首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coronary artery disease (CAD) is a well-known pathological condition that is characterized by high morbidity and mortality. The main pathological manifestation of CAD is myocardial injury due to ischemia–reperfusion (I–R). Currently, no efficacious treatment of protecting the heart against myocardial I–R exists. Hence, it is necessary to discover or develop novel strategies to prevent myocardial-reperfusion injury to improve clinical outcomes in patients with CAD. A large body of experimental evidence supports cardioprotective properties of curcumin and the ability of this phytochemical to modify some cardiovascular risk factors. However, the detailed effects of curcumin in myocardial I–R injury are still unclear and there is a lack of evidence concerning which curcumin regimen may be ideal for myocardial I–R injury. This paper presents a brief review of the pathophysiology of myocardial I–R injury and the mechanisms of action of curcumin in reducing myocardial I–R injury.  相似文献   

2.
The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and Core D1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.  相似文献   

3.
Apoptosis is one of the major mechanisms of cell death during cerebral ischemia and reperfusion injury. Flurbiprofen has been shown to reduce cerebral ischemia/reperfusion injury in both focal and global cerebral ischemia models, but the mechanism remains unclear. This study aimed to investigate the potential association between the neuroprotective effect of flurbiprofen and the apoptosis inhibiting signaling pathways, in particularly the Akt/GSK-3β pathway. A focal cerebral ischemia rat model was subjected to middle cerebral artery occlusion (MCAO) for 120 min and then treated with flurbiprofen at the onset of reperfusion. The infarct volume and the neurological deficit scores were evaluated at 24 h after reperfusion. Cell apoptosis, apoptosis-related proteins and the levels of p-Akt and p-GSK-3β in ischemic penumbra were measured using TUNEL and western blot. The results showed that administration of flurbiprofen at the doses of 5 and 10 mg/kg significantly attenuated brain ischemia/reperfusion injury, as shown by a reduction in the infarct volume, neurological deficit scores and cell apoptosis. Moreover, flurbiprofen not only inhibited the expression of Bax protein and p-GSK-3β, but also increased the expression of Bcl-2 protein, the ratio of Bcl-2/Bax as well as the P-Akt level. Taken together, these results suggest that flurbiprofen protects the brain from ischemia/reperfusion injury by reducing apoptosis and this neuroprotective effect may be partly due to the activation of Akt/GSK-3β signaling pathway.  相似文献   

4.
5.
The aim of the present study was to evaluate the protective effects of the NF-кB inhibition with pyrrolidine-dithiocarbamate (PDTC) in ischemia–reperfusion (I/R) injury in the rat bladder. Twenty-four Sprague-Dawley male rats were divided into three groups. Group I; (n = 8) control, group II; (n = 8) I/R group; group III (n = 8) I/R and PDTC treatment. Superoxide dismutase (SOD), catalase (CAT), and gluatathione-S-transferase (GST) enzymes was studied in bladder tissue. Lipid peroxidation (as TBARS) levels in tissue homogenate were measured with thiobarbituric acid reaction. All the slides were stained with NF-кB, p53 and HSP60 immunohistochemistry for detection genome destruction and tissue stress, respectively. Our results show that the mean TBARS levels were significantly higher in group II (p < 0.05). The TBARS levels were significantly decreased in group III compared with the group II (p < 0.05). CAT, SOD and GST activities were decreased in group II, but these enzymes levels were significantly increased in group III according to the group II (p < 0.05). Under microscopic evaluation NF-кB expression increased significantly in group II compared to the group I (p < 0.05) and then decreased in group III (p < 0.05). HSP60 and p53 expression in group II was increased significantly compared with group I. Under microscopic evaluation we detected that HSP60 and p53 expression was increased significantly in group II compared with group I. In group III PDTC administration was decreased the HSP60 and p53 expression, this difference was statistically significant (p < 0.05). The results of the present study have demonstrated that NF-кB inhibition with PDTC protects and provides beneficial effects on ischemia/reperfusion stress related bladder tissue destruction.  相似文献   

