首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The authors have previously reported that the soluble serum form of the alpha subunit of the IL-2 receptor (sIL-2Rα), whose natural half-life is approximately 40 min, survived much longer in the circulation when bound by a specific antibody. In the present study, the authors evaluated the extent to which sIL-2Rα protected IL-2 in freshly collected serum using biochemical analyses, and a functional CTLL-2 assay. In particular, sIL-2Rα protected IL-2 from forming complexes with α2-macroglobulin and from inactivation in vitro. In addition, the authors demonstrated that the anti-IL-2Rα monoclonal antibody 7G7/B6, which does not inhibit the binding of IL-2 to its binding site on sIL-2Rα, protected IL-2 from degradation and inactivation in vivo in the presence of sIL-2Rα. Both125I-labelled and unlabelled IL-2 were injected into mice preinjected with humanized anti-Tac (hTac) or 7G7/B6 and sIL-2Rα, or sIL-2Rα alone. Using size-exclusion HPLC, ELISA, and CTLL-2 cell proliferation assays, we observed that the presence of 7G7/B6 led to formation of complexes with sIL-2Rα and increased the serum levels of IL-2 more than 3- to 40-fold those of groups receiving IL-2 alone, sIL-2Rα, or hTac. Taken as a whole, these results suggest that the complex of 7G7/B6 and sIL-2Rα not only prolongs the survival of IL-2 in vivo, but also maintains the bioactivity of IL-2. The use of antibodies against endogenous soluble receptors could increase the in vivo survival of cytokines, protect their bioactivity and thereby facilitate their clinical use in the treatment of various malignancies and AIDS.  相似文献   

2.
IL-4 and IL-13 are each bound by soluble receptors (sRs) that block their activity. Both of these sRs (sIL-4Ralpha and sIL-13Ralpha2) are present in low nanogram per milliliter concentrations in the serum from unstimulated mice, but differences in affinity and half-life suggest differences in function. Serum IL-4/sIL-4Ralpha complexes rapidly dissociate, releasing active IL-4, whereas sIL-13Ralpha2 and IL-13 form a stable complex that has a considerably longer half-life than uncomplexed IL-13, sIL-13Ralpha2, IL-4, or sIL-4Ralpha. Approximately 25% of sIL-13Ralpha2 in serum is complexed to IL-13; this percentage and the absolute quantity of sIL-13Ralpha2 in serum increase considerably during a Th2 response. sIL-13Ralpha2 gene expression is up-regulated by both IL-4 and IL-13; the effect of IL-4 is totally IL-4Ralpha-dependent while the effect of IL-13 is partially IL-4Ralpha-independent. Inhalation of an IL-13/sIL-13Ralpha2 complex does not affect the expression of IL-13-inducible genes but increases the expression of two genes, Vnn1 and Pira-1, whose products activate APCs and promote neutrophilic inflammation. These observations suggest that sIL-4Ralpha predominantly sustains, increases, and diffuses the effects of IL-4, whereas sIL-13Ralpha2 limits the direct effects of IL-13 to the site of IL-13 production and forms a stable complex with IL-13 that may modify the quality and intensity of an allergic inflammatory response.  相似文献   

3.
Interleukin 15 (IL-15) is a pleiotropic cytokine that is hardly detectable in biological fluids. Here, we show that IL-15 forms functional heterocomplexes with soluble high affinity IL-15 receptor alpha (IL-15Ralpha) chain in mouse serum and cell-conditioned medium, which prevents IL-15 detection by ELISA. We also demonstrate that two soluble IL-15Ralpha (sIL-15Ralpha) sushi domain isoforms are generated through a novel alternative splicing mechanism within the IL-15Ralpha gene. These isoforms potentiate IL-15 action by promoting the IL-15-mediated proliferation of the CTLL cell line and interferon gamma production by murine NK cells, which suggests a role in IL-15 transpresentation. Conversely, a full-length sIL-15Ralpha ectodomain released by tumor necrosis factor-alpha-converting enzyme (TACE)-dependent proteolysis inhibits IL-15 activity. Thus, a dual mechanism of sIL-15Ralpha generation exists in mice, giving rise to polypeptides with distinct properties, which regulate IL-15 function.  相似文献   

