首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in chlorophyll fluorescence yield were studied during a dark period in pre-illuminated leaves of various C3 and C4 plants. The oxygen content in the gaseous atmosphere was either normal (21 kPa) or low (1.5 or 0.36 kPa). C3 and C4 plants of the NAD malic enzyme subgroup showed an initial rise in fluorescence at the onset of the dark period with an amplitude depending on the O2 level in the gas. In C4 plants belonging to the other two subgroups, the slow rise was absent or of very low size. At high [O2], the fluorescence level decreased in some minutes to the initial F0 level (determined in dark-adapted leaves). Conversely at low [O2], the fluorescence yield remained higher than F0 in all the C4 plants studied, whereas it decreased slowly to the F0 level in the different C3 plants. At low [O2], the fluorescence level decreased rapidly to F0 when introducing for 30 s, a high O2 level or when giving a 15-s far-red illumination. At the end of these treatments, the fluorescence level re-increased. These results demonstrate the presence at low [O2] of highly fluorescent ‘closed' photosystem II centres containing Q-A in equilibrium with reduced plastoquinone molecules of the chloroplastic pool. Reoxidation of the plastoquinone pool would be dependent on the functioning of an oxidase probably dependent on a chlororespiration process fully active at O2 levels higher than 2 kPa. The source of reducing equivalents for the plastoquinone pool is discussed.  相似文献   

2.
Although it is generally assumed that the plastoquinone pool of thylakoid membranes in leaves of higher plants is rapidly oxidized upon darkening, this is often not the case. A multiflash kinetic fluorimeter was used to monitor the redox state of the plastoquinone pool in leaves. It was found that in many species of plants, particularly those using the NAD-malic enzyme C4 system of photosynthesis, the pool actually became more reduced following a light to dark transition. In some Amaranthus species, plastoquinone remained reduced in the dark for several hours. Far red light, which preferentially drives Photosystem I turnover, could effectively oxidize the plastoquinone pool. Plastoquinone was re-reduced in the dark within a few seconds when far red illumination was removed. The underlying mechanism of the dark reduction of the plastoquinone pool is still uncertain but may involve chlororespiratory activity.Abbreviations apparent Fo observed fluorescence yield after dark adaptation - Fm maximum fluorescence when all QA is fully reduced - Fo minimum fluorescence yield when QA is fully oxidized and non-photochemical quenching is fully relaxed - Fs steady state fluorescence yield - PPFD photosynthetic photon flux density - PQ plastoquinone - QA primary quinone acceptor of the Photosystem II reaction center - QB secondary quinone acceptor to the Photosystem II reaction center - F Fm minus Fs  相似文献   

3.
Increases in the chlorophyll fluorescence Fo (dark level fluorescence) during heat treatments were studied in various higher plants. Besides the dissociation of light-harvesting chlorophyll a/b protein complexes from the reaction center complex of PS II and inactivation of PS II, dark reduction of QA via plastoquinone (PQ) seemed to be related to the Fo increase at high temperatures. In potato leaves or green tobacco cultured cells, a part of the Fo increase was quenched by light, reflecting light-induced oxidation of QA - which had been reduced in the dark at high temperatures. Appearance of the Fo increase due to QA reduction depended on the plant species, and the mechanisms for this are proposed. The reductants seemed to be already present and formed by very brief illumination of the leaves at high temperatures. A ndhB-less mutant of tobacco showed that complex I type NAD(P)H dehydrogenase is not involved in the heat-induced reduction of QA. Quite strong inhibition of the QA reduction by diphenyleneiodonium suggests that a flavoenzyme is one of the electron mediator to PQ from the reductant in the stroma. Reversibility of the heat-induced QA reduction suggests that an enzyme(s) involved is activated at high temperatures and mostly returns to an inactive form at room temperature (25 °C).This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
Based on the electron-transport properties on the reducing side of the reaction center, photosystem II (PS II) in green plants and algae occurs in two distinct forms. Centers with efficient electron-transport from QA to plastoquinone (QB-reducing) account for 75% of the total PS II in the thylakoid membrane. Centers that are photochemically competent but unable to transfer electrons from QA to QB (QB-nonreducing) account for the remaining 25% of total PS II and do not participate in plastoquinone reduction. In Dunaliella salina, the pool size of QB-nonreducing centers changes transiently when the light regime is perturbed during cell growth. In cells grown under moderate illumination intensity (500 E m-2s-1), dark incubation induces an increase (half-time 45 min) in the QB-nonreducing pool size from 25% to 35% of the total PS II. Subsequent illumination of these cells restores the steady-state concentration of QB-nonreducing centers to 25%. In cells grown under low illumination intensity (30 µE m–2s–1), dark incubation elicits no change in the relative concentration of QB-nonreducing centers. However, a transfer of low-light grown cells to moderate light induces a rapid (half-time 10 min) decrease in the QB-nonreducing pool size and a concomitant increase in the QB-reducing pool size. These and other results are explained in terms of a pool of QB-nonreducing centers existing in a steady-state relationship with QB-reducing centers and with a photochemically silent form of PS II in the thylakoid membrane of D. salina. It is proposed that QB-nonreducing centers are an intermediate stage in the process of damage and repair of PS II. It is further proposed that cells regulate the inflow and outflow of centers from the QB-nonreducing pool to maintain a constant pool size of QB-nonreducing centers in the thylakoid membrane.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - Fo non-variable fluorescence yield - Fpl intermediate fluorescence yield plateau level - Fmax maximum fluorescence yield - Fi mitial fluorescence yield increase from Fo to Fpl(Fpl-Fo) - Fv total variable fluorescence yield (Fmax-Fo) - DCMU dichlorophenyl-dimethylurea  相似文献   

