首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Three of the five disulfide bonds in the glycoprotein hormone alpha-subunit (GPH-alpha) form a cystine knot motif that stabilizes a three-loop antiparallel structure. Previously, we described a mutant (alpha(k)) that contained only the three knot disulfide bonds and demonstrated that the cystine knot was necessary and sufficient for efficient GPH-alpha folding and secretion. In this study, we used alpha(k) as a model to study the intracellular GPH-alpha folding pathway. Cystine knot formation proceeded through a 1-disulfide intermediate that contained the 28-82 disulfide bond. Formation of disulfide bond 10-60, then disulfide bond 32-84, followed the formation of 28-82. Whether the two non-cystine knot bonds 7-31 and 59-87 could form independent of the knot was also tested. Disulfide bond 7-31 formed rapidly, whereas 59-87 did not form when all cysteine residues of the cystine knot were converted to alanine, suggesting that 7-31 forms early in the folding pathway and that 59-87 forms during or after cystine knot formation. Finally, loop 2 of GPH-alpha has been shown to be very flexible, suggesting that loop 2 does not actively drive GPH-alpha folding. To test this, we replaced residues 36-55 in the flexible loop 2 with an artificially flexible glycine chain. Consistent with our hypothesis, folding and secretion were unaffected when loop 2 was replaced with the glycine chain. Based on these findings, we describe a model for the intracellular folding pathway of GPH-alpha and discuss how these findings may provide insight into the folding mechanisms of other cystine knot-containing proteins.  相似文献   

2.
Wilken JA  Bedows E 《Biochemistry》2004,43(17):5109-5118
The intracellular kinetic folding pathway of the human chorionic gonadotropin beta-subunit (hCG-beta) reveals the presence of a disulfide between Cys residues 38-57 that is not detected by X-ray analysis of secreted hCG-beta. This led us to propose that disulfide rearrangement is an essential feature of cystine knot formation during CG-beta folding. To test this, we used disulfide bond formation to monitor progression of intracellular folding intermediates of a previously uncharacterized protein, the CG-beta subunit of cynomolgous macaque (Macaca fascicularis). Like its human counterpart hCG-beta with which it shares 81% identity, macaque (m)CG-beta is a cystine knot-containing subunit that assembles with an alpha-subunit common to all glycoprotein hormone members of its species to form a biologically active heterodimer, mCG, which, like hCG, is required for pregnancy maintenance. An early mCG-beta folding intermediate, mpbeta1, contained two disulfide bonds, one between Cys34 and Cys88 and the other between Cys38 and Cys57. The subsequent folding intermediate, mpbeta2-early, was represented by an ensemble of folding forms that, in addition to the two disulfides mentioned above, included disulfide linkages between Cys9 and Cys57 and between Cys38 and Cys90. These latter two disulfides are those contained within the beta-subunit cystine knot and reveal that a disulfide exchange occurred during the mpbeta2-early folding step leading to formation of the mCG-beta knot. Thus, while defining the intracellular kinetic protein folding pathway of a monkey homologue of CG-beta, we detected the previously predicted disulfide exchange event crucial for CG-beta cystine knot formation and attainment of CG-beta assembly competence.  相似文献   

3.
We have measured the intracellular rates of formation of the six disulfide bonds in the human chorionic gonadotropin beta subunit (hCG-beta) to determine whether the folding pathway of this molecule can be described by a simple sequential model. If such a model is correct, the formation of disulfide bonds, which is indicative of tertiary structural changes during protein folding, should occur in a discrete order. The individual rates of disulfide bridging were determined by identifying the extent of disulfide bond formation in hCG-beta intermediates purified from choriocarcinoma cells that had been metabolically labeled for 40 to 120 s and chased for 0 to 25 min. The results of these kinetic studies describe a folding pathway in which the disulfide bonds between cysteines 34-88, 38-57, 9-90 and 23-72 stabilize, in a discrete order, the putative domain(s) involving amino acids 1-90 of hCG-beta. However, the S-S bonds 93-100 and 26-110 begin to form before the complete formation of the disulfide bonds that stabilize the amino acid 1-90 domain(s), and continue to form after complete formation of these disulfide bonds, suggesting that hCG-beta does not fold by a simple sequential pathway. The order of completion of each of the six disulfide bonds of hCG-beta is: 34-88 (t1/2 = 1-2 min), 38-57 (t1/2 = 2-3 min), 9-90 and 23-72, 93-100, and 26-110. Moreover, 60-100% of each of the six disulfide bonds form posttranslationally, and nonnative disulfide bonds do not form in detectable amounts during intracellular folding of hCG-beta.  相似文献   