4.
Contradictory results have been reported on the effects and role of IL-6 on proteoglycan (PG) synthesis. Having shown recently that in vitro IL-6 depends on the presence of soluble IL-6 receptor alpha (sIL-6Ralpha) to fully exert its effects on chondrocytes, we conducted the present study to analyse the effects of IL-6 on PG synthesis by human articular chondrocytes in the presence of sIL-6Ralpha. PG synthesis was quantified by specific ELISA using a monoclonal antibody (MAB) raised against the keratan sulphate region of PG as a capture antibody, and a MAB to the acid binding region as a detector. It proved specific for PG from primary (differentiated) chondrocytes. In the absence of sIL-6Ralpha, IL-6 had a slight inhibitory effect on PG synthesis by articular chondrocytes. sIL-6Ralpha alone also had slight but consistent inhibitory effects. When adding sIL-6Ralpha at concentrations of 50 ng/ml corresponding to levels found in synovial fluid, the effects of IL-6 increased consistently. However, even at optimal concentrations (30-100 ng/ml of IL-6sR per 100 ng/ml of IL-6), maximal inhibition (48%) did not equal the degree of inhibition achieved by IL-1 at 1 ng/ml (66%). Similar effects, although slightly weaker, were observed on osteoarthritic cells. Dexamethasone, over a wide range of concentrations, markedly enhanced proteoglycan synthesis and completely reversed the downregulatory effects of IL-1 and IL-6 + sIL-6Ralpha. The effects of IL-1 were partially inhibited by an anti-IL-6 antibody. Finally, unlike IL-1, IL-6 + sIL-6Ralpha only weakly stimulated nitric oxide (NO) synthesis. In conclusion, sIL-6Ralpha potentiates the inhibitory effect of IL-6 on PG synthesis by articular chondrocytes, but the overall effect of IL-6 + IL-6sR is moderate compared to the effects of IL-1.  相似文献   

5.
In the accompanying study, we demonstrated that following Ag challenge, membrane (m)IL-5Ralpha expression is attenuated on bronchoalveolar lavage eosinophils, soluble (s)IL-5Ralpha is detectable in BAL fluid in the absence of increased steady state levels of sIL-5Ralpha mRNA, and BAL eosinophils become refractory to IL-5 for ex vivo degranulation. We hypothesized that IL-5 regulates its receptor through proteolytic release of mIL-5Ralpha, which in turn contributes to the presence of sIL-5Ralpha. Purified human peripheral blood eosinophils were incubated with IL-5 under various conditions and in the presence of different pharmacological agents. A dose-dependent decrease in mIL-5Ralpha was accompanied by an increase in sIL-5Ralpha in the supernatant. IL-5 had no ligand-specific effect on mIL-5Ralpha or sIL-5Ralpha mRNA levels. The matrix metalloproteinase-specific inhibitors BB-94 and GM6001 and tissue inhibitor of metalloproteinase-3 partially inhibited IL-5-mediated loss of mIL-5Ralpha, suggesting that sIL-5Ralpha may be produced by proteolytic cleavage of mIL-5Ralpha. IL-5 transiently reduced surface expression of beta-chain, but had no effect on the expression of GM-CSFRalpha. Pretreatment of eosinophils with a dose of IL-5 that down-modulated mIL-5Ralpha rendered these cells unable to degranulate in response to further IL-5 stimulation, but they were fully responsive to GM-CSF. These findings suggest that IL-5-activated eosinophils may lose mIL-5Ralpha and release sIL-5Ralpha in vivo, which may limit IL-5-dependent inflammatory events in diseases such as asthma.  相似文献   

