constancy in RDF is governed by genome wide mutational bias or by selection. Here we did comparative analysis of RDF between the inter-genic and the coding sequences in seventeen bacterial genomes, whose gene expression data was available. The constraint on di-nucleotides was found to be higher in the coding sequences than that in the inter-genic regions and the constraint at the 2nd codon position was more than that in the 3rd position within a genome. Further analysis revealed that the constraint on di-nucleotides at the 2nd codon position is greater in the high expression genes (HEG) than that in the whole genomes as well as in the low expression genes (LEG). We analyzed RDF at the 2nd and the 3rd codon positions in simulated coding sequences that were computationally generated by keeping the codon usage bias (CUB) according to genome G+C composition and the sequence of amino acids unaltered. In the simulated coding sequences, the constraint observed was significantly low and no significant difference was observed between the HEG and the LEG in terms of di-nucleotide constraint. This indicated that the greater constraint on di-nucleotides in the HEG was due to the stronger selection on CUB in these genes in comparison to the LEG within a genome. Further, we did comparative analyses of the RDF in the HEG rpoB and rpoC of 199 bacteria, which revealed a common pattern of constraints on di-nucleotides at the 2nd codon position across these bacteria. To validate the role of CUB on di-nucleotide constraint, we analyzed RDF at the 2nd and the 3rd codon positions in simulated rpoB/rpoC sequences. The analysis revealed that selection on CUB is an important attribute for the constraint on di-nucleotides at these positions in bacterial genomes. We believe that this study has come with major findings of the role of CUB on di-nucleotide constraint in bacterial genomes.  相似文献   

7.
Phytoplasmas are unculturable bacterial plant pathogens transmitted by phloem-feeding hemipteran insects. DNA of phytoplasmas is difficult to purify because of their exclusive phloem location and low abundance in plants. To overcome this constraint, suppression subtractive hybridization (SSH) was modified and used to selectively amplify DNA of the stolbur phytoplasma infecting a periwinkle plant. Plasmid libraries were constructed, and the origins of the DNA inserts were verified by hybridization and PCR screenings. After a single round of SSH, there was still a significant level of contamination with plant DNA (around 50%). However, the modified SSH, which included a second round of subtraction (double SSH), resulted in an increased phytoplasma DNA purity (97%). Results validated double SSH as an efficient way to produce a genome survey for microbial agents unavailable in culture. Assembly of 266 insert sequences revealed 181 phytoplasma genetic loci which were annotated. Comparative analysis of 113 kbp indicated that among 217 protein coding sequences, 83% were homologous to “Candidatus Phytoplasma asteris” (OY-M strain) genes, with hits widely distributed along the chromosome. Most of the stolbur-specific SSH sequences were orphan genes, with the exception of two partial coding sequences encoding proteins homologous to a mycoplasma surface protein and riboflavin kinase.  相似文献   

8.
The general property of asymmetry in word use in meaningful texts written in a variety of languages, motivates a quantification of the differences in the use of mutually symmetric triplets in genomic sequences. When this is done in the three reading frames, high values found for one of them are used as indication that the sequence is coding for a protein. Moreover, a similar quantification of the differences in the use of complementary triplets is introduced, again with predictive power of the coding character of a sequence. This method reflects the non-equivalence between sense and anti-sense strand of a coding segment. In both approaches, "linguistic asymmetry" in coding sequences is related to the form of the genetic code and to the bias in codon usage and amino acid use skews.  相似文献   

9.
Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9–10mers residing within coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group in these organisms. Pasteurella multocida also displayed high frequencies of a putative DUS identical to that previously identified in H.influenzae and with a skewed distribution towards genome maintenance genes, indicating that this bacterium might be transformation competent under certain conditions. These results imply that the high frequency of DUS in genome maintenance genes is conserved among phylogenetically divergent species and thus are of significant biological importance. Increased DUS density is expected to enhance DNA uptake and the over-representation of DUS in genome maintenance genes might reflect facilitated recovery of genome preserving functions. For example, transient and beneficial increase in genome instability can be allowed during pathogenesis simply through loss of antimutator genes, since these DUS-containing sequences will be preferentially recovered. Furthermore, uptake of such genes could provide a mechanism for facilitated recovery from DNA damage after genotoxic stress.  相似文献   

10.
Palindromic sequences are important DNA motifs related to gene regulation, DNA replication and recombination, and thus, investigating the evolutionary forces shaping the distribution pattern and abundance of palindromes in the genome is substantially important. In this article, we analyzed the abundance of palindromes in the genome, and then explored the possible effects of several genomic factors on the palindrome distribution and abundance in Drosophila melanogaster. Our results show that the palindrome abundance in D. melanogaster deviates from random expectation and the uneven distribution of palindromes across the genome is associated with local GC content, recombination rate, and coding exon density. Our data suggest that base composition is the major determinant of the distribution pattern and abundance of palindromes and the correlation between palindrome density and recombination is a side-product of the effect of compositional bias on the palindrome abundance.  相似文献   

