首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unfolded protein response: no longer just a special teams player   总被引:2,自引:0,他引:2  
The endoplasmic reticulum stress pathway known as the unfolded protein response is currently the best understood model of interorganellar signal transduction. Bridging a physical separation, the pathway provides a direct line of communication between the endoplasmic reticulum lumen and the nucleus. With the unfolded protein response, the cell has the means to monitor and respond to the changing needs of the endoplasmic reticulum. Beginning with the discovery of its remarkable signaling mechanism in yeast, the unfolded protein response has not ceased to reveal more of its many secrets. By applying powerful biochemical, genetic, genomic, and cytological approaches, the recent efforts of many groups have buried the long-held notion that the unfolded protein response is simply a regulatory platform for endoplasmic reticulum chaperones. We now know that the unfolded protein response regulates many genes that affect diverse aspects of cellular physiology. In addition, studies in mammals have revealed novel unfolded protein response signaling factors that may contribute to the specialized needs of multicellular organisms. This article focuses on these and other recent developments in the field.  相似文献   

2.
Stress on redox     
Bánhegyi G  Benedetti A  Csala M  Mandl J 《FEBS letters》2007,581(19):3634-3640
Redox imbalance in the endoplasmic reticulum lumen is the most frequent cause of endoplasmic reticulum stress and consequent apoptosis. The mechanism involves the impairment of oxidative protein folding, the accumulation of unfolded/misfolded proteins in the lumen and the initiation of the unfolded protein response. The participation of several redox systems (glutathione, ascorbate, FAD, tocopherol, vitamin K) has been demonstrated in the process. Recent findings have attracted attention to the possible mechanistic role of luminal pyridine nucleotides in the endoplasmic reticulum stress. The aim of this minireview is to summarize the luminal redox systems and the redox sensing mechanisms of the endoplasmic reticulum.  相似文献   

3.
The glucose-regulated protein grp94 is related to heat shock protein hsp90   总被引:12,自引:0,他引:12  
We report the sequence of a cDNA clone that encodes the C-terminal half of the hamster 94 X 10(3) Mr glucose-regulated protein, grp94. The amino acid sequence of this protein is about 50% homologous to Drosophila hsp83 and yeast hsp90, suggesting that grp94 and hsp90 have similar functional properties. Unlike hsp90, grp94 is associated with the endoplasmic reticulum. It has the same C-terminal tetrapeptide as two other luminal endoplasmic reticulum proteins, grp78 and protein disulphide isomerase. We suggest that this sequence forms part of a signal for retention of proteins in the lumen of the endoplasmic reticulum.  相似文献   

4.
Peripheral endoplasmic reticulum membrane proteins residing in the lumen of the endoplasmic reticulum occupy the same space as other secreted proteins. The presence of a four amino acid salvage or retention signal (KDEL-COOH = Lys-Asp-Glu-Leu-COOH) at the carboxyl-terminal end of peripheral membrane proteins has been shown to represent a signal or an essential part of a signal for their retention within the endoplasmic reticulum membrane. In heart and skeletal muscle, a number of sarcoplasmic reticulum proteins have recently been identified which are peripheral membrane proteins. The high-affinity calcium-binding protein (55 kilodaltons (kDa] appears to conform to the above described mechanisms and contains the KDEL carboxyl-terminal tetrapeptide. Thyroid hormone binding protein is present in the sarcoplasmic reticulum, in addition to its endoplasmic reticulum location, and has a modified but related tetrapeptide sequence (RDEL = Arg-Asp-Glu-Leu), which also probably functions as the retention signal. Calsequestrin and a 53-kDa glycoprotein, two other peripheral membrane proteins residing in the lumen of the sarcoplasmic reticulum, do not contain the KDEL retention signal. The sarcoplasmic reticulum may have developed a unique retention mechanism(s) for these muscle-specific proteins.  相似文献   