6.
Interleukin-6 (IL-6) triggers the formation of a high affinity receptor complex with the ligand binding subunit IL-6Ralpha and the signal transducing chain gp130. Since the intracytoplasmic region of the IL-6Ralpha does not contribute to signaling, soluble forms of the extracytoplasmic domain (sIL-6Ralpha), potentiate IL-6 bioactivity and induce a cytokine-responsive status in cells expressing gp130 only. This observation, together with the detection of high levels of circulating soluble human IL-6Ralpha (shIL-6Ralpha) in sera, suggests that the hIL-6-shIL-6Ralpha complex is an alternative form of the cytokine. Here we describe the generation of human IL-6 (hIL-6) variants with strongly enhanced shIL-6Ralpha binding activity and bioactivity. Homology modeling and site-directed mutagenesis of hIL-6 suggested that the binding interface for hIL-6Ralpha is constituted by the C-terminal portion of the D-helix and residues contained in the AB loop. Four libraries of hIL-6 mutants were generated by each time fully randomizing four different amino acids in the predicted AB loop. These libraries were displayed monovalently on filamentous phage surface and sorted separately for binding to immobilized shIL-6Ralpha. Mutants were selected which, when expressed as soluble proteins, showed a 10- to 40-fold improvement in shIL-6Ralpha binding; a further increase (up to 70-fold) was achieved by combining variants isolated from different libraries. Interestingly, high affinity hIL-6 variants show strongly enhanced bioactivity on cells expressing gp13O in the presence of shIL-6Ralpha at concentrations similar to those normally found in human sera.  相似文献   

7.
E Bien  A Balcerska 《Biomarkers》2008,13(1):1-26
Cancer growth and development is associated with the stimulation of the innate immune system, including enhanced interleukin 2 receptor (IL-2R) expression in immune cells and its shedding into the circulation in a soluble form of sIL-2Ralpha. In most haematological malignancies, including different types of leukaemias and lymphomas, sIL-2Ralpha has been found to be released directly from the surface of neoplastic cells thus reflecting the tumour bulk, turnover and activity. Several studies have proved that not only lymphoid cancer cells, but also some non-lymphoid cancer cells, express IL-2R on their surface. They include malignant melanoma and carcinomas of the kidney, head and neck, oesophagus and lung. It is suggested that in most malignant solid tumours, elevated levels of sIL-2Ralpha are likely to be the product of normal peripheral mononuclear cells activated in response to the neoplasm's growth or that they are released from activated lymphoid cells infiltrating neoplastic tissues. This latter hypothesis has been proved by discovering the high expression of CD25 on the cell surface of most of these cells. Although the precise source and biological role of sIL-2Ralpha has not been clarified definitively, pretreatment serum levels of sIL-2Ralpha have been shown to reflect the activity, advancement and biological aggressiveness of many types of cancer in adults and children as well as to correlate with prognosis and overall survival. The possibility of enriching the diagnostic tools of oncologists with a new biochemical marker of activity of neoplasms resulted in numerous studies and reports concerning the clinical usefulness of sIL-2Ralpha measurements in adult and, less frequently, in paediatric malignancies. This article presents the actual knowledge concerning the structure, source and biological function of sIL-2Ralpha in patients with haematological and non-haematological malignancies. The authors review the published data on clinical applicability of soluble IL-2Ralpha determination in terms of diagnostics, prognosis and treatment monitoring of particular types of malignant disorders both in adults and in children. They also provide an insight into the clinical usefulness of sLL-2Ralpha-blocking antibodies in patients with cancer, and in those who reject organ transplants, develop graft-versus-host disease after allogeneic bone marrow transplantation and are affected with autoimmune disorders.  相似文献   