5.
The transfer of laboratory cultures of H. pluvialis to high irradiance outdoors caused a substantial decline in the maximum quantum yield of photosystem II (PSII), from 0.65 in the morning to 0.45 at midday, as measured by the ratio of variable to maximum fluorescence yields (Fv/Fm), and a steep rise in non-photochemical quenching (NPQ). Chlorophyll fluorescence induction curves of morning samples showed a clear I-step, reflecting a certain PSII heterogeneity. Single turnover flash measurements on samples taken from the outdoor photobioreactor in the middle of day showed an increase in the reoxidation time constant of the reduced plastoquinone QA , i.e., the time required for electron transfer from the primary plastoquinone acceptor of PSII QA to the secondary plastoquinone acceptor QB. Photosynthesis rates were almost constant during the day. Along with the increase in non-photochemical quenching, there was a slight increase in zeaxanthin and antheraxanthin contents and decrease in violaxanthin, showing the presence of an operative xanthophyll cycle in this microalga. A marked increase of secondary carotenoids was found at the end of the first day of exposure to sunlight, mainly astaxanthin monoester, which reached 15.5% of the total carotenoid content. Though cells turned reddish during the second day, the decline in the fluorescence parameter Fv/Fm in the middle of the day was less than during the first day, and there was no further increase in the value for NPQ. Similar behaviour was observed during the third day when the culture was fully red. After four days of exposure to sunlight, the dry weight reached 800 mg L–1 and the concentration of secondary carotenoids (81% astaxanthin monoester) reached 4.4% dry weight.  相似文献   

6.
After preheating of Amaranthus chloroplasts at elevated temperatures (up to 45°C), the chlorophyll a fluorescence level under low excitation light rises as compared to control (unheated) as observed earlier in other chloroplasts (Schreiber U and Armond PA (1978) Biochim Biophys Acta 502: 138–151). This elevation of heat induced fluorescence yield is quenched by addition of 0.1 mM potassium ferricyanide, suggesting that with mild heat stress the primary electron acceptor of photosystem II is more easily reduced than the unheated samples. Furthermore, the level of fluorescence attained after illumination of dithionite-treated samples is independent of preheating (up to 45°C). Thus, these experiments indicate that the heat induced rise of fluorescence level at low light can not be due to changes in the elevation in the true constant F0 level, that must by definition, be independent of the concentration of QA. It is supposed that the increase in the fluorescence level by weak modulated light is either partly associated with dark reduction of QA due to exposure of chloroplasts to elevated temperature or due to temperature induced fluorescence rise in the so called inactive photosystem II centre where QA are not connected to plastoquinone pool. In the presence of dichlorophenyldimethylurea the fluorescence level triggered by weak modulated light increases at alkaline pH, both in control and heat stressed chloroplasts. This result suggests that the alkaline pH accelerates electron donation from secondary electron donor of photosystem II to QA both in control and heat stressed samples. Thus the increase in fluorescence level probed by weak modulated light due to preheating is not solely linked to increase in true F0 level, but largely associated with the shift in the redox state of QA, the primary stable electron acceptor of photosystem II.Abbreviations ADRY Acceleration of Deactivation of Reaction of Enzyme Y - CCCP Carbonyl cyanide 4-(trifluoromethoxy)-phenylhydrazone - Chl Chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FeCN potassium ferricyanide - HEPES 4-(2-hydroxy ethyl)-1-piperazine ethane sulfonic acid - LHCP Light harvesting chlorophyll protein - MES (4-morpholine ethane sulfonic acid) - PS photosystem - QA and QB first and second consecutive electron acceptors of photosystem II - TES (2-[tris(hydroxymethyl)-methylamino]-1-ethanesulfonic acid) sulfonic acid - TRICINE N-[tris(hydroxymethyl)methyl] glycine  相似文献   