4.
Few experimental models have been used to investigate how proteins fold inside a cell. Using the formation of disulfide bonds as an index of conformational changes during protein folding, we have developed a unique system to determine the intracellular folding pathway of the beta subunit of human chorionic gonadotropin (hCG). Three folding intermediates of the beta subunit were purified from [35S]cysteine-labeled JAR choriocarcinoma cells by immunoprecipitation and by reverse-phase high performance liquid chromatography (HPLC). To identify unformed disulfide bonds, nonreduced folding intermediates were treated with trypsin to liberate non-disulfide-bound, [35S]cysteine-containing peptides from the disulfide-linked peptides. Released peptides were purified by HPLC and identified by amino acid sequencing. The amount of a peptide that was released indicated the extent of disulfide bond formation involving the cysteine in that peptide. Of the six disulfide bonds in hCG-beta, bonds 34-88 and 38-57 form first. The rate-limiting event of folding involves the formation of the S-S bonds between cysteines 23 and 72 and cysteines 9 and 90. Disulfide bond 93-100, the formation of which appears to be necessary for assembly with the alpha subunit of the hCG heterodimer, forms next. Finally, disulfide bond 26-110 forms after assembly with the alpha subunit, suggesting that completion of folding of the COOH terminus in the beta subunit occurs after assembly with the alpha subunit.  相似文献   

5.
Summary The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif (CCK). This unique family was discovered only recently but contains over 50 known sequences to date. Various biological activities are associated with these peptides including antimicrobial and insecticidal activity. The knotted topology and cyclic nature of the cyclotides poses interesting questions about the folding mechanisms and how the knotted arrangement of disulfide bonds is formed. Some studies have been performed on related inhibitor cystine knot (ICK) containing peptides, but little is known about the folding mechanisms of CCK molecules. We have examined the oxidative refolding and reductive unfolding of the prototypic member of the cyclotide family, kalata B1. Analysis of the rates of formation of the intermediates along the reductive unfolding pathway highlights the stability conferred by the cystine knot motif. Significant differences are observed between the folding of kalata B1 and an acyclic cystine knot protein, EETI-II, suggesting that the circular backbone has a significant influence in directing the folding pathway.  相似文献   

6.
Human chorionic gonadotropin (hCG) is a heterodimeric member of a family of cystine knot-containing proteins that contain the consensus sequences Cys-X(1)-Gly-X(2)-Cys and Cys-X(3)-Cys. Previously, we characterized the contributions that cystine residues of the hCG subunit cystine knots make in folding, assembly, and bioactivity. Here, we determined the contributions that noncysteine residues make in hCG folding, secretion, and assembly. When the X(1), X(2), and X(3) residues of hCG-alpha and -beta were substituted by swapping their respective cystine knot motifs, the resulting chimeras appeared to fold correctly and were efficiently secreted. However, assembly of the chimeras with their wild type partner was almost completely abrogated. No single amino acid substitution completely accounted for the assembly inhibition, although the X(2) residue made the greatest individual contribution. Analysis by tryptic mapping, high performance liquid chromatography, and SDS-polyacrylamide gel electrophoresis revealed that substitution of the central Gly in the Cys-X(1)-Gly-X(2)-Cys sequence of either the alpha- or beta-subunit cystine knot resulted in non-native disulfide bond formation and subunit misfolding. This occurred even when the most conservative change possible (Gly --> Ala) was made. From these studies we conclude that all three "X" residues within the hCG cystine knots are collectively, but not individually, required for the formation of assembly-competent hCG subunits and that the invariant Gly residue is required for efficient cystine knot formation and subunit folding.  相似文献   