5.
6.
The tripeptide glutathione is the most abundant thiol/disulfide component of the eukaryotic cell and is known to be present in the endoplasmic reticulum lumen. Accordingly, the thiol/disulfide redox status of the endoplasmic reticulum lumen is defined by the status of glutathione, and it has been assumed that reduced and oxidized glutathione form the principal redox buffer. We have determined the distribution of glutathione between different chemical states in rat liver microsomes by labeling with the thiol-specific label monobromobimane and subsequent separation by reversed phase high performance liquid chromatography. More than half of the microsomal glutathione was found to be present in mixed disulfides with protein, the remainder being distributed between the reduced and oxidized forms of glutathione in the ratio of 3:1. The high proportion of the total population of glutathione that was found to be in mixed disulfides with protein has significant implications for the redox state and buffering capacity of the endoplasmic reticulum and, hence, for the formation of disulfide bonds in vivo.  相似文献   

7.
Dicumarol (3,3'-methylenebis[4-hydroxycoumarin]) is an inhibitor of brefeldin-A-dependent ADP-ribosylation that antagonises brefeldin-A-dependent Golgi tubulation and redistribution to the endoplasmic reticulum. We have investigated whether dicumarol can directly affect the morphology of the Golgi apparatus. Here we show that dicumarol induces the breakdown of the tubular reticular networks that interconnect adjacent Golgi stacks and that contain either soluble or membrane-associated cargo proteins. This results in the formation of 65-120-nm vesicles that are sometimes invaginated. In contrast, smaller vesicles (45-65 nm in diameter, a size consistent with that of coat-protein-I-dependent vesicles) that excluded cargo proteins from their lumen are not affected by dicumarol. All other endomembranes are largely unaffected by dicumarol, including Golgi stacks, the ER, multivesicular bodies and the trans-Golgi network. In permeabilized cells, dicumarol activity depends on the function of CtBP3/BARS protein and pre-ADP-ribosylation of cytosol inhibits the breakdown of Golgi tubules by dicumarol. In functional experiments, dicumarol markedly slows down intra-Golgi traffic of VSV-G transport from the endoplasmic reticulum to the medial Golgi, and inhibits the diffusional mobility of both galactosyl transferase and VSV-G tagged with green fluorescent protein. However, it does not affect: transport from the trans-Golgi network to the cell surface; Golgi-to-endoplasmic reticulum traffic of ERGIC58; coat-protein-I-dependent Golgi vesiculation by AlF4 or ADP-ribosylation factor; or ADP-ribosylation factor and beta-coat protein binding to Golgi membranes. Thus the ADP-ribosylation inhibitor dicumarol induces the selective breakdown of the tubular components of the Golgi complex and inhibition of intra-Golgi transport. This suggests that lateral diffusion between adjacent stacks has a role in protein transport through the Golgi complex.  相似文献   

8.
Both 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase isozymes of the yeast Saccharomyces cerevisiae are predicted to contain seven membrane-spanning domains. Previous work had established the utility of the histidinol dehydrogenase protein domain, encoded by HIS4C, as a topologically sensitive monitor that can be used to distinguish between the lumen of the endoplasmic reticulum and the cytoplasm. This study directly tested the structural predictions for HMG-CoA reductase by fusing the HIS4C domain to specific sites in the HMG-CoA reductase isozymes. Yeast cells containing the HMG-CoA reductase-histidinol dehydrogenase fusion proteins grew on histidinol-containing medium if the HIS4C domain was present on the cytoplasmic side of the endoplasmic reticulum membrane but not if the HIS4C domain was targeted to the endoplasmic reticulum lumen. Systematic exchanges of transmembrane domains between the isozymes confirmed that both isozymes had equivalent membrane topologies. In general, deletion of an even number of putative transmembrane domains did not interfere with the topology of the protein, but deletion or duplication of an odd number of transmembrane domains inverted the orientation of the protein. The data confirmed the earlier proposed topology for yeast HMG-CoA reductase, demonstrated that the yeast enzymes are core glycosylated, and provided in vivo evidence that the properties of transmembrane domains were, in part, dependent upon their context within the protein.  相似文献   