7.
A prolonged (20–24 h) dark incubation of Chlorella pyrenoidosa algae at 37–38° did not diminish the relative yield of the variable chlorophyll fluorescence (F v/F m) and enhanced the relative contribution of the slow phase (sF v) to the kinetics of F v increase. Iodoacetamide, a nonmetabolized glucose analog, 2-deoxyglucose (2-DG), an inhibitor of protein synthesis, cycloheximide, and a decrease in the temperature of dark incubation to 18–20° prevented this sF v increase. Both the illumination of dark-incubated cells and the addition of 2-DG in darkness restored the initial level of sF v. In the light-grown chlorella cells, the relative contribution of sF v reversibly declined with lowering light intensity and increased when 2 was excluded from the bubbling mixture. The authors presume that the slow phase in the kinetics of F v increase is related to the functioning of the fraction of the photosystem II complexes with a destabilized primary quinone acceptor of electron, and the content of these complexes in the cell depends on the plastoquinone redox state.  相似文献   

8.
The oxygen flash yield (YO2) and photochemical yield of PS II (PS II) were simultaneously detected in intact Chlorella cells on a bare platinum oxygen rate electrode. The two yields were measured as a function of background irradiance in the steady-state and following a transition from light to darkness. During steady-state illumination at moderate irradiance levels, YO2 and PS II followed each other, suggesting a close coupling between the oxidation of water and QA reduction (Falkowski et al. (1988) Biochim. Biophys. Acta 933: 432–443). Following a light-to-dark transition, however, the relationship between QA reduction and the fraction of PS II reaction centers capable of evolving O2 became temporarily uncoupled. PS II recovered to the preillumination levels within 5–10 s, while the YO2 required up to 60 s to recover under aerobic conditions. The recovery of YO2 was independent of the redox state of QA, but was accompanied by a 30% increase in the functional absorption cross-section of PS II (PS II). The hysteresis between YO2 and the reduction of QA during the light-to-dark transition was dependent upon the reduction level of the plastoquinone pool and does not appear to be due to a direct radiative charge back-reaction, but rather is a consequence of a transient cyclic electron flow around PS II. The cycle is engaged in vivo only when the plastoquinone pool is reduced. Hence, the plastoquinone pool can act as a clutch that disconnects the oxygen evolution from photochemical charge separation in PS II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting enzyme (agents) - Chl chlorophyll - cyt cytochrome - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FO minimum fluorescence yield in the dark-adapted state - FI minimum fluorescence yield under ambient irradiance or during transition from the light-adapted state - FM maximum fluorescence yield in the dark-adapted state - FM maximum fluorescence yield under ambient irradiance or during transition from light-adapted state - FV, FV variable fluorescence (FV=FM–FO ; FV=FM–FI) - FRR fast repetition rate (fluorometer) - PS II quantum yield of QA reduction (PS II=(FM – FO)/FM or PS II)=(FM= – FI=)/FM=) - LHCII Chl a/b light harvesting complexes of Photosystem II - OEC oxygen evolving complex of PS II - P680 reaction center chlorophyll of PS II - PQ plastoquinone - POH2 plastoquinol - PS I Photosystem I - PS II Photosystem II - RC II reaction centers of Photosystem II - PS II the effective absorption cross-section of PHotosystem II - TL thermoluminescence - YO2 oxygen flash yield The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