7.
The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif. The knotted topology and cyclic nature of the cyclotides pose interesting questions about folding mechanisms and how the knotted arrangement of disulfide bonds is formed. In the current study we have examined the oxidative refolding and reductive unfolding of the prototypic cyclotide, kalata B1. A stable two-disulfide intermediate accumulated during oxidative refolding but not in reductive unfolding. Mass spectrometry and NMR spectroscopy were used to show that the intermediate contained a native-like structure with two native disulfide bonds topologically similar to the intermediate isolated for the related cystine knot protein EETI-II (Le-Nguyen, D., Heitz, A., Chiche, L., El Hajji, M., and Castro B. (1993) Protein Sci. 2, 165-174). However, the folding intermediate observed for kalata B1 is not the immediate precursor of the three-disulfide native peptide and does not accumulate in the reductive unfolding process, in contrast to the intermediate observed for EETI-II. These alternative pathways of linear and cyclic cystine knot proteins appear to be related to the constraints imposed by the cyclic backbone of kalata B1 and the different ring size of the cystine knot. The three-dimensional structure of a synthetic version of the two-disulfide intermediate of kalata B1 in which Ala residues replace the reduced Cys residues provides a structural insight into why the two-disulfide intermediate is a kinetic trap on the folding pathway.  相似文献   

8.
Syntheses of two asymmetrical cystine peptides with the amino acid residues 21-25/70-73 and 35-39/56-59, based on the linear amino acid sequence and the disulfide bond assignment in the beta-subunit of human choriogonadotropin (hCG-beta), are described. S-trityl and S-acetamidomethyl peptide fragments of each cystine peptide were prepared in solution phase and were subjected to oxidation with I2/MeOH to form the disulfide bridge. The cystine peptides were characterized by their amino acid analyses and fast atom bombardment mass spectrometry. Immunological characterization by several homologous radioimmunoassay systems showed that peptide 21-25/70-73 had significant hCG, hCG-beta, and hLH activities while peptide 35-39/56-59 failed to reveal any immunoreactivity.  相似文献   

9.
Identification of a protein required for disulfide bond formation in vivo   总被引:89,自引:0,他引:89  
J C Bardwell  K McGovern  J Beckwith 《Cell》1991,67(3):581-589
We describe a mutation (dsbA) that renders Escherichia coli severely defective in disulfide bond formation. In dsbA mutant cells, pulse-labeled beta-lactamase, alkaline phosphatase, and OmpA are secreted but largely lack disulfide bonds. These disulfideless proteins may represent in vivo folding intermediates, since they are protease sensitive and chase slowly into stable oxidized forms. The dsbA gene codes for a 21,000 Mr periplasmic protein containing the sequence cys-pro-his-cys, which resembles the active sites of certain disulfide oxidoreductases. The purified DsbA protein is capable of reducing the disulfide bonds of insulin, an activity that it shares with these disulfide oxidoreductases. Our results suggest that disulfide bond formation is facilitated by DsbA in vivo.  相似文献   

10.
We investigated the in vitro folding of an oxidized proinsulin (methionine‐arginine human lyspro‐proinsulin S‐sulfonate), using cysteine as a reducing agent at 5°C and high pH (10.5–11). Folding intermediates were detected and characterized by means of matrix‐assisted laser desorption ionization mass spectrometry (MALDI‐MS), reversed‐phase chromatography (RPC), size‐exclusion chromatography, and gel electrophoresis. The folding kinetics and yield depended on the protein and cysteine concentrations. RPC coupled with MALDI‐MS analyses indicated a sequential formation of intermediates with one, two, and three disulfide bonds. The MALDI‐MS analysis of Glu‐C digested, purified intermediates indicated that an intra‐A‐chain disulfide bond formed first among A6, A7, and A11. Various non‐native intra‐A (A20 with A6, A7, or A11), intra‐B (between B7 and B19), and inter‐A‐B disulfide bonds were observed in the intermediates with two disulfide bonds. The intermediates with three disulfide bonds had mainly the non‐native intra‐A and intra‐B bonds. At a cysteine‐to‐proinsulin‐SH ratio of 3.5, all intermediates with the non‐native disulfide bonds were converted to properly folded proinsulin via disulfide bond reshuffling, which was the slowest step. Aggregation via the formation of intermolecular disulfide bonds of early intermediates was the major cause of yield loss. At a higher cysteine‐to‐proinsulin‐SH ratio, some intermediates and folded MR‐KPB‐hPI were reduced to proteins with thiolate anions, which caused unfolding and even more yield loss than what resulted from aggregation of the early intermediates. Reducing protein concentration, while keeping an optimal cysteine‐to‐protein ratio, can improve folding yield significantly. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