6.
PKC-β inhibitor Ruboxistaurin (RBX or LY333531) can be used to reverse diabetic microvascular complication. However, it has not been previously established whether RBX can protect against ischemia/reperfusion (I/R) injury of cardiac microvessels in diabetic rats. STZ-induced diabetic rats were randomized into four groups and underwent I/R procedures. Cardiac barrier function and the region of cardiac microvascular lesion were examined. Cell monolayer barrier function was detected in cultured cardiac microvascular endothelial cells (CMECs) subjected to simulated I/R (SI/R). PKC-β siRNA was transfected into CMECs to silence PKC-β. Apoptosis Index of CMECs was detected by TUNEL assay and phosphor-LIMK2 protein expression was examined by Western blot analysis. RBX and insulin administration significantly reduced the cardiac microvascular lesion region and Apoptosis Index of endothelial cells (all P < 0.05 vs. no-treatment group). RBX decreased phosphor-LIMK2 expression (P < 0.05 vs. no-treatment group). RBX pretreatment and transfection with PKC-β siRNA induced a rapid barrier enhancement in CMECs monolayer as detected by increased transendothelial electrical resistance (TER) and decreased FITC-dextran clearance (all P < 0.05 vs. no-treatment group). Meanwhile, RBX pretreatment and transfection with PKC-β siRNA significantly decreased TUNEL positive CMECs and phosphor-LIMK2 expression in cultured CMECs (all P < 0.05 vs. no-treatment group). RBX pretreatment reduced F-actin/G-actin in cultured CMECs, reproducing the same effect as PKC-β siRNA. These data indicate that PKC-β inhibitor (RBX) may be helpful in attenuating the risk of severe cardiac microvascular I/R injury in diabetic rats partly due to its maintenance of endothelial barrier function and anti-apoptotic effect.  相似文献   

7.
8.
The role of pacing postconditioning (PPC) in the heart protection against ischemia–reperfusion injury is not completely understood. The aim of this study was to investigated if 17-β-estradiol (estrogen, E2), endogenous atrial natriuretic peptide (ANP), endogenous brain natriuretic peptide (BNP), and tumor necrosis factor-alpha (TNF-α) are involved in PPC-mediated protection. Langendorff perfused female Wistar rat hearts were used for this study. Hearts challenged with regional ischemia for 30 min subjected to no further treatment served as a control. The PPC protocol was 3 cycles of 30 s pacing alternated between the right atrium and left ventricle (LV). Protection was assessed by recovery of LV contractility and coronary vascular–hemodynamics. Ischemia induced a significant (P?<?0.05) deterioration in the heart function compared with baseline data. PPC alone or in combination with short-term E2 treatment (E2 infusion at the beginning of reperfusion) significantly (P?<?0.05) improved the heart functions. Short-term E2 treatment post-ischemically afforded protection similar to that of PPC. However, long-term E2 substitution for 6 weeks completely attenuated the protective effects of PPC. Although no changes were noted in endogenous ANP levels, PPC significantly increased BNP expression level and decreased TNF-α in the cardiomyocyte lysate and coronary effluent compared to ischemia and controls. Our data suggested a protective role for short-term E2 treatment similar to that of PPC mediated by a pathway recruiting BNP and downregulating TNF-α. Our study further suggested a bad influence for long-term E2 substitution on the heart as it completely abrogated the protective effects of PPC.  相似文献   

9.
Hydroxysafflor Yellow A has been demonstrated to attenuate pressure overloaded hypertrophy in rats and inhibit platelet aggregation. Herein we found that Hydroxysafflor Yellow A prevented cerebral ischemia–reperfusion injury by inhibition of thrombin generation. In addition, treatment with Hydroxysafflor Yellow A significantly inhibited NF-κB p65 nuclear translation and p65 binding activity, both mRNA and protein levels of ICAM-1 and the infiltration of neutrophils. Mean while, Hydroxysafflor Yellow A had the capacity to improve neurological deficit scores, increase the number of the surviving hippocampal CA1 pyramidal cells and decrease the plasma angiotensin II level. These results illustrated that anti-cerebral ischemic mechanism of Hydroxysafflor Yellow A may be due to its suppression of thrombin generation and inhibition of thrombin-induced inflammatory responses by reducing angiotensin II content.  相似文献   

