首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of the gastric connective tissue of Xenopus laevis during metamorphosis was investigated by electron microscopy. Throughout the larval period to stage 60, the layer of connective tissue underlying the gastric epithelium consists of immature fibroblasts surrounded by a sparse extracellular matrix. At the beginning of the transition from the larval to the adult epithelial form, at about stage 60, extensive changes occur in the connective tissue. The number of cells suddenly increses and different cell types appear. Numerous contacts between epithelial and connective tissue cells are established through random gaps in the thickened basal lamina. During stages 62–63, just after the beginning of the morphogenesis of adult-type glands, the basal lamina lining the glandular epithelium becomes thinner, and the number of contacts decreases rapidly except near the tips of the glands. After the glandular cells begin to produce zymogen granules at stage 64, contacts become rare. From stage 63, when the muscularis mucosae develops, until the completion of metamorphosis, the connective tissue consists mainly of typical fibroblasts. Outside the muscularis mucosae, the fibroblasts of the lamina propria are aligned in parallel with the curvature of the glands. These observations indicate that developmental changes in the connective tissue are closely related spatiotemporally to those of the epithelial transition from larval to adult form during metamorphic climax. Although some changes are similar to those in the intestine (Ishizuya-Oka and Shimozawa, '87b), others are specific to the gastric region, which suggests that connective tissue may have a role in organ-specific differentiation of the gastric epithelium.  相似文献   

2.
During larval development of Salamandra salamandra salamandra chromatophores organize to form the definitive pigment pattern constituted by a black background with yellow patches that are characterized by epidermal xanthophores and dermal iridophores. Simultaneously the dermis undergoes remodeling from the larval stage to that typical of the adult. In the present study we ultrastucturally and immunocytochemically examined skin fragments of S. s. salamandra larvae and juveniles in order to investigate the modalities of xanthophore migration and differentiation in the context of dermal remodeling from the larval to adult stage. Semithin and thin sections showed that the dermis in newly born larvae consists of a compact connective tissue (basement lamella), to which fibroblasts and xanthophores adhere, and of a loose deep collagen layer. As larval development proceeds, fibroblasts and xanthophores invade the basement lamella, skin glands develop and the adult dermis forms. At metamorphosis, xanthophores reach the epidermis crossing through the basal lamina. We examined immunocytochemically the expression of signal molecules, such as fibronectin, vitronectin, beta1-integrin, chondroitin sulfate, E-cadherin, N-cadherin and plasminogen activator, which are known to be involved in regulating morphogenetic events. Their role in dermal remodeling and in pigment pattern formation is discussed.  相似文献   

3.
The action of the epithelium on differentiation of connective tissue cells of Xenopus small intestine during metamorphosis was investigated by using culture and morphological techniques. Connective tissue fragments isolated from the small intestine at stage 57 were cultivated in the presence or absence of homologous epithelium. In the presence of the epithelium, metamorphic changes in the connective tissue were fully induced by hormones including thyroid hormone (T3), as during spontaneous metamorphosis, whereas they were partially induced in the absence of the epithelium. Macrophage-like cells showing non-specific esterase activity in the connective tissue were much fewer in the absence of the epithelium than in the presence of it, and aggregates of fibroblasts possessing well-developed rough endoplasmic reticulum developed only in the presence of the epithelium. Just before the aggregation of the fibroblasts, the connective tissue close to the epithelium became intensely stained with concanavalin A (ConA) and wheat germ agglutinin (WGA). The present results indicate that the epithelium plays important roles in the differentiation of intestinal connective tissue cells, which in turn affect the epithelial transformation from larval to adult form during anuran metamorphosis. Thus, the tissue interaction between the epithelium and the connective tissue in the anuran small intestine is truly bidirectional.  相似文献   