9.
A prolonged (20 h) dark incubation of Chlorella pyrenoidosa algae at 37°C resulted in a twofold rise of the slowly rising phase (10–15 min), sF v, in the kinetics of variable chlorophyll fluorescence, F v (F v = F mF 0) in diuron-treated cells. This effect suggests the accumulation of inactive photosystem II (PSII) complexes with low efficiency of primary quinone acceptor of electron of PSII (QA) reduction. The presence of methylamine (MA), a thylakoid membrane uncoupler, or N, N-dicyclohexylcarbodiimide, an inhibitor of ATPase, precluded the accumulation of inactive PSII complexes. When salicylhydroxamate promoted the reduction of the plastoquinone (PQ) pool, exogenous ATP accelerated the accumulation of inactive complexes. Dark PQ oxidation in the presence of nonmetabolized glucose analog, 2-deoxy-D-glucose, lowered the content of inactive PSII complexes, and NaF, an inhibitor of chloroplast phosphatases, retarded this process. These data are considered as evidence for a mechanism regulating the content of inactive PSII complexes in the process of redox-dependent phosphorylation of D1- and/or D2-proteins of PSII.  相似文献   

10.
Thermoluminescence experiments have been carried out to study the effect of a transmembrane proton gradient on the recombination properties of the S2 and S3 states of the oxygen evolving complex with QA - and QB -, the reduced electron acceptors of Photosystem II. We first determined the properties of the S2QA - (Q band), S2QB - and S3QB - (B bands) recombinations in the pH range 5.5 to 9.0, using uncoupled thylakoids. The, a proton gradient was created in the dark, using the ATP-hydrolase function of ATPases, in coupled unfrozen thylakoids. A shift towards low temperature of both Q and B bands was observed to increase with the magnitude of the proton gradient measured by the fluorescence quenching of 9-aminoacridine. This downshift was larger for S3QB - than for S2QB - and it was suppressed by nigericin, but not by valinomycin. Similar results were obtained when a proton gradient was formed by photosystem I photochemistry. When Photosystem II electron transfer was induced by a flash sequence, the reduction of the plastoquinone pool also contributed to the downshift in the absence of an electron acceptor. In leaves submitted to a flash sequence above 0°C, a downshift was also observed, which was supressed by nigericin infiltration. Thus, thermoluminescence provides direct evidence on the enhancing effect of lumen acidification on the S3S2 and S2S1 reverse-transitions. Both reduction of the plastoquinone pool and lumen acidification induce a shift of the Q and B bands to lower temperature, with a predominance of lumen acidification in non-freezing, moderate light conditions.Abbreviations 9-AA 9-aminoacridine - EA activation energy - F0 constant fluorescence level - FM maximum fluorescence, when all PS-II centers are closed - FV variable fluorescence (FM–F0) - PS I, PS II Photosystem I, photosystem II - PQ plastoquinone - TL thermoluminescence  相似文献   

11.
The green alga Chlamydomonas reinhardtii is a facultative heterotroph and, when cultured in the presence of acetate, will synthesize chlorophyll (Chl) and photosystem (PS) components in the dark. Analysis of the thylakoid membrane composition and function in dark grown C. reinhardtii revealed that photochemically competent PS II complexes were synthesized and assembled in the thylakoid membrane. These PS II centers were impaired in the electron-transport reaction from the primary-quinone electron acceptor, QA, to the secondary-quinone electron acceptor, QB (QB-nonreducing centers). Both complements of the PS II Chl a–b light harvesting antenna (LHC II-inner and LHC II-peripheral) were synthesized and assembled in the thylakoid membrane of dark grown C. reinhardtii cells. However, the LHC II-peripheral was energetically uncoupled from the PS II reaction center. Thus, PS II units in dark grown cells had a -type Chl antenna size with only 130 Chl (a and b) molecules (by definition, PS II units lack LHC II-peripheral). Illumination of dark grown C. reinhardtii caused pronounced changes in the organization and function of PS II. With a half-time of about 30 min, PS II centers were converted froma QB-nonreducing form in the dark, to a QB-reducing form in the light. Concomitant with this change, PS II units were energetically coupled with the LHC II-peripheral complement in the thylakoid membrane and were converted to a PS II form. The functional antenna of the latter contained more than 250 Chl(a+b) molecules. The results are discussed in terms of a light-dependent activation of the QA-QB electron-transfer reaction which is followed by association of the PS II unit with a LHC II-peripheral antenna and by inclusion of the mature form of PS II (PS II) in the membrane of the grana partition region.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - F0 non-variable fluorescence yield - Fplf intermediate fluorescence yield plateau leyel - Fmax maximum fluorescence yield - Fi initial fluorescence yield increase from F0 to Fpl (Fpl–F0) - Fv total variable fluorescence yield (Fm–F0) - DCMU dichlorophenyl-dimethylurea  相似文献   

