首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used microcalorimetry and analytical ultracentrifugation to test the model proposed in Pettigrew et al. [(1999) J. Biol. Chem. 274, 11383-11389] for the binding of small cytochromes to the cytochrome c peroxidase of Paracoccus denitrificans. Both methods reveal complexity in behavior due to the presence of a monomer/dimer equilibrium in the peroxidase. In the presence of either Ca(2+), or higher ionic strength, this equilibrium is shifted to the dimer. Experiments to study complex formation with redox partners were performed in the presence of Ca(2+) in order to simplify the equilibria that had to be considered. The results of isothermal titration calorimetry reveal that the enzyme can bind two molecules of horse cytochrome c with K(d) values of 0.8 microM and 2.5 microM (at 25 degrees C, pH 6.0, I = 0.026) but only one molecule of Paracoccus cytochrome c-550 with a K(d) of 2.8 microM, molar binding ratios confirmed by ultracentrifugation. For both horse cytochrome c and Paracoccus cytochrome c-550, the binding is endothermic and driven by a large entropy change, a pattern consistent with the expulsion of water molecules from the interface. For horse cytochrome c, the binding is weakened 3-fold at I = 0.046 M due to a smaller entropy change, and this is associated with an increase in enzyme turnover. In contrast, neither the binding of cytochrome c-550 nor its oxidation rate is affected by raising the ionic strength in this range. We propose that, at low ionic strength, horse cytochrome c is trapped in a nonproductive orientation on a broad capture surface of the peroxidase.  相似文献   

2.
Efficient biological electron transfer may require a fluid association of redox partners. Two noncrystallographic methods (a new molecular docking program and 1H NMR spectroscopy) have been used to study the electron transfer complex formed between the cytochrome c peroxidase (CCP) of Paracoccus denitrificans and cytochromes c. For the natural redox partner, cytochrome c550, the results are consistent with a complex in which the heme of a single cytochrome lies above the exposed electron-transferring heme of the peroxidase. In contrast, two molecules of the nonphysiological but kinetically competent horse cytochrome bind between the two hemes of the peroxidase. These dramatically different patterns are consistent with a redox active surface on the peroxidase that may accommodate more than one cytochrome and allow lateral mobility.  相似文献   

3.
The size, visible absorption spectra, nature of haem and haem content suggest that the cytochrome c peroxidase of Paracoccus denitrificans is related to that of Pseudomonas aeruginosa. However, the Paracoccus enzyme shows a preference for cytochrome c donors with a positively charged 'front surface' and in this respect resembles the cytochrome c peroxidase from Saccharomyces cerevisiae. Paracoccus cytochrome c-550 is the best electron donor tested and, in spite of an acidic isoelectric point, has a markedly asymmetric charge distribution with a strongly positive 'front face'. Mitochondrial cytochromes c have a much less pronounced charge asymmetry but are basic overall. This difference between cytochrome c-550 and mitochondrial cytochrome c may reflect subtle differences in their electron transport roles. A dendrogram of cytochrome c1 sequences shows that Rhodopseudomonas viridis is a closer relative of mitochondria than is Pa. denitrificans. Perhaps a mitochondrial-type cytochrome c peroxidase may be found in such an organism.  相似文献   

4.
The crystal structure of Paracoccus (formerly Micrococcus) denitrificans cytochrome c550 has been solved by x-ray diffraction to a resolution of 2.45 A. In both amino acid sequence and molecular structure it is evolutionarily homologous with mitochondrial cytochrome c from eukaryotes and photosynthetic cytochrome c2 from purple non-sulfur bacteria. All of these cytochromes c have the same basic folding pattern, with surface insertions of extra amino acids in c550. Various strains of c2 have all, some, or none of the extra insertions observed in c550. The hydrophobic heme environment, position of aromatic rings, and structure and environment of the heme crevice, are virtually identical in cytochromes c55o, c, and c2. Radical changes observed at all regions on the molecular surface except the heme crevice argue for the importance of the crevice and the exposed edge of the heme in the transfer of electrons to and from the cytochrome molecule.  相似文献   

