首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemotaxis network of the bacterium Escherichia coli is perhaps the most studied model for adaptation of a signaling system to persistent stimuli. Although adaptation in this system is generally considered to be precise, there has been little effort to quantify this precision, or to understand how and when precision fails. Using a Förster resonance energy transfer-based reporter of signaling activity, we undertook a systematic study of adaptation kinetics and precision in E. coli cells expressing a single type of chemoreceptor (Tar). Quantifiable loss of precision of adaptation was observed at levels of the attractant MeAsp as low 10 μM, with pronounced differences in both kinetics and precision of adaptation between addition and removal of attractant. Quantitative modeling of the kinetic data suggests that loss of precise adaptation is due to a slowing of receptor methylation as available modification sites become scarce. Moreover, the observed kinetics of adaptation imply large cell-to-cell variation in adaptation rates—potentially providing genetically identical cells with the ability to “hedge their bets” by pursuing distinct chemotactic strategies.  相似文献   

2.
3.
Tetrahymena is able to adapt to the presence of sublethal concentrations of many drugs which inhibit a wide variety of cellular functions. In spite of the generality of this phenomenon in Tetrahymena, the mechanism of adaptation at the cellular and molecular levels is unknown. This study deals mainly with adaptation to the protein synthesis inhibitors, cycloheximide and emetine. The physiological response of Tetrahymena to sublethal concentrations of these drugs is an immediate cessation of cell division for a period of time dependent on the drug concentration, followed by an abrupt resumption of exponential growth at a constant rate. By measuring the length of the growth lags under a variety of experimental conditions, we have confirmed several observations made by Frankel and coworkers, and provide evidence for two new phenomena associated with adaptation to cycloheximide: (a) adaptation to cycloheximide also results in adaptation of cells to emetine, another protein synthesis inhibitor not closely related structurally to cycloheximide. We have termed this phenomenon cross adaptation, (b) exposure to concentrations of cycloheximide too low to cause any growth lags or inhibition of protein synthesis significantly shortens the time required by cells to adapt to higher concentrations of cycloheximide. We have termed this phenomenon facilitation. Facilitation shows some degree of specificity in that facilitation with cycloheximide has no effect on adaptation to emetine. From this, we infer the existence of two distinct systems involved in adaptation to cycloheximide, one of which shows a higher degree of specificity towards cycloheximide than the other. We also show that transfer of adapted or facilitated cells to drug-free medium results in a gradual but complete resensitization. The kinetics of resensitization suggest that the cellular machinery responsible for adaptation and facilitation does not leave the cell, but is simply diluted out during cell division.  相似文献   

4.
5.
6.
Simulation of cellular behavior on multiple scales requires models that are sufficiently detailed to capture central intracellular processes but at the same time enable the simulation of entire cell populations in a computationally cheap way. In this paper we present RapidCell, a hybrid model of chemotactic Escherichia coli that combines the Monod-Wyman-Changeux signal processing by mixed chemoreceptor clusters, the adaptation dynamics described by ordinary differential equations, and a detailed model of cell tumbling. Our model dramatically reduces computational costs and allows the highly efficient simulation of E. coli chemotaxis. We use the model to investigate chemotaxis in different gradients, and suggest a new, constant-activity type of gradient to systematically study chemotactic behavior of virtual bacteria. Using the unique properties of this gradient, we show that optimal chemotaxis is observed in a narrow range of CheA kinase activity, where concentration of the response regulator CheY-P falls into the operating range of flagellar motors. Our simulations also confirm that the CheB phosphorylation feedback improves chemotactic efficiency by shifting the average CheY-P concentration to fit the motor operating range. Our results suggest that in liquid media the variability in adaptation times among cells may be evolutionary favorable to ensure coexistence of subpopulations that will be optimally tactic in different gradients. However, in a porous medium (agar) such variability appears to be less important, because agar structure poses mainly negative selection against subpopulations with low levels of adaptation enzymes. RapidCell is available from the authors upon request.  相似文献   