8.
Interleukin-2 (IL-2) specifically recognizes high-mannose type glycans with five or six mannosyl residues. To determine whether the carbohydrate recognition activity of IL-2 contributes to its physiological activity, the inhibitory effects of high-mannose type glycans on IL-2-dependent CTLL-2 cell proliferation were investigated. Man(5)GlcNAc(2)Asn added to CTLL-2 cell cultures inhibited not only phosphorylation of tyrosine kinases but also IL-2-dependent cell proliferation. We found that a complex of IL-2, IL-2 receptor alpha, beta, gamma subunits, and tyrosine kinases was formed in rhIL-2-stimulated CTLL-2 cells. Among the components of this complex, only the IL-2 receptor alpha subunit was stained with Galanthus nivalis agglutinin which specifically recognizes high-mannose type glycans. This staining was diminished after digestion of the glycans with endo-beta-N-acetylglucosaminidase H or D, suggesting that at least a N-glycan containing Man(5)GlcNAc(2) is linked to the extracellular portion of the IL-2 receptor alpha subunit. Our findings indicate that IL-2 binds the IL-2 receptor alpha subunit through Man(5)GlcNAc(2) and a specific peptide sequence on the surface of CTLL-2 cells. When IL-2 binds to the IL-2Ralpha subunit, this may trigger formation of the high affinity complex of IL-2-IL-2Ralpha, -beta, and -gamma subunits, leading to cellular signaling.  相似文献   

9.
E Bien  A Balcerska  G Kuchta 《Biomarkers》2007,12(2):203-213
Wilms' tumour (WT) and soft tissue sarcomas (SA) in children lack reliable biochemical markers. This study was carried out to determine the clinical significance of serum soluble interleukin-2 receptor alpha (sIL-2Ralpha) in the diagnostics and treatment monitoring of children with WT and SA. The study included 48 children: ten with WT, eight with SA and 30 healthy controls. The sIL-2Ralpha levels (ELISA) and rates of elevated sIL-2Ralpha values were estimated prospectively at diagnosis and in complete remission during treatment and after therapy. As the dependence on age was determined, the levels of sIL-2Ralpha were expressed as multiplications of the upper value of the normal range for a particular age ( xN). Median pretreatment levels of sIL-2Ralpha in patients exceeded those of healthy controls (1.79 xN for WT and 1.53 for SA vs. 0.61 for controls; p < 0.001) as did the rates of elevated sIL-2Ralpha values (80% of WTand 87.5% of SA patients vs. 0% of controls). Good response to therapy was paralleled by a significant decline of pretreatment sIL-2Ralpha levels and its elevated rates. Thus, sIL-2Ralpha determination may be of some value in the diagnostics and treatment monitoring of childhood WT and SA.  相似文献   

10.
Increased levels of IL-6 are documented in asthma, but its contribution to the pathology is unknown. Asthma is characterized by airway wall thickening due to increased extracellular matrix deposition, inflammation, angiogenesis, and airway smooth muscle (ASM) mass. IL-6 binds to a specific membrane-bound receptor, IL-6 receptor-alpha (mIL-6Ralpha), and subsequently to the signaling protein gp130. Alternatively, IL-6 can bind to soluble IL-6 recpetor-alpha (sIL-6Ralpha) to stimulate membrane receptor-deficient cells, a process called trans-signaling. We discovered that primary human ASM cells do not express mIL-6Ralpha and, therefore, investigated the effect of IL-6 trans-signaling on the pro-remodeling phenotype of ASM. ASM required sIL-6Ralpha to activate signal transducer and activator 3, with no differences observed between cells from asthmatic subjects compared with controls. Further analysis revealed that IL-6 alone or with sIL-6Ralpha did not induce release of matrix-stimulating factors (including connective tissue growth factor, fibronectin, or integrins) and had no effect on mast cell adhesion to ASM or ASM proliferation. However, in the presence of sIL-6Ralpha, IL-6 increased eotaxin and VEGF release and may thereby contribute to local inflammation and vessel expansion in airway walls of asthmatic subjects. As levels of sIL-6Ralpha are increased in asthma, this demonstration of IL-6 trans-signaling in ASM has relevance to the development of airway remodeling.  相似文献   