5.
The amino acid sequence of Paracoccus (formerly Micrococcus) denitrificans cytochrome c550 has been established by a combination of standard chemical techniques and interpretation of a 2.5 A resolution x-ray electron density map. Peptides derived from a trypsin digest were chemically sequenced, and then ordered by fitting them to the density map. The amino acid compositions of chymotryptic peptides confirmed the x-ray map ordering the tryptic peptides. The amino acid sequence of this respiratory, prokaryotic cytochrome with 134 residues is discussed in relation to those of eukaryotic respiratory cytochrome c (103 to 113 amino acids), and prokaryotic, photosynthetic c2 (103 to 124 amino acids). At the primary structure level, c and c550 differ no more from cytochromes c2 than the various cytochromes c2 do from one another. It is suggested that the respiratory electron transport chain in prokaryotes and eukaryotes is a relatively late evolutionary offshoot of the photosynthetic electron transport chain in purple non-sulfur bacteria.  相似文献   

6.
Flöck D  Helms V 《Proteins》2002,47(1):75-85
Electron transferring protein complexes form only transiently and the crystal structures of electron transfer protein--protein complexes involving cytochrome c could so far be determined only for the pairs of yeast cytochrome c peroxidase (CcP) with iso-1-cytochrome c (iso-1-cyt c) and with horse heart cytochrome c (cyt c). This article presents models from computational docking for complexes of cytochrome c oxidase (COX) from Paracoccus denitrificans with horse heart cytochrome c, and with its physiological counterpart cytochrome c552 (c552). Initial docking is performed with the FTDOCK program, which permits an exhaustive search of translational and rotational space. A filtering procedure is then applied to reduce the number of complexes to a manageable number. In a final step of structural and energetic refinement, the complexes are optimized by rigid-body energy minimization with the molecular mechanics package CHARMM. This methodology was first tested on the CcP:iso-1-cyt c complex, in which the complex with the lowest CHARMM energy has an RMSD from the crystal structure of only 1.8 A (C(alpha) carbon atoms). Notably, the crystal conformation has an even lower energy. The same procedure was then applied to COX:cyt c and COX:c552. The lowest-energy COX:cyt c complex is very similar to a docking model previously described for the complex of bovine cytochrome c oxidase with horse heart cytochrome c. For the COX:c552 complex, cytochrome c552 is found in two different orientations, depending on whether it is docked against COX from a two-subunit or from a four-subunit crystal structure, respectively. Both conformations are discussed critically in the light of the available experimental data.  相似文献   

7.
V L Davidson  M A Kumar 《FEBS letters》1989,245(1-2):271-273
Electron transfer from periplasmic cytochromes c to the membrane-bound respiratory chain has been studied with the isolated cytochromes and membrane preparations from Paracoccus denitrificans. When reduced cytochromes were incubated with spheroplasts only the constitutive cytochrome c-550 was rapidly oxidized. The inducible cytochromes c-551i and c-553i were not oxidized at appreciable rates. Cytochrome c-550 was able to mediate the transfer of electrons from either cytochrome c-551i or cytochrome c-553i to the membrane preparation.  相似文献   

8.
The transient electron transfer (ET) interactions between cytochrome c1 of the bc1-complex from Paracoccus denitrificans and its physiological redox partners cytochrome c552 and cytochrome c550 have been characterized functionally by stopped-flow spectroscopy. Two different soluble fragments of cytochrome c1 were generated and used together with a soluble cytochrome c552 module as a model system for interprotein ET reactions. Both c1 fragments lack the membrane anchor; the c1 core fragment (c1CF) consists of only the hydrophilic heme-carrying domain, whereas the c1 acidic fragment (c1AF) additionally contains the acidic domain unique to P. denitrificans. In order to determine the ionic strength dependencies of the ET rate constants, an optimized stopped-flow protocol was developed to overcome problems of spectral overlap, heme autoxidation and the prevalent non-pseudo first order conditions. Cytochrome c1 reveals fast bimolecular rate constants (10(7) to 10(8) M(-1) s(-1)) for the ET reaction with its physiological substrates c552 and c550, thus approaching the limit of a diffusion-controlled process, with 2 to 3 effective charges of opposite sign contributing to these interactions. No direct involvement of the N-terminal acidic c1-domain in electrostatically attracting its substrates could be detected. However, a slight preference for cytochrome c550 over c552 reacting with cyochrome c1 was found and attributed to the different functions of both cytochromes in the respiratory chain of P. denitrificans.  相似文献   