12.
Twenty-five years ago, non-photochemical quenching of chlorophyll fluorescence by oxidised plastoquinone (PQ) was proposed to be responsible for the lowering of the maximum fluorescence yield reported to occur when leaves or chloroplasts were treated in the dark with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of electron flow beyond the primary quinone electron acceptor (QA) of photosystem (PS) II [C. Vernotte, A.L. Etienne, J.-M. Briantais, Quenching of the system II chlorophyll fluorescence by the plastoquinone pool, Biochim. Biophys. Acta 545 (1979) 519-527]. Since then, the notion of PQ-quenching has received support but has also been put in doubt, due to inconsistent experimental findings. In the present study, the possible role of the native PQ-pool as a non-photochemical quencher was reinvestigated, employing measurements of the fast chlorophyll a fluorescence kinetics (from 50 μs to 5 s). The about 20% lowering of the maximum fluorescence yield FM, observed in osmotically broken spinach chloroplasts treated with DCMU, was eliminated when the oxidised PQ-pool was non-photochemically reduced to PQH2 by dark incubation of the samples in the presence of NAD(P)H, both under anaerobic and aerobic conditions. Incubation under anaerobic conditions in the absence of NAD(P)H had comparatively minor effects. In DCMU-treated samples incubated in the presence of NAD(P)H fluorescence quenching started to develop again after 20-30 ms of illumination, i.e., the time when PQH2 starts getting reoxidised by PS I activity. NAD(P)H-dependent restoration of FM was largely, if not completely, eliminated when the samples were briefly (5 s) pre-illuminated with red or far-red light. Addition to the incubation medium of HgCl2 that inhibits dark reduction of PQ by NAD(P)H also abolished NAD(P)H-dependent restoration of FM. Collectively, our results provide strong new evidence for the occurrence of PQ-quenching. The finding that DCMU alone did not affect the minimum fluorescence yield F0 allowed us to calculate, for different redox states of the native PQ-pool, the fractional quenching at the F0 level (Q0) and to compare it with the fractional quenching at the FM level (QM). The experimentally determined Q0/QM ratios were found to be equal to the corresponding F0/FM ratios, demonstrating that PQ-quenching is solely exerted on the excited state of antenna chlorophylls.  相似文献   

13.
The OJDIP rise in chlorophyll fluorescence during induction at different light intensities was mathematically modeled using 24 master equations describing electron transport through photosystem II (PSII) plus ordinary differential equations for electron budgets in plastoquinone, cytochrome f, plastocyanin, photosystem I, and ferredoxin. A novel feature of the model is consideration of electron in- and outflow budgets resulting in changes in redox states of Tyrosine Z, P680, and QA as sole bases for changes in fluorescence yield during the transient. Ad hoc contributions by transmembrane electric fields, protein conformational changes, or other putative quenching species were unnecessary to account for primary features of the phenomenon, except a peculiar slowdown of intra-PSII electron transport during induction at low light intensities. The lower than F m post-flash fluorescence yield F f was related to oxidized tyrosine Z. The transient J peak was associated with equal rates of electron arrival to and departure from QA and requires that electron transfer from QA ? to QB be slower than that from QA ? to QB ?. Strong quenching by oxidized P680 caused the dip D. Reduced plastoquinone, a competitive product inhibitor of PSII, blocked electron transport proportionally with its concentration. Electron transport rate indicated by fluorescence quenching was faster than the rate indicated by O2 evolution, because oxidized donor side carriers quench fluorescence but do not transport electrons. The thermal phase of the fluorescence rise beyond the J phase was caused by a progressive increase in the fraction of PSII with reduced QA and reduced donor side.  相似文献   