4.
We investigated the cellular mechanism of formation of subepidermal thick bundles of collagen (collagen lamella) during larval development of the bullfrog, Rana catesbeiana, using cDNA of alpha1(I) collagen as a probe. The originally bilayered larval epidermis contains basal skein cells and apical cells, and the collagen lamella is directly attached to the basement membrane. The basal skein cells above the collagen lamella and fibroblasts beneath it intensively expressed the alpha1(I) gene. As the skin developed, suprabasal skein cells ceased expression of the gene. Concomitantly, the fibroblasts started to outwardly migrate, penetrated into the lamella and formed connective tissue between the epidermis and the lamella. These fibroblasts intensively expressed the gene. As the connective tissue developed, the basal skein cells ceased to express the gene and were replaced by larval basal cells that did not express the gene. These dynamic changes took place first in a lateral region of the body skin and proceeded to all other regions except the tail. Isolated cultured skein cells expressed the gene and extracellularly deposited its protein as the type I collagen fibrils. Thus, it is concluded that anuran larval epidermal cells can autonomously and intrinsically synthesize type I collagen.  相似文献   

5.
The ultrastructure of the trunk lateral line nerve of larval and adult lampreys was studied with transmission electron microscopy. We confirmed that lampreys' lateral line nerve lacks myelin. Nevertheless, all axons were wrapped by Schwann cell processes. In the larval nerve, gaps between Schwann cells were observed, where the axolemma was covered only by a basal lamina, indicating an earlier developmental stage. In the adult nerve, glial (Schwann cell) ensheathment was mostly complete. Additionally, we observed variable ratios of axons to Schwann cells in larval and adult preparations. In the larval nerve, smaller axons were wrapped by one Schwann cell. Occasionally, a single Schwann cell surrounded two axons. Larger axons were associated with two to five Schwann cells. In the adult nerve, smaller axons were surrounded by one, but larger axons by three to eight Schwann cells. The larval epineurium contained large adipose cells, separated from each other by single fibroblast processes. This layer of adipose tissue was reduced in adult preparation. The larval perineurium was thin, and the fibroblasts, containing large amounts of glycogen granules, were arranged loosely. The adult perineurium was thicker, consisting of at least three layers of fibroblasts separated by collagen fibrils. The larval and adult endoneurium contained collagen fibrils oriented orthogonally to each other. Both larval and adult lateral line nerves possessed a number of putative fascicles weakly defined by a thin layer of perineurial fibroblasts. These results indicate that after a prolonged larval stage, the lamprey lateral line nerve is subjected to additional maturation processes during metamorphosis. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Summary The role of connective tissue in metamorphic changes of the small intestinal epithelium inXenopus laevis tadpoles was investigated by using organ culture techniques and electron microscopy. Tissue fragments isolated from various parts of the small intestine at stage 57 were cultivated. Larval cell death of the epithelium was induced by thyroid hormone in all fragments, whereas adult epithelial development was observed only in fragments isolated from the anterior intestinal region containing the typhlosole where most of the larval connective tissue was localized. The epithelium was then cultivated in recombination with homologous or heterologous non-epithelial components. The adult epithelium developed only in recombinants containing a thick connective tissue layer from the typhlosole. There was no regional difference in the developmental potency of the epithelium itself. In all explants where adult epithelium developed, the connective tissue increased in cell density just beneath the epithelium, which was rapidly proliferating and forming typical islets. At the same time, fibroblasts possessing well-developed rough endoplasmic reticulum differentiated close to epithelial cells and often made contact with them. These results indicate that the connective tissue originating from the typhlosole plays an important role in adult epithelial development of the anuran small intestine, probably via direct cell-to-cell contacts or some factor(s) synthesized by the fibroblasts.  相似文献   

7.
The notochord and notochordal sheath of 10 adult amphioxus were investigated ultrastructurally and histochemically. The notochord in amphioxus consists of parallel notochordal cells (plates) and each plate consists of parallel thicker and thinner fibrils and numerous profiles of smooth endoplasmic reticulum situated just beneath the cell membrane. Histochemical staining shows that the notochordal plates resemble neither the connective tissue notochordal sheath nor the typical muscular structure myotomes. The notochordal sheath has a complex three-layered organization with the outer, middle and inner layer The outer and middle layer are composed of collagen fibers of different thickness and course, that correspond to collagen type I and collagen type III in vertebrates, respectively, and the inner layer is amorphous, resembles basal lamina, and is closely attached to the notochord by hemidesmosome junctions. These results confirm the presence of collagen fibers and absence of elastic fibers in amphioxus.  相似文献   