11.
The unique structures of human choriogonadotropin (hCG) and related glycoprotein hormones make them well suited for studies of protein folding in the endoplasmic reticulum. hCG is stabilized by a strand of its beta-subunit that has been likened to a "seatbelt" because it surrounds alpha-subunit loop 2 and its end is "latched" by an intrasubunit disulfide bond to the beta-subunit core. As shown here, assembly begins when parts of the NH(2) terminus, cysteine knot, and loops 1 and 3 of the alpha-subunit dock reversibly with parts of the NH(2) terminus, cystine knot, and loop 2 of the hCG beta-subunit. Whereas the seatbelt can contribute to the stability of the docked subunit complex, it interferes with docking and/or destabilizes the docked complex when it is unlatched. This explains why most hCG is assembled by threading the glycosylated end of alpha-subunit loop 2 beneath the latched seatbelt rather than by wrapping the unlatched seatbelt around this loop. hCG assembly appears to be limited by the need to disrupt the disulfide that stabilizes the small seatbelt loop prior to threading. We postulate that assembly depends on a "zipper-like" sequential formation of intersubunit and intrasubunit hydrogen bonds between backbone atoms of several residues in the beta-subunit cystine knot, alpha-subunit loop 2, and the small seatbelt loop. The resulting intersubunit beta-sheet enhances the stability of the seatbelt loop disulfide, which shortens the seatbelt and secures the heterodimer. Formation of this disulfide also explains the ability of the seatbelt loop to facilitate latching during assembly by the wraparound pathway.  相似文献   

12.
We have employed Chinese hamster ovary (CHO) cell lines transfected with either the wild type human chorionic gonadotropin beta (hCG-beta) gene alone (CHO beta cells) or in conjunction with the gene expressing the alpha subunit (CHO alpha,beta cells) to study the folding pathway of the hCG-beta subunit. In both CHO beta and CHO alpha,beta cells, the earliest detectable hCG-beta precursor, p beta 1, which had two of six potential disulfide bonds (34-88 and 38-57) formed, was converted to p beta 2, a form that, following the formation of disulfide bonds between cysteines 9-90 and 23-72, migrated more slowly than p beta 1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. The t1/2 for the conversion of p beta 1 to p beta 2 in CHO alpha,beta and CHO beta cells was 5 min, demonstrating that the alpha subunit had no effect on the rate of this conversion. Furthermore, the tryptic-releasable peptides generated from nonreduced p beta 1 or p beta 2 were the same in both CHO alpha,beta and CHO beta cells. Thus, both the rate and order of disulfide bond formation during the conversion of the folding intermediate p beta 1 into p beta 2 were the same whether or not the alpha subunit was present. A comparison between cell types expressing different alpha/beta subunit ratios revealed that the higher the glycoprotein hormone alpha subunit to beta subunit ratio, the greater the rate and extent of hCG heterodimer assembly.  相似文献   

13.
In recent years an increasing number of miniproteins containing an amide-cyclized backbone have been discovered. The cyclotide family is the largest group of such proteins and is characterized by a circular protein backbone and six conserved cysteine residues linked by disulfide bonds in a tight core of the molecule. These form a cystine knot in which an embedded ring formed by two of the disulfide bonds and the connecting backbone segment is threaded by a third disulfide bond. In the current study we have undertaken high resolution structural analysis of two prototypic cyclotides, kalata B1 and cycloviolacin O1, to define the role of the conserved residues in the sequence. We provide the first comprehensive analysis of the topological features in this unique family of proteins, namely rings (a circular backbone), twists (a cis-peptide bond in the M?bius cyclotides) and knots (a knotted arrangement of the disulfide bonds).  相似文献   

14.
The oxidative folding and reductive unfolding pathways of leech carboxypeptidase inhibitor (LCI; four disulfides) have been characterized in this work by structural and kinetic analysis of the acid-trapped folding intermediates. The oxidative folding of reduced and denatured LCI proceeds rapidly through a sequential flow of 1-, 2-, 3-, and 4-disulfide (scrambled) species to reach the native form. Folding intermediates of LCI comprise two predominant 3-disulfide species (designated as III-A and III-B) and a heterogeneous population of scrambled isomers that consecutively accumulate along the folding reaction. Our study reveals that forms III-A and III-B exclusively contain native disulfide bonds and correspond to stable and partially structured species that interconvert, reaching an equilibrium prior to the formation of the scrambled isomers. Given that these intermediates act as kinetic traps during the oxidative folding, their accumulation is prevented when they are destabilized, thus leading to a significant acceleration of the folding kinetics. III-A and III-B forms appear to have both native disulfides bonds and free thiols similarly protected from the solvent; major structural rearrangements through the formation of scrambled isomers are required to render native LCI. The reductive unfolding pathway of LCI undergoes an apparent all-or-none mechanism, although low amounts of intermediates III-A and III-B can be detected, suggesting differences in protection against reduction among the disulfide bonds. The characterization of III-A and III-B forms shows that the former intermediate structurally and functionally resembles native LCI, whereas the III-B form bears more resemblance to scrambled isomers.  相似文献   