14.
The effects of low temperature acclimation and photoinhibitory treatment on Photosystem 2 (PS 2) have been studied by thermoluminescence and chlorophyll fluorescence decay kinetics after a single turnover saturating flash. A comparison of unhardened and hardened leaves showed that, in the hardened case, a decrease in overall and B-band thermoluminescence emissions occurred, indicating the presence of fewer active PS 2 reaction centers. A modification in the form of the B-band emission was also observed and is attributed to a decrease in the apparent activation energy of recombination in the hardened leaves. The acclimated leaves also produced slower QA reoxidation kinetics as judged from the chlorophyll fluorescence decay kinetics. This change was mainly seen in an increased lifetime of the slow reoxidation component with only a small increase in its amplitude. Similar changes in both thermoluminescence and fluorescence decay kinetics were observed when unhardened leaves were given a high light photoinhibitory treatment at 4°C, whereas the hardened leaves were affected to a much lesser extent by a similar treatment. These results suggest that the acclimated plants undergo photoinhibition at 4°C even at low light intensities and that a subsequent high light treatment produces only a small additive photoinhibitory effect. Furthermore, it can be seen that photoinhibition eventually gives rise to PS 2 reaction centers which are no longer functional and which do not produce thermoluminescence or variable chlorophyll fluorescence.Abbreviations D1 The 32 kDa protein of Photosystem 2 reaction center - Fm maximum chlorophyll fluorescence yield - F0 minimal chlorophyll fluorescence yield obtained when all PS 2 centers are open - Fi intermediate fluorescence level corresponding to PS 2 centers which are loosely or not connected to plastoquinone (non-B centers) - Fv maximum variable chlorophyll fluorescence yield (Fv=Fm–F0) - PS 2 Photosystem 2 - QA and QB respectively, primary and secondary quinonic acceptors of PS 2 - S1, S2 and S3 respectively, the one, two and three positively charged states of the oxygen evolving system - Z secondary donor of PS 2  相似文献   

15.
Cells of the green alga Dunaliella tertiolecta grown in a light/dark cycle were exposed to high light for about 15 min. In light, energy-dependent quenching reduced fluorescence emission and decreased PS II efficiency. Within 3 minutes after darkening fluorescence quenching largely relaxed. However, PS II fluorescence emission decreased again after further darkening. Fo and Fm decreased to the same relative extent and the PS II efficiency was not reduced. This Reduction in Fluorescence yield in Darkness, termed RFD for the purpose of this paper, lasted about 20 min. The deepoxidation state of xanthophylls remained unchanged during and after the 15-min exposure to high light. We show that RFD is insensitive to the uncoupler nigericin and thus unrelated to energy-dependent quenching. RFD correlated with a reduction of the PQ pool after darkening and low levels of far red or blue light (430 nm more than 460 nm) prevented RFD. This is in contrast to observations in higher plants, where a post-illumination reduction of the PQ pool causes and increase in Fo (Groom et al. (1993) Photosynth Res 36: 205–215). Changes in the adenylate energy charge were not correlated with RFD. Antimycin A and cyanide, both inhibitors of the PQ-oxidase, caused an increase in RFD whereas SHAM, an inhibitor of the chloroplastic glycolate-quinone oxidoreductase, caused a decrease. Low CO2 concentrations, known to increase the oxygenase activity of Rubisco and to generate glycolate and P-glycolate in light, caused an increase in RFD. We propose that accumulated glycolate and P-glycolate reduce the PQ pool in darkness, leading to the formation of RFD. During RFD, 77 K fluorescence emission from PS II was more reduced than that from PS I, thus resembling a state I, state II transition. However, the reduction in fluorescence yield during RFD is much larger than the reduction previously attributed to state transitions and it is unclear whether RFD and state transitions are identical. The formation and relaxation of RFD increased with higher temperatures and the extent of RFD was largest at the growth temperature (25°C). RFD has to be taken into account when fluorescence is measured after darkening as it may be mistaken for energy-dependent quenching.Abbreviations Fo fluorescence, measured when PS II traps are open - Fo difference between Fo and Fo - Fm fluorescence, measured when PS II traps are temporarily closed - Fm difference between Fm and Fm - FR far red - PFD photosynthetically active photon flux density - PQ plastoquinone - RFD reduction in fluorescence in darkness - SHAM salicylhydroxamic acid - QA primary quinone acceptor of PS II  相似文献   