8.
Early development of the hind limb of Xenopus (stages 44–48) has been analyzed at the level of ultrastructure with emphasis on differentiation of extracellular matrix components and intercellular contacts. By stages 44–45, mesenchyme is separated from prospective bud epithelium by numerous adepidermal granules in a subepithelial compartment (the lamina lucida), a continuous basal lamina and several layers of collagen (the basement lamella). Tricomplex stabilization of amphoteric phospholipid demonstrates that each adepidermal granule consists of several membranelike layers (electron-lucent band 25–30 Å; electron-dense band 20–40 Å), which are usually parallel to the basal surface of adjacent epithelial cells. Collagen fibrils are interconnected by filaments (35 Å in diameter) which stain with ruthenium red. Epithelial cells possess junctional complexes at their superficial borders, numerous desmosomes at apposing cell membranes and hemidesmosomes at their basal surface. Mesenchymal cells predominantly exhibit close contacts (100–150 Å separation) with few focal tight junctions at various areas of their surface. By stages 47–48, adepidermal granules are absent beneath bud epithelium and layers of collagen in the basement lamella lose filamentous cross-linking elements. Filopodia of mesenchymal cells penetrate the disorganized matrix and abut the basal lamina. Hemidesmosomes disappear at the basal surface of the epidermis and mesenchymal cells immediately subjacent to epithelium exhibit focal tight junctions and gap junctions at their lateral borders. These structural changes may be instrumental in the epitheliomesenchymal interactions of early limb development. Degradation of oriented collagenous lamellae permits direct association of mesenchymal cell surfaces (filopodia) with surface-associated products of epithelial cells (organized into the basal lamina). Development of structural pathways for intercellular ion and metabolite transport in mesenchyme may coordinate events specific to limb morphogenesis.  相似文献   

9.
The regrowth of mesenchymal tissue (stroma) surrounding the malignant epithelium is an important step in tissue remodelling during and after irradiation. The radiation-induced fibroblastic changes were studied on tissue samples taken before, during and after the radical irradiation of the squamous cell carcinoma of the head and neck. Elongated fibroblasts with large amount of rough endoplasmic reticulum were seen around the tumor epithelium before radiation. The fibrosis increased during irradiation and at the same time the shape of the fibroblasts changed so that they became more triangular and nuclear structures became more prominent together with hyperchromasia. The amount of cell organelles declined although there was a large amount collagen present. Epithelial cells invaded through the basal lamina. In most samples the basal lamina could not be seen at all and the tumor cells were dispersed between stromal elements. On the other hand there were close contacts between epithelial and mesenchymal cells throughout the study in places where the basal lamina was broken, which might indicate epithelio-mesenchymal interaction. Also the connective tissue formed by fibroblasts and collagen might be part of the radiation induced healing and destruction of the tumor cells.  相似文献   

10.
The degenerative processes in the larval small intestine of Xenopus laevis tadpoles during spontaneous metamorphosis and during thyroid hormone-induced metamorphosis in vitro were examined by electron microscopy. Around the beginning of spontaneous metamorphic climax (stages 59-61), both apoptotic bodies derived from larval epithelial cells and intraepithelial macrophage-like cells suddenly increase in number. The macrophage-like cells become rounded and enlarged because of numerous vacuoles containing the apoptotic bodies. Mitotic profiles of the macrophage-like cells, however, are localized in the connective tissue where different developmental stages of macrophage-like cells are present. After stage 62, the intraepithelial macrophage-like cells decrease in number, while large macrophage-like cells which include the apoptotic bodies and retain intact cell membranes and nuclei appear in the lumen. Degenerative changes similar to those during spontaneous metamorphosis described above could be reproduced in vitro. In tissue fragments isolated from the small intestine of stage 57 tadpoles and cultured in the presence of thyroid hormone, the number of intraepithelial macrophage-like cells reaches its maximum around the 3rd day of cultivation when the larval epithelial cells most rapidly decrease in number. These results suggest that the rapid degeneration of larval epithelial cells occurs not only because of apoptosis of the epithelial cells themselves but also from heterolysis by macrophages. The macrophages probably originate in the connective tissue, actively proliferate, migrate into the larval epithelium around the beginning of metamorphic climax, and are finally extruded into the lumen.  相似文献   