10.
11.
MicroRNAs are extensively involved in the pathogenesis of major cardiovascular diseases by suppressing target gene expression. Recent studies have reported that microRNA-22 (miR-22) may be implicated in ischemia–reperfusion (I/R) induced myocardial injury. However, the specific function of miR-22 in myocardial I/R injury is far from clear nowadays. The present study was designed to determine the role of miR-22 in myocardial I/R injury and investigate the underlying cardio-protective mechanism. The rat myocardial I/R injury model was induced by occluding the left anterior descending coronary artery for 30 min followed by 12 h reperfusion. As predicted, adenovirus-mediated miR-22 overexpression markedly reduced the release of creatine kinase and lactate dehydrogenase, infarct size and cardiomyocytes apoptosis. Moreover, CREB binding protein (CBP) as a potential miR-22 target by bioinformatics was significantly inhibited after miR-22 transfection. We also found that p53 acetylation activity, pro-apoptotic related genes Bax and p21 levels were all decreased associated with the down-regulation of CBP. In conclusion, our data demonstrate that miR-22 could inhibit apoptosis of cardiomyocytes through one of its targets, CBP. Thus, miR-22 may constitute a new therapeutic target for the prevention of myocardial I/R injury.  相似文献   

12.
Disruptions of the circadian rhythm and reduced circulating levels of the circadian hormone melatonin predispose to ischemic stroke. Although the nuclear receptor RORα is considered as a circadian rhythm regulator and a mediator of certain melatonin effects, its potential role in cerebral ischemia-reperfusion (CI/R) injury and in the neuroprotective effects of melatonin remain undefined. Here, we observed that CI/R injury in RORα-deficient mice was associated with greater cerebral infarct size, brain edema, and cerebral apoptosis compared with wild-type model. In contrast, transgenic mice with brain-specific overexpression of RORα versus non-transgenic controls exerted significantly reduced infarct volume, brain edema and apoptotic response induced by CI/R. Mechanistically, RORα deficiency was found to exacerbate apoptosis pathways mediated by endoplasmic-reticulum stress and mitochondria and aggravate oxidative/nitrative stress after CI/R. Further studies revealed that RORα deficiency intensified the activation of nuclear factor-κB signaling induced by CI/R. Given the emerging evidence of RORα as an essential melatonin activity mediator, we further investigated the RORα roles in melatonin-exerted neuroprotection against acute ischemic stroke. Melatonin treatment significantly decreased infarct volume and cerebral apoptosis; mitigated endoplasmic reticulum stress and mitochondrial dysfunction; and inhibited CI/R injury-induced oxidative/nitrative stress and nuclear factor-κB activation, which was eradicated in RORα-deficient mice. Collectively, current findings suggest that RORα is a novel endogenous neuroprotective receptor, and a pivotal mediator of melatonin's suppressive effects against CI/R injury.  相似文献   

13.
The expression level of CC-chemokine receptor 5 (CCR5) is enhanced post inflammatory stimulations and might play a crucial role on inflammatory cells infiltration post myocardial ischemia. The purpose of this study was to evaluate the role of CCR5 on myocardial ischemia–reperfusion (I/R) injury in rats. Adult male rats were randomized to sham group, I/R group (I/R, 30 min coronary artery occlusion followed by 2-h reperfusion), ischemic preconditioning (I/R + Pre), CCR5 antibody group [I/R + CCR5Ab (0.2 mg/kg)], and CCR5 agonist group [I/R + CCR5Ago, RNATES (0.1 mg/kg)], n = 12 each group. The serum level of creatine kinase (CK) and tumor necrosis factor α (TNF-α) were measured by ELISA. Myocardial infarction size and myeloperoxidase (MPO) activity were determined. Myocardial protein expression of CCR5 and intercellular adhesion molecule-1 (ICAM-1) were evaluated by Western blotting and immunohistochemistry staining, respectively. Myocardial nuclear factor-kappa B (NF-κB) activity was assayed by electrophoretic mobility shift assay. Myocardial CCR5 protein expression was significantly reduced in I/R + Pre group (P < 0.05 vs. I/R) and further reduced in I/R + CCR5Ab group (P < 0.05 vs. I/R + Pre). LVSP and ±dP/dt max were significantly lower while serum CK and TNF-α as well as myocardial MPO activity, ICAM-1 expression, and NF-κB activity were significantly higher in I/R group than in sham group (all P < 0.05), which were significantly reversed by I/R + Pre (all P < 0.05 vs. I/R) and I/R + CCR5Ab (all P < 0.05 vs. I/R + Pre) while aggravated by I/R + CCR5Ago (all P < 0.05 vs. I/R). Our results suggest that blocking CCR5 attenuates while enhancing CCR5 aggravates myocardial I/R injury through modulating inflammatory responses in rat heart.  相似文献   

14.