9.
The effects of monoclonal antibodies to bovine and Paracoccus denitrificans cytochromes c (Kuo, L.M. and Davies, H.C. (1983) Mol. Immunol. 20, 827-838) in the reactions of the cytochromes c with cytochrome c oxidase, reductase and peroxidase were studied. Spectrophotometric assays were employed, under conditions where binding of cytochrome c to the enzymes appears to be rate-limiting. Less than stoichiometric amounts of antibodies to P. denitrificans cytochrome c added to the cytochrome rendered some of it nonoxidizable or nonreducible by the P. denitrificans membrane-bound electron transport system and decreased the rate constant with the remaining cytochrome c. The antibodies appear to affect both electron transport reactions (blocking effects) with the oxidase and reductase and binding effects (effects on rate constants) and to distinguish between the two. Different ratios of antibody site to cytochrome c gave different extents of blocking of the reductase as compared with the oxidase reaction. Differences were also apparent in the effect of these antibodies on the reaction of yeast peroxidase and the oxidase with the P. denitrificans cytochrome c. Antibodies to bovine and P. denitrificans cytochromes c had considerably less effect on the reactions of the bovine cytochrome with bovine oxidase and reductase. One antibody was inhibitory to the oxidase reaction with bovine cytochrome c, but not to that with the reductase. Also, an antibody which inhibited the oxidase reaction had no effect on the reaction with yeast peroxidase. The data give evidence that the interaction areas on cytochrome c for oxidase and reductase and peroxidase are not identical, although they may be nearby.  相似文献   

10.
C-type cytochromes are characterized by having the heme moiety covalently attached via thioether bonds between the heme vinyl groups and the thiols of conserved cysteine residues of the polypeptide chain. Previously, we have shown the in vitro formation of Hydrogenobacter thermophilus cytochrome c(552) (Daltrop, O., Allen, J. W. A., Willis, A. C., and Ferguson, S. J. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7872-7876). In this work we report that thioether bonds can form spontaneously in vitro between heme and the apocytochromes c from horse heart and Paracoccus denitrificans via b-type cytochrome intermediates. Both apocytochromes, but not the holo forms, bind 8-anilino-1-naphthalenesulfonate, indicating that the apoproteins each have an affinity for a hydrophobic ligand. Furthermore, for both apocytochromes c an intramolecular disulfide can form between the cysteines of the CXXCH motif that is characteristic of c-type cytochromes. In vitro reaction of these apocytochromes c with heme to yield holocytochromes c, and the tendency to form a disulfide, have implications for the different systems responsible for cytochrome c maturation in vivo in various organisms.  相似文献   

11.
12.
J T Hazzard  T L Poulos  G Tollin 《Biochemistry》1987,26(10):2836-2848
The kinetics of reduction by free flavin semiquinones of the individual components of 1:1 complexes of yeast ferric and ferryl cytochrome c peroxidase and the cytochromes c of horse, tuna, and yeast (iso-2) have been studied. Complex formation decreases the rate constant for reduction of ferric peroxidase by 44%. On the basis of a computer model of the complex structure [Poulos, T.L., & Finzel, B.C. (1984) Pept. Protein Rev. 4, 115-171], this decrease cannot be accounted for by steric effects and suggests a decrease in the dynamic motions of the peroxidase at the peroxide access channel caused by complexation. The orientations of the three cytochromes within the complex are not equivalent. This is shown by differential decreases in the rate constants for reduction by neutral flavin semiquinones upon complexation, which are in the order tuna much greater than horse greater than yeast iso-2. Further support for differences in orientation is provided by the observation that, with the negatively charged reductant FMNH., the electrostatic environments near the horse and tuna cytochrome c electron-transfer sites within their respective complexes with peroxidase are of opposite sign. For the horse and tuna cytochrome c complexes, we have also observed nonlinear concentration dependencies of the reduction rate constants with FMNH.. This is interpreted in terms of dynamic motion at the protein-protein interface. We have directly measured the physiologically significant intra-complex one electron transfer rate constants from the three ferrous cytochromes c to the peroxide-oxidized species of the peroxidase. At low ionic strength these rate constants are 920, 730, and 150 s-1 for tuna, horse, and yeast cytochromes c, respectively. These results are also consistent with the contention that the orientations of the three cytochromes within the complex with CcP are not the same. The effect on the intracomplex electron-transfer rate constant of the peroxidase amino acid side chain(s) that is (are) oxidized by the reduction of peroxide was determined to be relatively small. Thus, the rate constant for reduction by horse cytochrome c of the peroxidase species in which only the heme iron atom is oxidized was decreased by only 38%, indicating that this oxidized side-chain group is not tightly coupled to the ferryl peroxidase heme iron. Finally, it was found that, in the absence of cytochrome c, neither of the ferryl peroxidase species could be rapidly reduced by flavin semiquinones.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Although Cys-14 (human numbering) of cytochrome c was conserved during its molecular evolution and it is supposed to be essential for most cytochromes c to retain heme c via two thioether bonds, a site-directedly mutated human cytochrome c which has an alanine residue at this position and only one thioether bond through Cys-17 turns out to be functional. This shows that Cys-14 is not essential. The absorption spectrum of the atypical cytochrome c is red shifted, and similar to those of Euglena and Crithidia cytochromes c, which also have only one thioether bond [Pettigrew, G.W., Leaver, J.L., Meyer, T.E., & Ryle, A.P. (1975) Biochem. J. 147, 291-302].  相似文献   