11.
Summary We have developed an organ culture system of the anuran small intestine to reproduce in vitro the transition from larval to adult epithelial form which occurs during spontaneous metamorphosis. Tubular fragments isolated from the small intestine ofXenopus laevis tadpoles were slit open and placed on membrane filters in culture dishes. In 60% Leibovitz 15 medium supplemented with 10% charcoal-treated serum, the explants were maintained in good condition for at least 10 days without any morphologic changes. Addition of triiodothyronine (T3) at a concentration higher than 10−9 M to the medium could induce cell death of larval epithelial cells, but T3 alone was not sufficient for proliferation and differentiation of adult epithelial cells. When insulin (5 μg/ml) and cortisol (0.5 μg/ml) besides T3 were added, the adult cells proliferated and differentiated just as during spontaneous metamorphosis. On Day 5 of cultivation, the adult cells rapidly proliferated to form typical islets, whereas the larval ones rapidly degenerated. At the same time, the connective tissue beneath the epithelium suddenly increased in cell density. These changes correspond to those occurring at the onset of metamorphic climax. By Day 10, the adult cells differentiated into a simple columnar epithelium which possessed the brush border and showed the adult-type lectin-binding pattern. Therefore, the larval epithelium of the small intestine responded to the hormones and transformed into the adult one. This organ culture system may be useful for clarifying the mechanism of the epithelial transition from larval to adult type during metamorphosis.  相似文献   

12.
The distribution of structural and secretory glycoconjugates in the gastric region of metamorphosing Xenopus laevis was studied by the avidin-biotin-peroxidase (ABC) histochemical staining method using seven lectins (concanavalin A, Con A; Dolichos biflorus agglutinin, DBA; peanut agglutinin, PNA; Ricinus communis agglutinin I, RCA-I; soybean agglutinin, SBA; Ulex europeus agglutinin I, UEA-I; and wheat germ agglutinin, WGA). Throughout the larval period to stage 60, the epithelium consisting of surface cells and gland cells was stained in various patterns with all lectins examined, whereas the thin layer of connective tissue was positive only for RCA-I. At the beginning of metamorphic climax, the connective tissue became stained with Con A, SBA, and WGA, and its staining pattern varied with different lectins. The region just beneath the surface cells was strongly stained only with RCA-I. With the progression of development, both the epithelium and the connective tissue gradually changed their staining patterns. The surface cells, the gland cells, and the connective tissue conspicuously changed their staining patterns, respectively, for Con A and WGA; for Con A, PNA, RCA-I, SBA, and WGA; and for Con A, RCA-I, and WGA. At the completion of metamorphosis (stage 66), mucous neck cells became clearly identifiable in the epithelium, and their cytoplasm was strongly stained with DBA, PNA, RCA-I, and SBA. These results indicate that lectin histochemistry can provide good criteria for distinguishing among three epithelial cell types, namely, surface cells, gland cells, and mucous neck cells, and between adult and larval cells of each type.  相似文献   

13.
Thin sections and freeze-fracture replicas were used to examine the fine structural features of degeneration of the gallbladder during lamprey biliary atresia. The cells of the epithelium undergo a progressive accumulation of dense bodies and vacuoles, loss of glycogen, condensation of the filamentous ectoplasm, fragmentation of microvilli, and dilation of cisternae of rough endoplasmic reticulum but eventually disappear by stage 4 of metamorphosis. Zonulae occludentes in the epithelium show a progressive increase in apical-basal depth as the junctional strands fragment. The possibility of an influence of transformed, subepithelial cells on degeneration of epithelial cells is suggested by close contact of the former with the thickened, highly pleated, epithelial basal lamina. The smooth muscle cells of the larval gallbladder are believed to transform during lamprey metamorphosis into these subepithelial cells which shed their external lamina, become intimately associated with collagen and other microfibrils, and which may be capable of phagocytosis. The events of gallbladder degeneration during lamprey metamorphosis show features of apoptosis.  相似文献   