11.
The protozoans Trypanosoma cruzi, Trypanosoma brucei and Leishmania major (Tritryps), are evolutionarily ancient eukaryotes which cause worldwide human parasitosis. They present unique biological features. Indeed, canonical DNA/RNA cis-acting elements remain mostly elusive. Repetitive sequences, originally considered as selfish DNA, have been lately recognized as potentially important functional sequence elements in cell biology. In particular, the dinucleotide patterns have been related to genome compartmentalization, gene evolution and gene expression regulation. Thus, we perform a comparative analysis of the occurrence, length and location of dinucleotide repeats (DRs) in the Tritryp genomes and their putative associations with known biological processes. We observe that most types of DRs are more abundant than would be expected by chance. Complementary DRs usually display asymmetrical strand distribution, favoring TT and GT repeats in the coding strands. In addition, we find that GT repeats are among the longest DRs in the three genomes. We also show that specific DRs are non-uniformly distributed along the polycistronic unit, decreasing toward its boundaries. Distinctive non-uniform density patterns were also found in the intergenic regions, with predominance at the vicinity of the ORFs. These findings further support that DRs may control genome structure and gene expression.  相似文献   

12.
The genetic code appears to be optimized in its robustness to missense errors and frameshift errors. In addition, the genetic code is near-optimal in terms of its ability to carry information in addition to the sequences of encoded proteins. As evolution has no foresight, optimality of the modern genetic code suggests that it evolved from less optimal code variants. The length of codons in the genetic code is also optimal, as three is the minimal nucleotide combination that can encode the twenty standard amino acids. The apparent impossibility of transitions between codon sizes in a discontinuous manner during evolution has resulted in an unbending view that the genetic code was always triplet. Yet, recent experimental evidence on quadruplet decoding, as well as the discovery of organisms with ambiguous and dual decoding, suggest that the possibility of the evolution of triplet decoding from living systems with non-triplet decoding merits reconsideration and further exploration. To explore this possibility we designed a mathematical model of the evolution of primitive digital coding systems which can decode nucleotide sequences into protein sequences. These coding systems can evolve their nucleotide sequences via genetic events of Darwinian evolution, such as point-mutations. The replication rates of such coding systems depend on the accuracy of the generated protein sequences. Computer simulations based on our model show that decoding systems with codons of length greater than three spontaneously evolve into predominantly triplet decoding systems. Our findings suggest a plausible scenario for the evolution of the triplet genetic code in a continuous manner. This scenario suggests an explanation of how protein synthesis could be accomplished by means of long RNA-RNA interactions prior to the emergence of the complex decoding machinery, such as the ribosome, that is required for stabilization and discrimination of otherwise weak triplet codon-anticodon interactions.  相似文献   

13.
MOTIVATION: It is well known that neighbouring nucleotides in DNA sequences do not mutate independently of each other. In this paper, we introduce a context-dependent substitution model and derive an algorithm to calculate the likelihood of sequences evolving under this model. We use this algorithm to estimate neighbour-dependent substitution rates, as well as rates for dinucleotide substitutions, using a Bayesian sampling procedure. The model is irreversible, giving an arrow to time, and allowing the position of the root between a pair of sequences to be inferred without using out-groups. RESULTS: We applied the model upon aligned human-mouse non-coding data. Clear neighbour dependencies were observed, including 17-18-fold increased CpG to TpG/CpA rates compared with other substitutions. Root inference positioned the root halfway the mouse and human tips, suggesting an approximately clock-like behaviour of the irreversible part of the substitution process.  相似文献   

14.
15.
It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or “species” of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or “species” populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes.  相似文献   

16.
The origin and logic of genetic code are two of greatest mysteries of life sciences. Analyzing DNA sequences we showed that the start/stop trinucleotides have broader importance than just marking start and stop of exons in coding DNA. On this basis, here we introduced new classification of trinucleotides and showed that all A+T rich trinucleotides consisting of three different nucleotides arise from start-ATG, stop-TGA and stop-TAG using their complement, reverse complement and reverse transformations. Due to the same transformations during generations of crossing-over they can switch from one form to the other. By direct process the start-ATG and stop-TAG can irreversibly transform into stop-TAA. By transformation into A+T rich trinucleotides and 16/32 C+G rich they can lose the start/stop function and take the role of a sense codon in reversible way. The remaining 16 C+G trinucleotides cannot directly transform into start/stop trinucleotides and thus remain a firm skeleton for structuring the C+G rich DNA. We showed that start/stops strongly enrich the A+T rich noncoding DNA through frequently extended forms. From the evolutionary viewpoint the start/stops are chief creators of prevailing A+T rich noncoding DNA, and of more stable coding DNA. We propose that start/stops have basic role as “seeds” in trinucleotide evolution of noncoding and coding sequences and lead to asymmetry between A+T and C+G rich DNA. By dynamical transformations during evolution they enabled pronounced phylogenetic broadness, keeping the regulator function.  相似文献   