14.
An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.  相似文献   

15.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans consists of only three polypeptide subunits (Yang, X., and Trumpower, B. L. (1986) J. Biol. Chem. 261, 12282-12289), whereas the analogous complexes of eukaryotic mitochondria consist of nine or more polypeptides (Schagger, H., Link, T. A., Engel, W. D., and von Jagow, G. (1986) Methods Enzymol. 126, 224-237). Using the purified three-subunit Paracoccus complex we have tested whether this simple cytochrome bc1 complex has the same electron transfer pathway and proton translocation activity as the bc1 complexes of mitochondria. Under presteady state conditions, the effects of inhibitors on reduction of cytochromes b and c1 by quinol and oxidant-induced reduction of cytochrome b indicate a cyclic electron transfer pathway and two routes of cytochrome b reduction in the three-subunit Paracoccus cytochrome bc1 complex. A novel method was developed to incorporate the cytochrome bc1 complex into liposomes with the detergent dodecyl maltoside. The enzyme reconstituted into liposomes translocated protons with an H+/2e value of 3.9. Carbonyl cyanide m-chlorophenylhydrazone eliminated proton translocation, while permitting the scalar release of protons from quinol, and thus reduced the H+/2e ratio to 2. These values agree with the predicted stoichiometries for proton translocation by a protonmotive Q cycle pathway. No inhibition of proton translocation by N',N'-dicyclohexylcarbodiimide was detected when the Paracoccus cytochrome bc1 complex was incubated with N',N'-dicyclohexylcarbodiimide before or after reconstitution into liposomes. Electron transfer in the three-subunit complex thus appears to occur by a protonmotive Q cycle pathway identical to that in mitochondrial cytochrome bc1 complexes. Only three polypeptides, cytochromes b, c1, and the Rieske iron-sulfur protein, are required for respiration and energy transduction in the cytochrome bc1 complex. The function of the supernumerary polypeptides in mitochondrial bc1 complexes is thus unclear.  相似文献   

16.
Paracoccus denitrificans strains with mutations in the genes encoding the cytochrome c(550), c(552), or c(1) and in combinations of these genes were constructed, and their growth characteristics were determined. Each mutant was able to grow heterotrophically with succinate as the carbon and free-energy source, although their specific growth rates and maximum cell numbers fell variably behind those of the wild type. Maximum cell numbers and rates of growth were also reduced when these strains were grown with methylamine as the sole free-energy source, with the triple cytochrome c mutant failing to grow on this substrate. Under anaerobic conditions in the presence of nitrate, none of the mutant strains lacking the cytochrome bc(1) complex reduced nitrite, which is cytotoxic and accumulated in the medium. The cytochrome c(550)-deficient mutant did denitrify provided copper was present. The cytochrome c(552) mutation had no apparent effect on the denitrifying potential of the mutant cells. The studies show that the cytochromes c have multiple tasks in electron transfer. The cytochrome bc(1) complex is the electron acceptor of the Q-pool and of amicyanin. It is also the electron donor to cytochromes c(550) and c(552) and to the cbb(3)-type oxidase. Cytochrome c(552) is an electron acceptor both of the cytochrome bc(1) complex and of amicyanin, as well as a dedicated electron donor to the aa(3)-type oxidase. Cytochrome c(550) can accept electrons from the cytochrome bc(1) complex and from amicyanin, whereas it is also the electron donor to both cytochrome c oxidases and to at least the nitrite reductase during denitrification. Deletion of the c-type cytochromes also affected the concentrations of remaining cytochromes c, suggesting that the organism is plastic in that it adjusts its infrastructure in response to signals derived from changed electron transfer routes.  相似文献   