7.
8.
9.
The motion energy sensor has been shown to account for a wide range of physiological and psychophysical results in motion detection and discrimination studies. It has become established as the standard computational model for retinal movement sensing in the human visual system. Adaptation effects have been extensively studied in the psychophysical literature on motion perception, and play a crucial role in theoretical debates, but the current implementation of the energy sensor does not provide directly for modelling adaptation-induced changes in output. We describe an extension of the model to incorporate changes in output due to adaptation. The extended model first computes a space-time representation of the output to a given stimulus, and then a RC gain-control circuit (“leaky integrator”) is applied to the time-dependent output. The output of the extended model shows effects which mirror those observed in psychophysical studies of motion adaptation: a decline in sensor output during stimulation, and changes in the relative of outputs of different sensors following this adaptation.  相似文献   

10.
Because mutations are mostly deleterious, mutation rates should be reduced by natural selection. However, mutations also provide the raw material for adaptation. Therefore, evolutionary theory suggests that the mutation rate must balance between adaptability—the ability to adapt—and adaptedness—the ability to remain adapted. We model an asexual population crossing a fitness valley and analyse the rate of complex adaptation with and without stress-induced mutagenesis (SIM)—the increase of mutation rates in response to stress or maladaptation. We show that SIM increases the rate of complex adaptation without reducing the population mean fitness, thus breaking the evolutionary trade-off between adaptability and adaptedness. Our theoretical results support the hypothesis that SIM promotes adaptation and provide quantitative predictions of the rate of complex adaptation with different mutational strategies.  相似文献   

11.
Mismatch negativity (MMN) is a scalp-recorded electrical potential that occurs in humans in response to an auditory stimulus that defies previously established patterns of regularity. MMN amplitude is reduced in people with schizophrenia. In this study, we aimed to develop a robust and replicable rat model of MMN, as a platform for a more thorough understanding of the neurobiology underlying MMN. One of the major concerns for animal models of MMN is whether the rodent brain is capable of producing a human-like MMN, which is not a consequence of neural adaptation to repetitive stimuli. We therefore tested several methods that have been used to control for adaptation and differential exogenous responses to stimuli within the oddball paradigm. Epidural electroencephalographic electrodes were surgically implanted over different cortical locations in adult rats. Encephalographic data were recorded using wireless telemetry while the freely-moving rats were presented with auditory oddball stimuli to assess mismatch responses. Three control sequences were utilized: the flip-flop control was used to control for differential responses to the physical characteristics of standards and deviants; the many standards control was used to control for differential adaptation, as was the cascade control. Both adaptation and adaptation-independent deviance detection were observed for high frequency (pitch), but not low frequency deviants. In addition, the many standards control method was found to be the optimal method for observing both adaptation effects and adaptation-independent mismatch responses in rats. Inconclusive results arose from the cascade control design as it is not yet clear whether rats can encode the complex pattern present in the control sequence. These data contribute to a growing body of evidence supporting the hypothesis that rat brain is indeed capable of exhibiting human-like MMN, and that the rat model is a viable platform for the further investigation of the MMN and its associated neurobiology.  相似文献   

12.
As a response to hyperosmotic stress bacterial cells accumulate compatible solutes by synthesis or by uptake. Beside the instant activation of uptake systems after an osmotic upshift, transport systems show also a second, equally important type of regulation. In order to adapt the pool size of compatible solutes in the cytoplasm to the actual extent of osmotic stress, cells down-regulate solute uptake when the initial osmotic stress is compensated. Here we describe the role of the betaine transporter BetP, the major uptake carrier for compatible solutes in Corynebacterium glutamicum, in this adaptation process. For this purpose, betP was expressed in cells (C. glutamicum and Escherichia coli), which lack all known uptake systems for compatible solutes. Betaine uptake mediated by BetP as well as by a truncated form of BetP, which is deregulated in its response to hyperosmotic stress, was dissected into the individual substrate fluxes of unidirectional uptake, unidirectional efflux and net uptake. We determined a strong decrease of unidirectional betaine uptake by BetP in the adaptation phase. The observed decrease in net uptake was thus mainly due to a decrease of Vmax of BetP and not a consequence of the presence of separate efflux system(s). These results indicate that adaptation of BetP to osmotic compensation is different from activation by osmotic stress and also different from previously described adaptation mechanisms in other organisms. Cytoplasmic K+, which was shown to be responsible for activation of BetP upon osmotic stress, as well as a number of other factors was ruled out as triggers for the adaptation process. Our results thus indicate the presence of a second type of signal input in the adaptive regulation of osmoregulated carrier proteins.  相似文献   