15.
Zhang YH  Yan X  Maier CS  Schimerlik MI  Deinzer ML 《Biochemistry》2002,41(52):15495-15504
In vitro oxidative folding of reduced recombinant human macrophage colony stimulating factor beta (rhm-CSFbeta) involves two major events: disulfide isomerization in the monomeric intermediates and disulfide-mediated dimerization. Kinetic analysis of rhm-CSFbeta folding indicated that monomer isomerization is slower than dimerization and is, in fact, the rate-determining step. A time-dependent determination of the number of free cysteines remaining was made after refolding commence. The folding intermediates revealed that rhm-CSFbeta folds systematically, forming disulfide bonds via multiple pathways. Mass spectrometric evidence indicates that native as well as non-native intrasubunit disulfide bonds form in monomeric intermediates. Initial dimerization is assumed to involve formation of disulfide bonds, Cys 157/159-Cys' 157/159. Among six intrasubunit disulfide bonds, Cys 48-Cys 139 and Cys' 48-Cys' 139 are assumed to be the last to form, while Cys 31-Cys' 31 is the last intersubunit disulfide bond that forms. Conformational properties of the folding intermediates were probed by H/D exchange pulsed labeling, which showed the coexistence of noncompact dimeric and monomeric species at early stages of folding. As renaturation progresses, the noncompact dimer undergoes significant structural rearrangement, forming a native-like dimer while the monomer maintains a noncompact conformation.  相似文献   

16.
Narayan M  Welker E  Scheraga HA 《Biochemistry》2003,42(23):6947-6955
A recently developed method is used here to characterize some of the folding intermediates, and the oxidative folding processes, of RNase A. This method is based on the ability of trans-[Pt(en)(2)Cl(2)](2+) to oxidize cysteine residues to form disulfide bonds faster than the disulfide bonds can be rearranged by reshuffling or reduction. Variations of this method have enabled us to address three issues. (i) How the nature of the residual structure and/or conformational order that is present, or develops, during the initial stages of folding can be elucidated. It is shown here that there is a 10-fold increase in the propensity of the unfolded reduced forms of RNase A to form the native set of disulfides directly, compared to the propensity under strongly denaturing conditions (4-6 M GdnHCl). Thus, the unfolded reduced forms of RNase A are not statistical coils with a more condensed form than in the GdnHCl-denatured state; rather, it is suggested that reduced RNase A has a little bias toward a native topology. (ii) The structural characterization of oxidative folding intermediates in terms of disulfide pairing is demonstrated; specifically, a lower-limit estimate is made of the percentage of native disulfide-containing molecules in the two-disulfide ensemble of RNase A. (iii) The critical role of structured intermediate species in determining the oxidative folding pathways of proteins was shown previously. Here, we demonstrate that the presence of a structured intermediate in the oxidative folding of proteins can be revealed by this method.  相似文献   