16.
We report here the first measurements on chlorophyll (Chl) a fluorescence characteristics of photoautotrophic soybean cells (cell lines SB-P and SBI-P). The cell fluorescence is free from severe distortion problems encountered in higher plant leaves. Chl a fluorescence spectra at 77 K show, after correction for the spectral sensitivity of the photomultiplier and the emission monochromator, peaks at 688, 696 and 745 nm, representing antenna systems of photosystem II-CP43 and CP47, and photosystem I, respectively. Calculations, based on the complementary area over the Chl a fluorescence induction curve, indicated a ratio of 6 of the mobile plastoquinone (including QB) to the primary stable electron acceptor, the bound plastoquinone QA. A ratio of one between the secondary stable electron acceptor, bound plastoquinone QB, and its reduced form QB - was obtained by using a double flash technique. Owing to this ratio, the flash number dependence of the Chl a fluorescence showed a distinct period of four, implying a close relationship to the S state of the oxygen evolution mechanism. Analysis of the QA - reoxidation kinetics showed (1) the halftime of each of the major decay components ( 300 s fast and 30 ms slow) increases with the increase of diuron and atrazine concentrations; and (2) the amplitudes of the fast and the slow components change in a complementary fashion, the fast component disappearing at high concentrations of the inhibitors. This implies that the inhibitors used are able to totally displace QB. In intact soybean cells, the relative amplitude of the 30 ms to 300 s component is higher (40:60) than that in spinach chloroplasts (30:70), implying a larger contribution of the centers with unbound QB. SB-P and SBI-P soybean cells display a slightly different sensitivity of QA - decay to inhibitors.Abbreviations CA complementary area over fluorescence induction curve - Chl chlorophyll, diuron - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F m maximum chlorophyll a fluorescence - F 0 minimum chlorophyll a fluorescence - F v = F t-F0 - where F v = variable chlorophyll a fluorescence - and Ft = chlorophyll a fluorescence at time t - PS II photosystem II - Q a primary (plastoquinone) electron acceptor of PS II - Q b secondary (plastoquinone) electron acceptor of PS II - t50 the time at which the concentration of reduced Q a is 50% of that at its maximum value  相似文献   

17.
Non-photochemical (dark) increases in chlorophyll a fluorescence yield associated with non-photochemical reduction of redox carriers (Fnpr) have been attributed to the reduction of plastoquinone (PQ) related to cyclic electron flow (CEF) around photosystem I. In vivo, this rise in fluorescence is associated with activity of the chloroplast plastoquinone reductase (plastid NAD(P)H:plastoquinone oxidoreductase) complex. In contrast, this signal measured in isolated thylakoids has been attributed to the activity of the protein gradient regulation-5 (PGR5)/PGR5-like (PGRL1)-associated CEF pathway. Here, we report a systematic experimentation on the origin of Fnpr in isolated thylakoids. Addition of NADPH and ferredoxin to isolated spinach thylakoids resulted in the reduction of the PQ pool, but neither its kinetics nor its inhibitor sensitivities matched those of Fnpr. Notably, Fnpr was more rapid than PQ reduction, and completely insensitive to inhibitors of the PSII QB site and oxygen evolving complex as well as inhibitors of the cytochrome b6f complex. We thus conclude that Fnpr in isolated thylakoids is not a result of redox equilibrium with bulk PQ. Redox titrations and fluorescence emission spectra imply that Fnpr is dependent on the reduction of a low potential redox component (Em about − 340 mV) within photosystem II (PSII), and is likely related to earlier observations of low potential variants of QA within a subpopulation of PSII that is directly reducible by ferredoxin. The implications of these results for our understanding of CEF and other photosynthetic processes are discussed.  相似文献   