11.
Tac peptide, i.e., the p55 chain of the human interleukin-2 receptor (IL-2R) complex, is detectable as a soluble from (sIL-2R) in normal sera and, at increased levels, in patients with different diseases. Since several immunological abnormalities are observed in most conditions associated with an increase in sIL-2R levels, a down-regulatory effect on IL-2-dependent functions has been postulated as a consequence of binding and functional block of IL-2 by the excess of sIL-2R. To test this hypothesis, we purified sIL-2R from the urine of a patient with hairy cell leukemia and investigated the possible inhibitory effect of this peptide on the in vitro IL-2-induced cell proliferation. The urine-purified molecule was detectable by the specific immunoassay utilized to measure the serum Tac peptide and was constructed by a single polypeptide of about 50 kDa which was able to bind IL-2. Experiments performed with the IL-2-dependent murine CTLL-2 cell line and with PHA-stimulated human peripheral blood mononuclear cells showed that the purified sIL-2R at concentrations up to about 300 nM was unable to block IL-2-dependent cell proliferation. According to these data, which can be explained by the low affinity for IL-2 of the p55 IL-2R chain, it seems unlikely that in vivo the soluble Tac peptide can exert a down regulatory effect on IL-2-induced phenomena through a functional block of IL-2.  相似文献   

12.
IL-15 has been shown to accelerate and boost allergic sensitization in mice. Using a murine model of allergic sensitization to OVA, we present evidence that blocking endogenous IL-15 during the sensitization phase using a soluble IL-15Ralpha (sIL-15Ralpha) suppresses the induction of Ag-specific, Th2-differentiated T cells. This significantly reduces the production of OVA-specific IgE and IgG and prevents the induction of a pulmonary inflammation. Release of proinflammatory TNF-alpha, IL-1beta, IL-6, and IL-12 as well as that of Th2 cytokines IL-4, IL-5, and IL-13 into the bronchi are significantly reduced, resulting in suppressed recruitment of eosinophils and lymphocytes after allergen challenge. It is of clinical relevance that the airway hyper-responsiveness, a major symptom of human asthma bronchiale, is significantly reduced by sIL-15Ralpha treatment. Ex vivo analysis of the draining lymph nodes revealed reduced numbers of CD8, but not CD4, memory cells and the inability of T cells of sIL-15Ralpha-treated mice to proliferate and to produce Th2 cytokines after in vitro OVA restimulation. This phenomenon is not mediated by enhanced numbers of CD4(+)/CD25(+) T cells. These results show that IL-15 is important for the induction of allergen-specific, Th2-differentiated T cells and induction of allergic inflammation in vivo.  相似文献   

13.
Thrombin is a procoagulant and proinflammatory molecule in vivo. In vitro, thrombin has been shown to induce endothelial activation, notably IL-8 secretion and adhesion molecule expression. In this study, we showed that thrombin may induce a new cascade leading from acute to chronic inflammation. Thrombin was able to induce the production of both IL-6 and monocyte chemotactic protein-1 (MCP-1) by HUVEC independently of IL-1alphabeta and TNF-alpha. Addition of physiological concentrations of exogenous soluble IL-6Ralpha (sIL-6Ralpha) to thrombin-activated HUVEC was sufficient to increase the amounts of MCP-1 produced, but not those of IL-8. These effects could be blocked by anti-IL-6 or anti-sIL-6Ralpha blocking mAb, demonstrating the existence of an autocrine loop of MCP-1 secretion, involving the IL-6/IL-6Ralpha/gp130 complex on HUVEC. In addition, we identified IL-8-activated neutrophils as a potential source of sIL-6Ralpha because IL-8 induced IL-6Ralpha shedding from the neutrophil membranes and increased in parallel sIL-6Ralpha concentrations in neutrophil supernatants. Furthermore, addition of neutrophils to thrombin-activated HUVEC significantly increased MCP-1 secretion, which could be decreased by blocking IL-6. Thus, thrombin-activated endothelium may induce a cascade of events characterized by IL-8 secretion, neutrophil local infiltration, and the release of IL-6Ralpha from neutrophil membranes. sIL-6Ralpha may then complex with IL-6 and increase the amount of MCP-1 produced by thrombin-activated endothelium, favoring monocyte infiltration, and the transformation of acute into chronic inflammation.  相似文献   