13.
While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels. While odortaxis requires a Gα subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP) channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA activation of the TRP channel OSM-9 may dampen the output of the AWC neuron.  相似文献   

14.
Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1–R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs'' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information.  相似文献   

15.
The effect of stimulation history on the perception of a current event can yield two opposite effects, namely: adaptation or hysteresis. The perception of the current event thus goes in the opposite or in the same direction as prior stimulation, respectively. In audiovisual (AV) synchrony perception, adaptation effects have primarily been reported. Here, we tested if perceptual hysteresis could also be observed over adaptation in AV timing perception by varying different experimental conditions. Participants were asked to judge the synchrony of the last (test) stimulus of an AV sequence with either constant or gradually changing AV intervals (constant and dynamic condition, respectively). The onset timing of the test stimulus could be cued or not (prospective vs. retrospective condition, respectively). We observed hysteretic effects for AV synchrony judgments in the retrospective condition that were independent of the constant or dynamic nature of the adapted stimuli; these effects disappeared in the prospective condition. The present findings suggest that knowing when to estimate a stimulus property has a crucial impact on perceptual simultaneity judgments. Our results extend beyond AV timing perception, and have strong implications regarding the comparative study of hysteresis and adaptation phenomena.  相似文献   

16.
We propose a computational model of a simple cell with push-pull inhibition, a property that is observed in many real simple cells. It is based on an existing model called Combination of Receptive Fields or CORF for brevity. A CORF model uses as afferent inputs the responses of model LGN cells with appropriately aligned center-surround receptive fields, and combines their output with a weighted geometric mean. The output of the proposed model simple cell with push-pull inhibition, which we call push-pull CORF, is computed as the response of a CORF model cell that is selective for a stimulus with preferred orientation and preferred contrast minus a fraction of the response of a CORF model cell that responds to the same stimulus but of opposite contrast. We demonstrate that the proposed push-pull CORF model improves signal-to-noise ratio (SNR) and achieves further properties that are observed in real simple cells, namely separability of spatial frequency and orientation as well as contrast-dependent changes in spatial frequency tuning. We also demonstrate the effectiveness of the proposed push-pull CORF model in contour detection, which is believed to be the primary biological role of simple cells. We use the RuG (40 images) and Berkeley (500 images) benchmark data sets of images with natural scenes and show that the proposed model outperforms, with very high statistical significance, the basic CORF model without inhibition, Gabor-based models with isotropic surround inhibition, and the Canny edge detector. The push-pull CORF model that we propose is a contribution to a better understanding of how visual information is processed in the brain as it provides the ability to reproduce a wider range of properties exhibited by real simple cells. As a result of push-pull inhibition a CORF model exhibits an improved SNR, which is the reason for a more effective contour detection.  相似文献   

17.
通过检测塔里木兔(Lepus yarcandensis)胰腺中水通道蛋白(aquaporin,AQP)1和4的表达及分布情况,以探讨水通道蛋白在塔里木兔适应干旱缺水环境中的作用。采用常规 H.E染色观察塔里木兔胰腺组织学结构,采用免疫组织化学法检测AQP1和AQP4在胰腺中的分布位置及表达,并与家兔(Oryctolagus curiculus)进行比较。结果显示,AQP1在胰腺微血管内皮细胞、血细胞、泡心细胞和小叶内导管上皮细胞均有表达;AQP4在小叶间导管基底膜和胰岛细胞膜上有表达。与家兔相比,AQP1 在塔里木兔胰腺外分泌部的表达较弱,而在小叶内导管的表达较强;AQP4在塔里木兔胰腺内分泌部的表达较低。以上结果说明,AQP1在塔里木兔胰腺小叶内导管的表达上调,推测可能加强了浓缩胰液的能力,以尽量保住体内的水分,这是塔里木兔对干旱缺水环境的适应性调节。与家兔相比,塔里木兔胰腺AQP1和AQP4的表达均较低,说明塔里木兔胰腺水液代谢能力比家兔低,这可能与塔里木兔所食食物营养匮乏有关。  相似文献   