17.
We have devised a relatively simple method for the purification of cytochrome aa3 of Paracoccus denitrificans with three major subunits similar to those of the larger subunits of the mitochondrial cytochrome oxidase. This preparation has no c-type cytochrome. Studies were made of the oxidation of soluble cytochromes c from bovine heart and Paracoccus. The cytochrome-c oxidase activity was stimulated by low concentrations of either cytochrome c, providing an explanation for the multiphasic nature of plots of v/S versus v. Kinetics of the oxidation of bovine cytochrome c by the Paracoccus oxidase resembled those of bovine oxidase with bovine cytochrome c in every way; the Paracoccus oxidase with bovine cytochrome c can serve as an appropriate model for the mitochondrial system. The kinetics of the oxidation of the soluble Paracoccus cytochrome c by the Paracoccus oxidase were different from those seen with bovine cytochrome c, but resembled the latter if poly(L-lysine) was added to the assays. The important difference between the two species of cytochrome c is the more highly negative hemisphere on the side of the molecule way from the heme crevice in the Paracoccus cytochrome. Thus, the data emphasize the importance of all of the charged groups on cytochrome c in influencing the binding or electron transfer reactions of this oxidation-reduction system. The data also permit some interesting connotations about the possible evolution from the bacterial to the mitochondrial electron transport system.  相似文献   

18.
The complete amino acid sequence of cytochrome c551 isolated from an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh 114, was determined. The cytochrome molecule was composed of a total of 119 amino acid residues and its molecular weight including heme was calculated to be 13,235. The sequence was (Sequence: see text). Its molecular weight indicates that this cytochrome is of the L-type. Sequence alignment with other bacterial cytochromes c shows that this cytochrome is similar to cytochromes c of Rhodobacter capsulatus, Rhodobacter sphaeroides, and Paracoccus denitrificans, which were grouped into the alpha-3 subcluster from the 16S rRNA sequence analysis.  相似文献   

19.
Cytochrome oxidase from T. thermophilus is isolated as a noncovalent complex of cytochromes c1 and aa3 in which the four redox components of aa3 appear to be associated with a single approximately 55,000-D subunit while the heme C is associated with a approximately 33,000-D peptide (Yoshida, T., Lorence, R. M., Choc, M. G., Tarr, G. E., Findling, K. L., and Fee, J. A. (1983) J. Biol. Chem. 258, 112-123). We have examined the steady state transfer of electrons from ascorbate to oxygen by cytochrome c1aa3 as mediated by horse heart, Candida krusei, and T. thermophilus (c552) cytochromes c as well as tetramethylphenylenediamine (TMPD). These mediators exhibit simple Michaelis-Menten kinetic behavior yielding Vmax and KM values characteristic of the experimental conditions. Three classes of kinetic behavior were observed and are qualitatively discussed in terms of a reaction scheme. The data show that tetramethylphenyldiamine and cytochromes c react with the enzyme at independent sites; it is suggested that cytochrome c1 may efficiently transfer electrons to cytochrome aa3. When incorporated into phospholipid vesicles, the highly purified cytochrome c1aa3 was found to translocate one proton into the exterior medium for each molecule of cytochrome c552 oxidized. The combined results suggest that this bacterial enzyme functions in a manner generally identical with the more complex eucaryotic enzyme.  相似文献   

20.
A membrane-bound c-type cytochrome, c552, acts as the electron mediator between the cytochrome bc1 complex and cytochrome c oxidase in the branched respiratory chain of the bacterium Paracoccus denitrificans. Unlike in mitochondria where a soluble cytochrome c interacts with both complexes, the bacterial c552, the product of the cycM gene, shows a tripartite structure, with an N-terminal membrane anchor separated from a typical class I cytochrome domain by a highly charged region. Two derivative fragments, lacking either only the membrane spanning region or both N-terminal domains, were constructed on the genetic level, and expressed in Escherichia coli cotransformed with the ccm gene cluster encoding host-specific cytochrome c maturation factors. High levels of cytochromes c were expressed and located in the periplasm as holo-proteins; both these purified c552 fragments are functional in electron transport to oxidase, as ascertained by kinetic measurements, and will prove useful for future structural studies of complex formation by NMR and X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号