14.
Inhibitory anti-cytokine mAbs are used to treat cytokine-mediated disorders. Recently, however, S4B6, an anti-IL-2 mAb that blocks IL-2 binding to IL-2Ralpha, a receptor component that enhances affinity but is not required for signaling, was shown to enhance IL-2 agonist effects in vivo. We evaluated how S4B6 enhances IL-2 effects and whether a similar mechanism allows mAbs to IL-4 to enhance IL-4 effects. Induction of T cell proliferation by IL-2/S4B6 complexes did not require complex dissociation and was IL-2Ralpha independent. S4B6 increased IL-2 agonist effects by increasing in vivo half-life, not by focusing IL-2 onto cells through Fc receptors. In contrast to IL-2/S4B6 complexes, anti-IL-4 mAb enhancement of in vivo IL-4 effects required IL-4/anti-IL-4 mAb complex dissociation. Thus, agonist effects observed with high doses of anti-IL-2 mAb are most likely only applicable for mAbs that maintain cytokine half-life without blocking binding to receptor signaling components.  相似文献   

15.
IL-15 is a T cell growth factor that shares many functional similarities with IL-2 and has recently been shown to be present in tissue and organ allografts, leading to speculation that IL-15 may contribute to graft rejection. Here, we report on the in vivo use of an IL-15 antagonist, a soluble fragment of the murine IL-15R alpha-chain, to investigate the contribution of IL-15 to the rejection of fully vascularized cardiac allografts in a mouse experimental model. Administration of soluble fragment of the murine IL-15R alpha-chain (sIL-15Ralpha) to CBA/Ca (H-2k) recipients for 10 days completely prevented rejection of minor histocompatibility complex-mismatched B10.BR (H-2k) heart grafts (median survival time (MST) of >100 days vs MST of 10 days for control recipients) and led to a state of donor-specific immunologic tolerance. Treatment of CBA/Ca recipients with sIL-15Ralpha alone had only a modest effect on the survival of fully MHC-mismatched BALB/c (H-2d) heart grafts. However, administration of sIL-15Ralpha together with a single dose of a nondepleting anti-CD4 mAb (YTS 177.9) delayed mononuclear cell infiltration of the grafts and markedly prolonged graft survival (MST of 60 days vs MST of 20 days for treatment with anti-CD4 alone). Prolonged graft survival was accompanied in vitro by reduced proliferation and IFN-gamma production by spleen cells, whereas CTL and alloantibody levels were similar to those in animals given anti-CD4 mAb alone. These findings demonstrate that IL-15 plays an important role in the rejection of a vascularized organ allograft and that antagonists to IL-15 may be of therapeutic value in preventing allograft rejection.  相似文献   

16.
A monomeric form of human interleukin 10 (IL-10M1) has been engineered for detailed structure-function studies on IL-10 and its receptor complexes. Wild type IL-10 (wtIL-10) is a domain swapped dimer whose structural integrity depends on the intertwining of two peptide chains. wtIL-10 was converted to a monomeric isomer by inserting 6 amino acids into the loop connecting the swapped secondary structural elements. Characterization of IL-10M1 by mass spectroscopy, size exclusion chromatography, cross-linking, and circular dichroism shows that IL-10M1 is a stable alpha-helical monomer at physiological pH whose three-dimensional structure closely resembles one domain of wtIL-10. As previously reported, incubation of wtIL-10 with a soluble form of the IL-10Ralpha (sIL-10Ralpha) generates a complex that consists of 2 wtIL-10 molecules and 4 sIL-10Ralphas. In contrast, IL-10M1 forms a 1:1 complex with the sIL-10Ralpha. Characterization of the interaction using isothermal titration calorimetry confirmed the 1:1 stoichiometry and yielded a dissociation constant of 30 nm with an apparent binding enthalpy of -12.2 kcal/mol. Despite forming a 1:1 complex, IL-10M1 is biologically active in cellular proliferation assays. These results indicate that the 1:1 interaction between IL-10M1 and IL-10Ralpha is sufficient for recruiting the signal transducing receptor chain (IL-10Rbeta) into the signaling complex and eliciting IL-10 cellular responses.  相似文献   