18.
MgtC is a virulence factor involved in intramacrophage growth that has been reported in several intracellular pathogens, including Mycobacterium tuberculosis and Salmonella enterica serovar Typhimurium. MgtC participates also in adaptation to Mg2+ deprivation. Herein, we have constructed a mgtC mutant in Mycobacterium marinum to further investigate the role of MgtC in mycobacteria. We show that the M. marinum mgtC gene (Mma mgtC) is strongly induced upon Mg2+ deprivation and is required for optimal growth in Mg2+-deprived medium. The behaviour of the Mma mgtC mutant has been investigated in the Danio rerio infection model using a transgenic reporter zebrafish line that specifically labels neutrophils. Although the mgtC mutant is not attenuated in the zebrafish embryo model based on survival curves, our results indicate that phagocytosis by neutrophils is enhanced with the mgtC mutant compared to the wild-type strain following subcutaneous injection. Increased phagocytosis of the mutant strain is also observed ex vivo with the murine J774 macrophage cell line. On the other hand, no difference was found between the mgtC mutant and the wild-type strain in bacterial adhesion to macrophages and in the internalization into epithelial cells. Unlike the role reported for MgtC in other intracellular pathogens, Mma MgtC does not contribute significantly to intramacrophage replication. Taken together, these results indicate an unanticipated function of Mma MgtC at early step of infection within phagocytic cells. Hence, our results indicate that although the MgtC function is conserved among pathogens regarding adaptation to Mg2+ deprivation, its role towards phagocytic cells can differ, possibly in relation with the specific pathogen''s lifestyles.  相似文献   

19.
The Saccharomyces cerevisiae polo-like kinase Cdc5 promotes adaptation to the DNA damage checkpoint, in addition to its numerous roles in mitotic progression. The process of adaptation occurs when cells are presented with persistent or irreparable DNA damage and escape the cell-cycle arrest imposed by the DNA damage checkpoint. However, the precise mechanism of adaptation remains unknown. We report here that CDC5 is dose-dependent for adaptation and that its overexpression promotes faster adaptation, indicating that high levels of Cdc5 modulate the ability of the checkpoint to inhibit the downstream cell-cycle machinery. To pinpoint the step in the checkpoint pathway at which Cdc5 acts, we overexpressed CDC5 from the GAL1 promoter in damaged cells and examined key steps in checkpoint activation individually. Cdc5 overproduction appeared to have little effect on the early steps leading to Rad53 activation. The checkpoint sensors, Ddc1 (a member of the 9-1-1 complex) and Ddc2 (a member of the Ddc2/Mec1 complex), properly localized to damage sites. Mec1 appeared to be active, since the Rad9 adaptor retained its Mec1 phosphorylation. Moreover, the damage-induced interaction between phosphorylated Rad9 and Rad53 remained intact. In contrast, Rad53 hyperphosphorylation was significantly reduced, consistent with the observation that cell-cycle arrest is lost during adaptation. Thus, we conclude Cdc5 acts to attenuate the DNA damage checkpoint through loss of Rad53 hyperphosphorylation to allow cells to adapt to DNA damage. Polo-like kinase homologs have been shown to inhibit the ability of Claspin to facilitate the activation of downstream checkpoint kinases, suggesting that this function is conserved in vertebrates.  相似文献   

20.
《Genomics》2021,113(3):1491-1503
Domestication and subsequent selection of cattle to form breeds and biological types that can adapt to different environments partitioned ancestral genetic diversity into distinct modern lineages. Genome-wide selection particularly for adaptation to extreme environments left detectable signatures genome-wide. We used high-density genotype data for 42 cattle breeds and identified the influence of Bos grunniens and Bos javanicus on the formation of Chinese indicine breeds that led to their divergence from India-origin zebu. We also found evidence for introgression, admixture, and migration in most of the Chinese breeds. Selection signature analyses between high-altitude (≥1800 m) and low-altitude adapted breeds (<1500 m) revealed candidate genes (ACSS2, ALDOC, EPAS1, EGLN1, NUCB2) and pathways that are putatively involved in hypoxia adaptation. Immunohistochemical, real-time PCR and CRISPR/cas9 ACSS2-knockout analyses suggest that the up-regulation of ACSS2 expression in the liver promotes the metabolic adaptation of cells to hypoxia via the hypoxia-inducible factor pathway. High altitude adaptation involved the introgression of alleles from high-altitude adapted yaks into Chinese Bos taurus taurus prior to their formation into recognized breeds and followed by selection. In addition to selection, adaptation to high altitude environments has been facilitated by admixture and introgression with locally adapted cattle populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号