Natural products from medicinal plants have always attracted a lot of attention due to their diverse and interesting therapeutic properties. We have employed the principles of green chemistry involving isomerization, coupling and condensation reaction to synthesize a class of compounds derived from eugenol, a naturally occurring bioactive phytophenol. The compounds were characterized structurally by 1H-, 13C-NMR, FT-IR spectroscopy and mass spectrometry analysis. The purity of compounds was detected by HPLC. The synthesized compounds exhibited anti-cancer activity. A 10–12-fold enhancement in efficiency of drug molecules (~?1 µM) was observed when delivered with graphene oxide (GO) as a nanovehicle. Our data suggest cell death via apoptosis in a dose-dependent manner due to increase in calcium levels in specific cancer cell lines. Interestingly, the benzoxazine derivatives of eugenol with GO nanoparticle exhibited enhanced therapeutic potential in cancer cells. In addition to anti-cancer effect, we also observed significant role of these derivatives on parasite suggesting its multi-pharmacological capability.

  相似文献   

15.
Necroptosis, a novel type of programmed cell death, is involved in ischemia–reperfusion-induced brain injury. Sirtuin 1 (Sirt1), as a well-known member of histone deacetylase class III, plays pivotal roles in inflammation, metabolism, and neuron loss in cerebral ischemia. We explored the relationship between Sirt1 and the necroptosis signaling pathway and its downstream events by administration of ex-527, as a selective and potent inhibitor of Sirt1, and necrostatin-1 (nec-1), as a necroptosis inhibitor, in an animal model of focal cerebral ischemia. Our data showed different patterns of sirt1 and necroptosis critical regulators, including receptor-interacting protein kinase 3 and mixed lineage kinase domain–like protein gene expressions in the prefrontal cortex and the hippocampus after ischemia–reperfusion. We found that ex-527 microinjection reduces the infarction volume of ischemic brains and improves the survival rate, but not stroke-associated neurological deficits. Additionally, treatment with ex-527 effectively abolished the elevation of the critical regulators of necroptosis, whereas necroptosis inhibition through nec-1 microinjection did not influence Sirt1 expression levels. Our data also demonstrated that the ex-527 relieves ischemia-induced perturbation of necroptosis-associated metabolic enzymes activity in downstream. This study provides a new approach to the possible neuroprotective potential of ex-527 orchestrated by necroptosis pathway inhibition to alleviate ischemia–reperfusion brain injury.  相似文献   

16.
Fan  Lichao  Zhou  Lichun 《Molecular biology reports》2021,48(4):3475-3484
Molecular Biology Reports - Ischemia–reperfusion frequently occurs in ischemic cerebral vascular disease, during which the inflammatory signaling plays essential roles. The aim of this study...  相似文献   

17.
Aim: Numerous studies have demonstrated the possible neuroprotective role of lithium treatment against neurological disorders. However, the role of lithium in delayed phase of neuronal death against focal ischemia has not been explored. Therefore, the present study was designed to investigate the effect and molecular mechanisms of post-lithium treatment against cerebral ischemic reperfusion (I/R) injury and associated cognitive deficits in rats. Methods: I/R injury was induced by right middle cerebral artery occlusion and lithium (40 and 60?mg/kg) were given intraperitoneally, 24?h after the insult and continued for 1 week with 24-h interval. Using Lasser Doppler, cerebral blood flow was monitored before, during and after MCAO induction. Besides behavioral, biochemical, and histological evaluation, levels of tumor necrosis factor alpha (TNF-α) and brain-derived neurotrophic factor (BDNF) were also estimated. Results: I/R injury resulted in significant elevation of neurological deficits, oxidative stress, neuroinflammation, and cognitive impairments. We found that lithium injection, 24?h after I/R-injury continued for 1 week, dose dependently prevented behavioral abnormality and cognitive impairments. Moreover, lithium attenuated the levels of oxidative stress and pro-inflammatory-cytokines TNF-α level. Further, lithium treatments significantly reduced neuronal damage and augmented healthy neuronal count and improved neuronal density in hippocampus. These neuroprotective effects of delayed lithium treatment were associated with upregulation of neurotrophic factor BDNF levels. Conclusion: Delayed lithium treatment provides neuroprotection against cerebral I/R injury and associated cognitive deficits by upregulating BDNF expression that opens a new avenue to treat I/R injury even after active cell death.  相似文献   