18.
The effect of high irradiance (HI, photosynthetically active photon flux density of 1 300 μmol m−2 s−1) on net photosynthetic rate (P N), chlorophyll fluorescence parameters, and xanthophyll cycle components were studied in fruit tree bayberry leaves. HI induced the photoinhibition and inactivation of photosystem 2 (PS2) reaction centres (RCs), which was characterized by decreased P N, maximum yield of fluorescence after dark adaptation (Fm), photochemical efficiency of PS2 (Fv/Fm) and quantum yield of PS2 (ΦPS2), and increased reduction state of QA (1-qP) and non-photochemical quenching (NPQ). Initial fluorescence (F0) showed a decrease after the first 2 h, and subsequently increased from the third hour exposure to HI. Furthermore, a greater increase in the ratio (Fi-F0)/(Fp-F0) which is an expression of the proportion of the QB non-reducing PS2 centres, whereas a remarked decrease in the slope of Fi to Fp which represents the rate of QA reduction was observed in leaves after HI exposure. Additionally, HI caused an increase in the pool size of the xanthophyll cycle pigments and sustained elevated contents of zeaxanthin (Z), antheraxanthin (A), and de-epoxidation state (DES) at the end of the irradiation period. During HI, decreased Fm, Fv/Fm, ΦPS2, NPQ, slope of Fi to Fp, V+A+Z, and DES, and increased F0, 1-qP, ratio (Fi-F0)/(Fp-F0), and V were observed in dithiothreitol (DTT)-fed leaves compared to control ones under the same conditions. Hence photoinhibition caused by HI in bayberry was probably attributed to inactivation of PS2 RCs, and photoprotection from photodamage were mainly related to the xanthophyll cycle-dependent heat dissipation in excess photons.  相似文献   

19.
Incubation of the alga Chlorella pyrenoidosa Chick in darkness (at 37°C) for 24 h did not change the initial (F 0) and maximum (F m) yield of chlorophyll fluorescence in diuron-treated cells. In dark-incubated alga, the contribution of the slow (rise time 10–15 min) phases to the kinetics of F m rise and, correspondingly, to variable fluorescence F v (where F v = F mF 0) increased twofold. In addition, F m was attained at higher concentrations of diuron, which inhibits electron transfer between the primary (Q A) and secondary (Q B) quinone acceptors of electron in the PSII. Inhibition of photosynthetic electron transfer with o-phenanthroline, which, at high concentrations, competitively replaces both Q B and Q A, decreased F m yield due to selective suppression of the slow phase of fluorescence rise. It was assumed that the slow phase in the kinetics of F m rise reflects the functioning of PSII complexes with destabilized Q A. Such destabilization can result from the modification of the major PSII proteins (D1 and D2) in dark-adapted Chlorella cells.  相似文献   

20.
Photosynthetic electron transport of beachrock microbial mats growing in the intertidal zone of Heron Island (Great Barrier Reef, Australia) was investigated with a pulse amplitude modulation chl fluorometer providing four different excitation wavelengths for preferential excitation of the major algal groups (cyanobacteria, green algae, diatoms/dinoflagellates). A new type of fiberoptic emitter‐detector unit (PHYTO‐EDF) was used to measure chl fluorescence at the sample surface. Fluorescence signals mainly originated from cyanobacteria, which could be almost selectively assessed by 640‐nm excitation. Even after desiccation for long time periods under full sunlight, beachrock showed rapid recovery of photosynthesis after rehydration in the light (t1/2~ 15 min). However, when rehydrated in the dark, the quantum yield of energy conversion of PSII remained zero over extended periods of time. Parallel measurements of O2 concentration with an oxygen microoptode revealed zero oxygen concentration in the surface layer of rehydrated beachrock in the dark. Upon illumination, O2 concentration increased in parallel with PSII quantum yield and decreased again to zero in the dark. It is proposed that oxygen is required for preventing complete dark reduction of the PSII acceptor pools via the NADPH‐dehydrogenase/chlororespiration pathway. This hypothesis is supported by the observation that PSII quantum yield could be partially induced in the dark by flushing with molecular oxygen. Abbreviations: EDF, emitter‐detector unit; Fo, fluor‐escence yield of dark‐adapted sample; Fm, maximal fluorescence yield measured during saturation pulse; Fv, variable fluorescence yield; LED, light‐emitting diode; PAM, pulse amplitude modulation; PQ, plastoquinone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号