9.
The E2 glycoprotein of the alphavirus Sindbis is a typical type I membrane protein with a single membrane spanning domain and a cytoplasmic tail (endo domain) containing 33 amino acids. The carboxyl terminal domain of the tail has been implicated as (a) attachment site for nucleocapsid protein, and (b) signal sequence for integration of the other alpha-virus membrane proteins 6K and E1. These two functions require that the carboxyl terminus be exposed in the cell cytoplasm (a) and exposed in the lumen of the endoplasmic reticulum (b). We have investigated the orientation of this glycoprotein domain with respect to cell membranes by substituting a tyrosine for the normally occurring serine, four amino acids upstream of the carboxyl terminus. Using radioiodination of this tyrosine as an indication of the exposure of the glycoprotein tail, we have provided evidence that this domain is initially translocated into a membrane and is returned to the cytoplasm after export from the ER. This is the first demonstration of such a transient translocation of a single domain of an integral membrane protein and this rearrangement explains some important aspects of alphavirus assembly.  相似文献   

10.
Evidence is presented for an endogenous route of Ag processing for CD4+ T cell recognition of influenza hemagglutinin that requires obligatory traffic of de novo synthesized hemagglutinin across the lumen of the endoplasmic reticulum for processing in a cytosolic compartment. I-Ad-restricted T cell clones that recognize synthetic peptides corresponding to two distinct antigenic regions of the HA1 subunit, HA1 56-76 and HA1 177-199, are cytotoxic and, dependent on epitope specificity can recognize endogenously processed Ag and lyse class II+ target cells infected with a recombinant vaccinia-X31 HA virus. HA1 56-76 specific T cell clones fail to recognize (target cells infected with) influenza X31 viruses, containing a single residue change, HA1 63 Asp----Asn that introduces an oligosaccharide attachment site: Asp63Cys64Thr65. Recognition is restored, however, by tunicamycin treatment of mutant virus infected target cells. Inasmuch as N-glycosylation of nascent hemagglutinin polypeptides occurs in the lumen of the endoplasmic reticulum, this indicates a route of endogenous processing for hemagglutinin, requiring transport across the endoplasmic reticulum, which has been confirmed by the failure of CD4+ T cells to recognize a recombinant VACC-hemagglutinin virus in which the same single residue change, HA1 63 Asp----Asn has been introduced by site directed mutagenesis.  相似文献   

11.
Recent advances in the study of protein translocation across the membrane of the endoplasmic reticulum include insights into the mechanism of signal-sequence function. Biochemical and genetic studies have provided further evidence that lumenal proteins perform direct roles in secretory protein translocation and in the regulation of protein-conducting-channel permeability during membrane protein integration. A hypothesis identifying the endoplasmic reticulum as a site of mRNA localization and compartmentalized protein synthesis has been suggested.  相似文献   

12.
To determine whether antibodies would interfere with the folding of glycoprotein antigens in the endoplasmic reticulum lumen of living cells, hybridoma cells producing monoclonal anti-hemagglutinin (HA) antibodies were infected with influenza virus. The fate of the newly synthesized HA was determined using an established pulse-chase approach. When the monoclonal antibodies were against epitopes present on early folding intermediates, folding and intracellular transport of HA to the Golgi complex were severely disturbed. On the other hand, when the antibodies were specific for the native HA trimers, immune complexes were formed, but folding or transport of HA was not affected. The use of antibodies in this way provided in situ information about the protein folding process inside the endoplasmic reticulum lumen of cells without external perturbation of the folding chains or the folding compartment.  相似文献   

13.
We have analyzed the functional domain structure of rat mammary glucosidase I, an enzyme involved in N-linked glycoprotein processing, using biochemical and immunological approaches. The enzyme contains a high mannose type sugar chain that can be cleaved by endo-beta-N-acetyl-D-glucosaminidase H without significantly affecting the catalytic activity. Based on trypsin digestion pattern and the data on membrane topography, glucosidase I constitutes a single polypeptide chain of 85 kDa with two contiguous domains: a membrane-bound domain that anchors the protein to the endoplasmic reticulum and a luminal domain. A catalytically active 39-kDa domain could be released from membranes by limited proteolysis of saponin-permeabilized membranes with trypsin. This domain appeared to contain the active site of the enzyme and had the ability to bind to glucosidase I-specific affinity gel. Phase partitioning with Triton X-114 indicated the amphiphilic nature of the native enzyme, consistent with its location as an integral membrane protein, whereas the 39-kDa fragment partitioned in the aqueous phase, a characteristic of soluble polypeptide. These results indicate that glucosidase I is a transmembrane protein with a luminally oriented catalytic domain. Such an orientation of the catalytic domain may facilitate the sequential processing of asparagine-linked oligosaccharide, soon after its transfer en bloc by the oligosaccharyl transferase complex in the lumen of endoplasmic reticulum.  相似文献   