17.
The formation of native disulfide bonds during in vitro protein folding can be limiting in obtaining biologically active proteins. Thus, optimization of redox conditions can be critical in maximizing the yield of renatured, recombinant proteins. We have employed a folding model, that of the beta subunit of human chorionic gonadotropin (hCG- beta), to investigate in vitro oxidation conditions that facilitate the folding of this protein, and have compared the in vitro rates obtained with the rate of folding that has been observed in intact cells. Two steps in the folding pathway of hCG-beta were investigated: the rate-limiting events in the folding of this protein, and the assembly of hCG-beta with, hCG-alpha. The rates of these folding events were determined with and without protein disulfide isomerase (PDI) using two different types of redox reagents: cysteamine and its oxidized equivalent, cystamine, and reduced and oxidized glutathione. Rates of the rate-limiting folding events were twofold faster in cysteamine/cystamine redox buffers than in glutathione buffers in the absence of PDI. Optimal conditions for hCG-beta folding were attained in a 2 mM glutathione buffer, pH 7.4, that contained 1 mg/mL PDI and in 10muM cysteamine/cystamine, pH 8.7, without PDI. Under these conditions, the half-time of the ratelimiting folding event was 16 to 20 min and approached the rate observed in intact cells (4 to 5 min). Moreover, folding of the beta subunit under these conditions yields a functional protein, based on its ability to assemble with the alpha subunit. The rates of assembly of hCG-beta with hCG-alpha in the cysteamine/cystamine or glutathione/PDI redox buffers were comparable (t(1/2/sb> = 9 to 12 min)). These studies show that rates of folding and assembly events that involve disulfide bond formation can be optimized by a simple buffer system composed of cysteamine and cystamine. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
Two new three-disulfide intermediates have been found to be populated in the oxidative folding pathway of bovine pancreatic ribonuclease A at a low temperature (15 degrees C). These intermediates, des-[26-84] and des-[58-110], possess all but one of the four native disulfide bonds and have a stable tertiary structure, similar to the two previously observed intermediates, des-[65-72] and des-[40-95]. While the latter two des species each lack one surface-exposed disulfide bond, the newly discovered intermediates each lack one buried disulfide bond. The possible involvement of these species in the rate-determining steps during the oxidative folding of RNase A is discussed and a specific role for such species during oxidative folding is suggested.  相似文献   

19.
The aim of this work was to elucidate the oxidative folding mechanism of the macrocyclic cystine knot protein MCoTI-II. We aimed to investigate how the six-cysteine residues distributed on the circular backbone of the reduced unfolded peptide recognize their correct partner and join up to form a complex cystine-knotted topology. To answer this question, we studied the oxidative folding of the naturally occurring peptide using a range of spectroscopic methods. For both oxidative folding and reductive unfolding, the same disulfide intermediate species was prevalent and was characterized to be a native-like two-disulfide intermediate in which the Cys1-Cys18 disulfide bond was absent. Overall, the folding pathway of this head-to-tail cyclized protein was found to be similar to that of linear cystine knot proteins from the squash family of trypsin inhibitors. However, the pathway differs in an important way from that of the cyclotide kalata B1, in that the equivalent two-disulfide intermediate in that case is not a direct precursor of the native protein. The size of the embedded ring within the cystine knot motif appears to play a crucial role in the folding pathway. Larger rings contribute to the independence of disulfides and favor an on-pathway native-like intermediate that has a smaller energy barrier to cross to form the native fold. The fact that macrocyclic proteins are readily able to fold to a complex knotted structure in vitro in the absence of chaperones makes them suitable as protein engineering scaffolds that have remarkable stability.  相似文献   

20.
Ruoppolo M  Vinci F  Klink TA  Raines RT  Marino G 《Biochemistry》2000,39(39):12033-12042
The eight cysteine residues of ribonuclease A form four disulfide bonds in the native protein. We have analyzed the folding of three double RNase A mutants (C65A/C72A, C58A/C110A, and C26A/C84A, lacking the C65-C72, C58-C110, and C26-C84 disulfide bonds, respectively) and two single mutants (C110A and C26A), in which a single cysteine is replaced with an alanine and the paired cysteine is present in the reduced form. The folding of these mutants was carried out in the presence of oxidized and reduced glutathione, which constitute the main redox agents present within the ER. The use of mass spectrometry in the analysis of the folding processes allowed us (i) to follow the formation of intermediates and thus the pathway of folding of the RNase A mutants, (ii) to quantitate the intermediates that formed, and (iii) to compare the rates of formation of intermediates. By comparison of the folding kinetics of the mutants with that of wild-type RNase A, the contribution of each disulfide bond to the folding process has been evaluated. In particular, we have found that the folding of the C65A/C72A mutant occurs on the same time scale as that of the wild-type protein, thus suggesting that the removal of the C65-C72 disulfide bond has no effect on the kinetics of RNase A folding. Conversely, the C58A/C110A and C26A/C84A mutants fold much more slowly than the wild-type protein. The removal of the C58-C110 and C26-C84 disulfide bonds has a dramatic effect on the kinetics of RNase A folding. Results described in this paper provide specific information about conformational folding events in the regions involving the mutated cysteine residues, thus contributing to a better understanding of the complex mechanism of oxidative folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号