17.
18.
In Darwinian evolution, mutations occur approximately at random in a gene, turned into amino acid mutations by the genetic code. Some mutations are fixed to become substitutions and some are eliminated from the population. Partitioning pairs of closely related species with complete genome sequences by average population size of each pair, we looked at the substitution matrices generated for these partitions and compared the substitution patterns between species. We estimated a population genetic model that relates the relative fixation probabilities of different types of mutations to the selective pressure and population size. Parameterizations of the average and distribution of selective pressures for different amino acid substitution types in different population size comparisons were generated with a Bayesian framework. We found that partitions in population size as well as in substitution type are required to explain the substitution data. Selection coefficients were found to decrease with increasingly radical amino acid substitution and with increasing effective population size.To further explore the role of underlying processes in amino acid substitution, we analyzed embryophyte (plant) gene families from TAED (The Adaptive Evolution Database), where solved structures for at least one member exist in the Protein Data Bank. Using PAML, we assigned branches to three categories: strong negative selection, moderate negative selection/neutrality, and positive diversifying selection. Focusing on the first and third categories, we identified sites changing along gene family lineages and observed the spatial patterns of substitution. Selective sweeps were expected to create primary sequence clustering under positive diversifying selection. Co-evolution through direct physical interaction was expected to cause tertiary structural clustering. Under both positive and negative selection, the substitution patterns were found to be nonrandom. Under positive diversifying selection, significant independent signals were found for primary and tertiary sequence clustering, suggesting roles for both selective sweeps and direct physical interaction. Under strong negative selection, the signals were not found to be independent. All together, a complex interplay of population genetic and protein thermodynamics forces is suggested.  相似文献   

19.
The proliferation of retrotransposons within a genome can contribute to increased size and affect the function of eukaryotic genes. BEL/Pao-like long-terminal repeat (LTR) retrotransposons were annotated from the highly adaptable insect species Diabrotica virgifera virgifera, the Western corn rootworm, using survey sequences from bacterial artificial chromosome (BAC) inserts and contigs derived from a low coverage next-generation genome sequence assembly. Eleven unique D. v. virgifera BEL elements were identified that contained full-length gagpol coding sequences, whereas 88 different partial coding regions were characterized from partially assembled elements. Estimated genome copy number for full and partial BEL-like elements ranged from ~ 8 to 1582 among individual contigs using a normalized depth of coverage (DOC) among Illumina HiSeq reads (total genome copy number ~ 8821). BEL element copy number was correlated among different D. v. virgifera populations (R2 = 0.9846), but individual element numbers varied ≤ 1.68-fold and the total number varied by ~ 527 copies. These data indicate that BEL element proliferation likely contributed to a large genome size, and suggest that differences in copy number are a source of genetic variability among D. v. virgifera.  相似文献   

20.
The human genome contains an estimated 100,000 to 300,000 DNA variants that alter an amino acid in an encoded protein. However, our ability to predict which of these variants are functionally significant is limited. We used a bioinformatics approach to define the functional significance of genetic variation in the ABCA1 gene, a cholesterol transporter crucial for the metabolism of high density lipoprotein cholesterol. To predict the functional consequence of each coding single nucleotide polymorphism and mutation in this gene, we calculated a substitution position-specific evolutionary conservation score for each variant, which considers site-specific variation among evolutionarily related proteins. To test the bioinformatics predictions experimentally, we evaluated the biochemical consequence of these sequence variants by examining the ability of cell lines stably transfected with the ABCA1 alleles to elicit cholesterol efflux. Our bioinformatics approach correctly predicted the functional impact of greater than 94% of the naturally occurring variants we assessed. The bioinformatics predictions were significantly correlated with the degree of functional impairment of ABCA1 mutations (r2 = 0.62, p = 0.0008). These results have allowed us to define the impact of genetic variation on ABCA1 function and to suggest that the in silico evolutionary approach we used may be a useful tool in general for predicting the effects of DNA variation on gene function. In addition, our data suggest that considering patterns of positive selection, along with patterns of negative selection such as evolutionary conservation, may improve our ability to predict the functional effects of amino acid variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号