14.
Mechanisms of chaperone-mediated autophagy   总被引:10,自引:0,他引:10  
Chaperone-mediated autophagy is one of several lysosomal pathways of proteolysis. This pathway is activated by physiological stresses such as prolonged starvation. Cytosolic proteins with particular peptide sequence motifs are recognized by a complex of molecular chaperones and delivered to lysosomes. No vesicular traffic is required for this protein degradation pathway, so it differs from microautophagy and macroautophagy. Protein substrates bind to a receptor in the lysosomal membrane, the lysosome-associated membrane protein (lamp) type 2a. Levels of lamp2a in the lysosomal membrane are controlled by alterations in the lamp2a half-life as well as by the dynamic distribution of the protein between the lysosomal membrane and the lumen. Substrate proteins are unfolded before transport into the lysosome lumen, and the transport of substrate proteins requires a molecular chaperone within the lysosomal lumen. The exact roles of this lysosomal chaperone remain to be defined. The mechanisms of chaperone-mediated autophagy are similar to mechanisms of protein import into mitochondria, chloroplasts, and the endoplasmic reticulum.  相似文献   

15.
Steroid-binding proteins unrelated to the classical nuclear receptors have been proposed to play a role in non-genomic effects of steroid hormones. We have previously described that the low-affinity glucocorticoid binding protein (LAGS), present in the endoplasmic reticulum of the male rat liver, has pharmacological and biochemical properties different from those of nuclear receptors. The LAGS is under multihormonal regulation and binds glucocorticoids, progestins, and synthetic steroids but is unable to bind either estradiol, testosterone, or triamcinolone acetonide. In this study, we have solubilized the LAGS and investigated their pharmacological and hydrodynamic properties and their peptide composition. We found that LAGS is an integral protein bound to the endoplasmic reticulum. CHAPS provided its optimal solubilization without changes in its pharmacological properties. Hydrodynamic properties of LAGS showed that it has a molecular mass of at least 135 kDa. SDS-PAGE of covalently-labeled LAGS showed that [3H]dexamethasone binds two peptides of 53 and 37 kDa, respectively. Thus, the LAGS appears as an oligomeric protein under multihormonal regulation. The availability of solubilized LAGS and the fact that it can be induced in vivo represent major steps toward purification and understanding the functional significance of this unique steroid-binding protein.  相似文献   

16.
UDP-galactose reaches the Golgi lumen through the UDP-galactose transporter (UGT) and is used for the galactosylation of proteins and lipids. Ceramides and diglycerides are galactosylated within the endoplasmic reticulum by the UDP-galactose:ceramide galactosyltransferase. It is not known how UDP-galactose is transported from the cytosol into the endoplasmic reticulum. We transfected ceramide galactosyltransferase cDNA into CHOlec8 cells, which have a defective UGT and no endogenous ceramide galactosyltransferase. Cotransfection with the human UGT1 greatly stimulated synthesis of lactosylceramide in the Golgi and of galactosylceramide in the endoplasmic reticulum. UDP-galactose was directly imported into the endoplasmic reticulum because transfection with UGT significantly enhanced synthesis of galactosylceramide in endoplasmic reticulum membranes. Subcellular fractionation and double label immunofluorescence microscopy showed that a sizeable fraction of ectopically expressed UGT and ceramide galactosyltransferase resided in the endoplasmic reticulum of CHOlec8 cells. The same was observed when UGT was expressed in human intestinal cells that have an endogenous ceramide galactosyltransferase. In contrast, in CHOlec8 singly transfected with UGT 1, the transporter localized exclusively to the Golgi complex. UGT and ceramide galactosyltransferase were entirely detergent soluble and form a complex because they could be coimmunoprecipitated. We conclude that the ceramide galactosyltransferase ensures a supply of UDP-galactose in the endoplasmic reticulum lumen by retaining UGT in a molecular complex.  相似文献   