14.
Epithelial origin of cutaneous anchoring fibrils   总被引:5,自引:3,他引:2       下载免费PDF全文
《The Journal of cell biology》1990,111(5):2109-2115
Anchoring fibrils are essential structural elements of the dermoepidermal junction and are crucial to its functional integrity. They are composed largely of type VII collagen, but their cellular origin has not yet been confirmed. In this study, we demonstrate that the anchoring fibrils are primarily a product of epidermal keratinocytes. Human keratinocyte sheets were transplanted to a nondermal connective tissue graft bed in athymic mice. De novo anchoring fibril formation was studied ultrastructurally by immunogold techniques using an antiserum specific for human type VII procollagen. At 2 d after grafting, type VII procollagen/collagen was localized both intracellularly within basal keratinocytes and extracellularly beneath the discontinuous basal lamina. Within 6 d, a subconfluent basal lamina had developed, and newly formed anchoring fibrils and anchoring plaques subjacent to the xenografts were labeled. Throughout the observation period of the experiment, the maturity, population density, and architectural complexity of anchoring fibrils beneath the human epidermal graft continuously increased. Identical findings were obtained using xenografts cultivated from cloned human keratinocytes, eliminating the possibility of contributions to anchoring fibril regeneration from residual human fibroblasts. Immunolabeling was not observed at the mouse dermoepidermal junction at any time. These results demonstrate that the type VII collagen of human cutaneous anchoring fibrils and plaques is secreted by keratinocytes and can traverse the epidermal basal lamina and that the fibril formation can occur in the absence of cells of human dermal origin.  相似文献   

15.
The fine structural changes occurring in the columnar absorbing cells of the intestinal epithelium during metamorphosis of the bullfrog, Rana catesbeiana, have been examined by phase contrast and electron microscopy. Tissue samples taken just posterior to the entrance of the hepatopancreatic duct were fixed in veronal acetate-buffered osmium tetroxide and embedded in methacrylate. Under the action of the metamorphic stimulus (thyroid hormone), specific and characteristic responses were given by differentiated larval cells and undifferentiated basal cells within the same epithelium. The functional larval cells underwent degenerative changes and were retained for a time within the metamorphosing epithelium. Dense bodies appeared and increased in number in association with the loss of normal cell structure. Because of their morphology and time of formation, these bodies have been tentatively identified as lysosomes. Early in metamorphosis the basal cells did not change, but they subsequently proliferated to form a new cell layer beneath the remaining degenerating cells that lined the lumen. After the dying cells were sloughed into the gut, the new epithelium differentiated to form the adult tissue. The columnar epithelial cells of the mature animal differed in their fine structural organization from their larval precursors. Therefore, their adult configuration was molded by the action of the metamorphic stimulus.  相似文献   

16.
The guinea pig mesentery is a uniform, continuous, thin (18 micron) sheet of connective tissue covered by a single layer of flattened mesothelial cells on both surfaces. Tight and gap junctions provide for cell-to-cell adhesion among mesothelial cells. These cells possess numerous micropinocytotic vesicles; a conspicuous basal lamina separates the mesothelium from the underlying connective tissue. Most of the material found between the two serous coverings consisted of a three-dimensional meshwork of abundant collagenous fibers intermingled with a sparse net of very thin (0.4 micron) elastic fibers. Two distinct populations of collagen fibrils are segregated into different compartments of the mesentery. One population is formed of thick (56 nm) fibrils which associate to form closely packed fibers. The second population, composed of loosely arranged thin (38 nm) fibrils which do not become assembled into fibers, is found underlying the basal lamina that separates the mesothelium from the connective tissue. These observations strongly suggest that the mesentery contains both collagens type I and type III. The guinea pig mesentery contains 6.8 mg of sulfated glycosaminoglycans/g dry weight. Most of these glycosaminoglycans (78%) were identified as dermatan sulfate, whilst the rest (22%) corresponded to heparan sulfate.  相似文献   