17.
A functional IL-13R involves at least two cell surface proteins, the IL-13R alpha 1 and IL-4R alpha. Using a soluble form of the murine IL-13R alpha 1 (sIL-13R), we reveal several novel features of this system. The sIL-13R promotes proliferation and augmentation of Ag-specific IgM, IgG2a, and IgG2b production by murine germinal center (GC) B cells in vitro. These effects were enhanced by CD40 signaling and were not inhibited by an anti-IL4R alpha mAb, a result suggesting other ligands. In GC cell cultures, sIL-13R also promoted IL-6 production, and interestingly, sIL-13R-induced IgG2a and IgG2b augmentation was absent in GC cells isolated from IL-6-deficient mice. Furthermore, the effects of the sIL-13R molecule were inhibited in the presence of an anti-IL-13 mAb, and preincubation of GC cells with IL-13 enhanced the sIL-13R-mediated effects. When sIL-13R was injected into mice, it served as an adjuvant-promoting production to varying degrees of IgM and IgG isotypes. We thus propose that IL-13R alpha 1 is a molecule involved in B cell differentiation, using a mechanism that may involve regulation of IL-6-responsive elements. Taken together, our data reveal previously unknown activities as well as suggest that the ligand for the sIL-13R might be a component of the IL-13R complex or a counterstructure yet to be defined.  相似文献   

18.
The soluble IL-6 receptor (sIL-6R) can increase IL-6-induced signalling by forming a complex with IL-6 and membrane-bound gp130 (the receptor beta chain which transduces signals). The conditions affecting this response to sIL-6R were studied using fibrinogen release from HepG2 hepatocytes. Exogenous sIL-6R had no effect alone or in the presence of a submaximal concentration of IL-6, but increased responses to supramaximal IL-6 concentrations in a concentration-related manner. Dexamethasone increased the expression of the membrane IL-6R and endogenous sIL6R release, and increased responses to supramaximal but not submaximal IL-6 concentrations. The amount of endogenous sIL-6R released is relatively small and is unlikely to influence the effects of the exogenous sIL-6R. The observed concentration-related decrease in sIL-6R production in the presence of IL-6 may indicate internalization of ligand/receptor complexes. This would significantly decrease the amount of IL-6R (soluble or membrane) available for signalling and limit continued functional response later in the cultures. These data indicate that the major factor influencing responses to exogenous sIL-6R is an excess of IL-6 which is necessary to form complexes with the sIL-6R, which can then interact with gp130 to increase signalling.  相似文献   

19.
20.
This study shows that the high affinity alpha-chain of the interleukin (IL)-15 receptor exists not only in membrane-anchored but also in soluble form. Soluble IL-15Ralpha (sIL-15Ralpha) can be detected in mouse sera and cell-conditioned media by enzyme-linked immunosorbent assay and by immunoprecipitation and Western blotting. This protein has a molecular mass of about 30 kDa because of the presence of a single N-glycosylation site, which is reduced to 26 kDa after N-glycosidase treatment. Transmembrane IL-15Ralpha is constitutively converted into its soluble form by proteolytic cleavage that involves tumor necrosis factor-alpha-converting enzyme (TACE), and this process is further enhanced by phorbol 12-myristate 13-acetate (PMA) stimulation. The hydroxamate GW280264X, which is capable of blocking TACE and the closely related disintegrin-like metalloproteinase 10 (ADAM10), effectively inhibited both spontaneous and PMA-inducible cleavage of IL-15Ralpha, whereas GI254023X, which preferentially blocks ADAM10, was ineffective. Overexpression of TACE but not ADAM10 in COS-7 cells enhanced the constitutive and PMA-inducible cleavage of IL-15Ralpha. Moreover, murine fibroblasts deficient in TACE but not ADAM10 expression exhibited a significant reduction in the spontaneous and inducible IL-15Ralpha shedding, whereas a reconstitution of TACE in these cells restored the release of sIL-15Ralpha, thereby suggesting that TACE-mediated proteolysis may represent a major mechanism for sIL-15Ralpha generation in mice. The existence of natural sIL-15Ralpha offers novel insights into the complex biology of IL-15 and envisages a new level for therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号