18.
Wu  Yikun  Shi  Hua  Xu  Yuangao  Pei  Jun  Song  Shang  Chen  Wei  Xu  Shuxiong 《Molecular and cellular biochemistry》2022,477(6):1873-1885

Renal ischemia–reperfusion (I/R) injury is one of the most common causes of chronic kidney disease (CKD). It brings unfavorable outcomes to the patients and leads to a considerable socioeconomic burden. The study of renal I/R injury is still one of the hot topics in the medical field. Ebselen is an organic selenide that attenuates I/R injury in various organs. However, its effect and related mechanism underlying renal I/R injury remains unclear. In this study, we established a rat model of renal I/R injury to study the preventive effect of ebselen on renal I/R injury and further explore the potential mechanism of its action. We found that ebselen pretreatment reduced renal dysfunction and tissue damage caused by renal I/R. In addition, ebselen enhanced autophagy and inhibited oxidative stress. Additionally, ebselen pretreatment activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The protective effect of ebselen was suppressed by autophagy inhibitor wortmannin. In conclusion, ebselen could ameliorate renal I/R injury, probably by enhancing autophagy, activating the Nrf2 signaling pathway, and reducing oxidative stress.

  相似文献   

19.

Background  

Paraplegia remains a potential complication of spinal cord ischemic reperfusion injury (IRI) in which oxidative stress induced cyclooxygenase activities may contribute to ischemic neuronal damage. Prolonged administration of vitamin E (α-TOL), as a potent biological antioxidant, may have a protective role in this oxidative inflammatory ischemic cascade to reduce the incidence of paraplegia. The present study was designed to evaluate the preventive value of α-TOL in IRI of spinal cord.  相似文献   

20.
To elucidate the involvement of monoamine oxidase (MAO) in hydroxyl radical production and cardiomyocyte injury during ischemia as well as after reperfusion, we applied microdialysis technique to the heart of anesthetized rats. Dialysate samples were collected during 30?min of induced ischemia followed by 60?min of reperfusion. We monitored dialysate 3,4-dihydrobenzoic acid (3,4-DHBA) concentration as an index of hydroxyl radical production using a trapping agent (4-hydroxybenzoic acid), and dialysate myoglobin concentration as an index of cardiomyocyte injury in the ischemic region. The effect of local administration of a MAO inhibitor, pargyline, was investigated. Dialysate 3,4-DHBA concentration increased from 1.9?±?0.5?nM at baseline to 3.5?±?0.7?nM at 20–30?min of occlusion. After reperfusion, dialysate 3,4-DHBA concentration further increased reaching a maximum (4.5?±?0.3?nM) at 20–30?min after reperfusion, and stabilized thereafter. Pargyline suppressed the averaged increase in dialysate 3,4-DHBA concentration by ~72% during occlusion and by ~67% during reperfusion. Dialysate myoglobin concentration increased from 235?±?60?ng/ml at baseline to 1309?±?298?ng/ml at 20–30?min after occlusion. After reperfusion, dialysate myoglobin concentration further increased reaching a peak (5833?±?1017?ng/ml) at 10–20?min after reperfusion, and then declined. Pargyline reduced the averaged dialysate myoglobin concentration by ~56% during occlusion and by ~41% during reperfusion. MAO plays a significant role in hydroxyl radical production and cardiomyocyte injury during ischemia as well as after reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号