17.
Previously we had demonstrated by photoaffinity labeling that a 57-kDa protein of the endoplasmic reticulum can bind and become covalently linked to glycosylatable photoreactive peptides containing the sequence-Asn-Xaa-Ser/Thr-. Subsequently, it was found that this protein, called glycosylation site-binding protein, was a multifunctional protein, i.e. it was identical to protein disulfide isomerase (PDI), the beta-subunit of prolyl hydroxylase and thyroid hormone-binding protein. In this study, the peptide specificity for binding to this 57-kDa protein, hereafter called PDI, has been investigated in more detail using photoaffinity probes. The results reveal that although N-glycosylation by oligosaccharyl transferase in the endoplasmic reticulum has an absolute requirement for an hydroxyamino acid in the third amino acid residue of the glycosylation site sequence, no such specificity is observed in the binding of such peptides to PDI. In addition to the lack of specificity for an hydroxyamino acid in the third residue position, no specificity was observed for the asparagine residue in the first position. Thus, binding is not restricted to peptides containing N-glycosylation sites. We have investigated the discrepancy between this apparent lack of sequence specificity and earlier results indicating that binding of peptides to PDI was specific for N-glycosylation site sequences. We now demonstrate that PDI in the lumen of microsomes is more efficiently labeled by peptides containing photoreactive-Asn-Xaa-Ser/Thr- sequences than by nonacceptor site sequences because the former become glycosylated. This increased labeling does not occur because the glycosylated form of the probes are preferentially recognized by PDI. Rather, it appears that increased polarity of the affinity probe after attachment of the oligosaccharide chain prevents its exit from the sealed microsomes, in effect concentrating it within the lumen of the microsome. These results, coupled with other studies on the multifunctional nature of PDI, suggest that the observed peptide binding may be a manifestation of the ability of PDI to recognize the backbone of polypeptides in the lumen of the endoplasmic reticulum.  相似文献   

18.
To learn about the molecular mechanism of protein translocation across the membrane of the endoplasmic reticulum (ER), the environment of nascent chains during the translocation process has been characterized using a variety of crosslinking approaches. These techniques have led to the identification of several proteins that interact transiently with the newly synthesized protein in the cytosol, during its passage across the membrane of the ER and in the ER lumen. Furthermore, lipids have been found to be in contact with membrane-inserted nascent chains, suggesting that the polypeptide enters the membrane in a protein-lipid interface.  相似文献   

19.
Summary An electron microscope study of developing mouse oocytes has revealed a close morphological relationship between mitochondria and endoplasmic reticulum. In many instances, it was noted that the outer mitochondrial membrane was continuous with the reticular membranes. These cytoplasmic membranes are smooth or studded with ribosomes. These continuities establish an open channel between the endoplasmic reticulum and mitochondria. Similar connections are also found in isolated preparations of mitochondria from the adult guinea pig ovary. The functional significance of these observations are discussed in relation to biochemical studies which demonstrate a transfer of protein from endoplasmic reticulum to mitochondria.  相似文献   

20.
The role of glycosylation in the maturation of the vesicular stomatitis virus (VSV) glycoprotein was studied by use of the antibiotic tunicamycin. Tunicamycin-treated VSV-infected cells synthesize an unglycosylated form of the VSV glycoprotein (R. Leavitt, S. Schlesinger, and S. Kornfeld, J. Virol. 21:375--385, 1977). We have found that tunicamycin has no effect on the attachment of the glycoprotein to intracellular membranes or on the transport of protein to the lumen of the endoplasmic reticulum. However, tunicamycin prevented the migration of the glycoprotein from the rough endoplasmic reticulum to smooth intracellular membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号