17.
In order to be able to interpret the developmental mechanism of the epithelial branching pattern, we investigated lung development of mouse embryos of gestational days 14 to 16 electron microscopically. Various fixation techniques (Karnovsky, tannic acid, ruthenium red) were employed. Four regions could be distinguished in a growing and branching epithelial bud: 1) the epithelial tube before the site of branching; 2) the actual site and gap of branching; 3) the already formed part of the new buds and 4) the actual leading, i.e., the growing tip. Regions 1 and 3 were characterized by a continuous basal lamina and a more (1) or less (3) thick sheath of accompanying collagen. The site of branching (2) showed a pronounced folding of the basal lamina to which numerous collagenous fibrils were attached. At the distal, i.e., growing site (4) the basal lamina was characterized by numerous interruptions; accompanying collagen was missing. Immunomorphological investigations of regions 1 to 3 revealed all components of a basal lamina and collagen types I, III and V and fibronectin at the border between epithelium and connective tissue. However, this amount was clearly reduced at the growing tip, and collagen type I was missing. These findings help to understand and elucidate the importance of the mesenchyme for the growth and branching process and the development of the branching pattern.  相似文献   

18.
Harald  Kryvi 《Journal of Zoology》1976,180(2):253-261
The purely embryonic external gill filaments of sharks consist of a single capillary loop, covered by a two-layered epithelium with short microvilli. Towards the end of the embryonic period, the epithelial cells are filled with fibrils, about 10 nm in diameter, and mitochondria, endoplasmic reticulum and Golgi bodies disappear. The basal lamina increases in thickness, and collagen fibrils accumulate beneath. Numerous dense vesicles appear in the endothelial cells.  相似文献   

19.
The localization of the extracellular matrix recognition molecule J1/tenascin was investigated in the crypt-villus unit of the adult mouse ileum by immunoelectron microscopic techniques. In the villus region, J1/tenascin was detected strongly in the extracellular matrix (ECM) between fibroblasts of the lamina propria. It was generally absent in the ECM at the interface between subepithelial fibroblasts and intestinal epithelium, except for some restricted areas along the epithelial basal lamina of villi, but not of crypts. These restricted areas corresponded approximately to the basal part of one epithelial cell. In J1/tenascin-positive areas, epithelial cells contacted the basal lamina with numerous microvillus-like processes, whereas in J1/tenascin-negative areas the basal surface membranes of epithelial cells contacted their basal lamina in a smooth and continuous apposition. In order to characterize the functional role of J1/tenascin in the interaction between epithelial cells and ECM, the intestinal epithelial cell line HT-29 was tested for its ability to adhere to different ECM components. Cells adhered to substratum-immobilized fibronectin, laminin and collagen types I to IV, but not to J1/tenascin. When laminin or collagen types I to IV were mixed with J1/tenascin, cell adhesion was as effective as without J1/tenascin. However, adhesion was completely abolished when cells were offered a mixture of fibronectin and J1/tenascin as substratum. The ability of J1/tenascin to reduce the adhesion of intestinal epithelial cells to their fibronectin-containing basal lamina suggests that J1/tenascin may be involved in the process of physiological cell shedding from the villus.  相似文献   

20.
The ultrastructural changes that take place in the ventral dermis along with the development of iridophores were examined in the anadromous sea lamprey, Petromyzon marinus, during metamorphosis. There is a disruption of all components of the ventral dermis and a reformation that results in a structure very similar to that prior to metamorphosis. Although not a dermal component, a layer of iridophores develops directly beneath the dermis during late metamorphosis. The dermal endothelium is lost by mid metamorphosis (stage 4) and the highly organized collagenous lamellae making up the bulk of the dermis become disrupted by the migration of fibroblasts into the region. Many of these fibroblasts are involved in the degradation of the lamellae. By stage 5 of metamorphosis some fibroblasts become highly active collagen synthesizing cuboidal shaped cells that align to form a layer above the reformed dermal endothelium. New lamellae are formed by these cuboidal cells which then divide and migrate into the lamellae where they assume the characteristic attenuated appearance of fibroblasts in the adult dermal lamellae region. Iridophores first appear during stage 5 directly beneath the dermal endothelium. Reflecting platelets develop from double membraned vesicles associated with the Golgi apparatus. By late metamorphosis, stacks of trapezoidal shaped platelets fill the cytoplasm of the iridophores. The significance of the changes in the dermis during metamorphosis are discussed. This work is part of a continuing series of studies on the connective tissues in the anadromous sea lamprey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号