首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicobacter pylori, the causative agent of type B gastritis, peptic ulcers, gastric adenocarcinoma and MALT lymphoma, uses the Cag type IV secretion system to induce a strong proinflammatory response in the gastric mucosa and to inject its effector protein CagA into gastric cells. CagA translocation results in altered host cell gene expression profiles and cytoskeletal rearrangements, and it is considered as a major bacterial virulence trait. Recently, it has been shown that binding of the type IV secretion apparatus to integrin receptors on target cells is a crucial step in the translocation process. Several bacterial proteins, including the Cag-specific components CagL and CagI, have been involved in this interaction. Here, we have examined the localization and interactions of CagI in the bacterial cell. Since the cagI gene overlaps and is co-transcribed with the cagL gene, the role of CagI for type IV secretion system function has been difficult to assess, and conflicting results have been reported regarding its involvement in the proinflammatory response. Using a marker-free gene deletion approach and genetic complementation, we show now that CagI is an essential component of the Cag type IV secretion apparatus for both CagA translocation and interleukin-8 induction. CagI is distributed over soluble and membrane-associated pools and seems to be partly surface-exposed. Deletion of several genes encoding essential Cag components has an impact on protein levels of CagI and CagL, suggesting that both proteins require partial assembly of the secretion apparatus. Finally, we show by co-immunoprecipitation that CagI and CagL interact with each other. Taken together, our results indicate that CagI and CagL form a functional complex which is formed at a late stage of secretion apparatus assembly.  相似文献   

2.
Wang H  Han J  Chen D  Duan X  Gao X  Wang X  Shao S 《Current microbiology》2012,64(2):191-196
Helicobacter pylori is a highly successful human-specific gastric pathogen that infects up to 50% of the world’s population. Virulent H. pylori isolates harbor the cytotoxin-associated genes pathogenicity island (cag-PAI), which encodes a type IV secretion system that translocates bacterial effector (e.g., CagA oncoprotein) molecules into host cells. Although some cag-PAI genes are shown to be required for CagA delivery or localization, the majority have no known function. In the current study, the authors performed a cell components fractionation assay and showed that CagI, one of the cag-PAI proteins located in the bacterial membrane, was not translocated into host cells. The homologous recombination method then was used to construct the isogenic mutant of H. pylori cagI, and the translocation assay was performed. The results showed that the isogenic mutant of H. pylori NCTC 11637 cagI could cause a reduction in the degree of CagA translocation. Overall, the results suggested that CagI might be an accessory component of the CagA secretion system not translocated into host cells and that it is located in the bacterial membrane.  相似文献   

3.
Type IV secretion systems are possibly the most versatile protein transport systems in gram-negative bacteria, with substrates ranging from small proteins to large nucleoprotein complexes. In many cases, such as the cag pathogenicity island of Helicobacter pylori, genes encoding components of a type IV secretion system have been identified due to their sequence similarities to prototypical systems such as the VirB system of Agrobacterium tumefaciens. The Cag type IV secretion system contains at least 14 essential apparatus components and several substrate translocation and auxiliary factors, but the functions of most components cannot be inferred from their sequences due to the lack of similarities. In this study, we have performed a comprehensive sequence analysis of all essential or auxiliary Cag components, and we have used antisera raised against a subset of components to determine their subcellular localization. The results suggest that the Cag system contains functional analogues to all VirB components except VirB5. Moreover, we have characterized mutual stabilization effects and performed a comprehensive yeast two-hybrid screening for potential protein-protein interactions. Immunoprecipitation studies resulted in identification of a secretion apparatus subassembly at the outer membrane. Combining these data, we provide a first low-resolution model of the Cag type IV secretion apparatus.  相似文献   

4.
Many pathogenic Gram‐negative bacteria possess type IV secretion systems (T4SS) to inject effector proteins directly into host cells to modulate cellular processes to their benefit. The human bacterial pathogen Helicobacter pylori, a major aetiological agent in the development of chronic gastritis, duodenal ulcer and gastric carcinoma, harbours the cag‐T4SS to inject the cytotoxin associated Antigen (CagA) into gastric epithelial cells. This results in deregulation of major signalling cascades, actin‐cytoskeletal rearrangements and eventually gastric cancer. We show here that a pre‐infection with live H. pylori has a dose‐dependent negative effect on the CagA translocation efficiency of a later infecting strain. This effect of the ‘first’ strain was independent of any of its T4SS, the vacuolating cytotoxin (VacA) or flagella. Other bacterial pathogens, e.g. pathogenic Escherichia coli, Campylobacter jejuni, Staphylococcus aureus, or commensal bacteria, such as lactobacilli, were unable to interfere with H. pylori's CagA translocation capacity in the same way. This interference was independent of the β1 integrin receptor availability for H. pylori, but certain H. pylori outer membrane proteins, such as HopI, HopQ or AlpAB, were essential for the effect. We suggest that the specific interference mechanism induced by H. pylori represents a cellularresponse to restrict and control CagA translocation into a host cell to control the cellular damage.  相似文献   

5.
Type IV secretion systems are increasingly recognized as important virulence determinants of Gram-negative bacterial pathogens. While the examination of several type IV-secreted proteins suggested that their secretion depends on C-terminal signals, the nature of these signals and their conservation among different systems remain unclear. Here, we have characterized the secretion signal of the Helicobacter pylori CagA protein, which is translocated by the Cag type IV secretion apparatus into eucaryotic cells. The production of fusion proteins of CagA and green fluorescent protein (GFP) did not result in translocation of GFP to epithelial cells, but a fusion of GFP with the CagA C-terminus exerted a dominant-negative effect upon wild-type CagA translocation. We show that CagA translocation depends on the presence of its 20 C-terminal amino acids, containing an array of positively charged residues. Interestingly, these positive charges are neither necessary nor sufficient for CagA translocation, but replacing the C-terminal region of CagA with that of other type IV-secreted proteins reconstitutes CagA translocation competence. Using a novel type IV translocation assay with a phosphorylatable peptide tag, we show that removal of the N-terminal part of the CagA protein renders the protein translocation-incompetent as well. Thus, the Cag type IV secretion system seems to diverge from other systems not only with respect to its composition and architecture, but also in terms of substrate recognition and transport.  相似文献   

6.
万秀坤  刘纯杰 《微生物学报》2016,56(12):1821-1830
幽门螺杆菌感染是导致从胃炎到胃癌等一系列胃相关疾病的主要病因,但具体的致病机制仍不是很清楚。细胞毒素相关蛋白A(cytotoxin-associated gene A,Cag A)是幽门螺杆菌编码的一种重要毒力因子,且作为细菌来源的唯一癌蛋白被大量研究。Cag A蛋白是由幽门螺杆菌Ⅳ型分泌系统介导并注入宿主胃上皮细胞内,一旦进入细胞,Cag A能够与多个分子发生相互作用,扰乱细胞正常的信号通路,引起细胞病变和转化,而动物实验也证明了Cag A蛋白的致癌特点。本文重点对Cag A蛋白的序列特征,转位方式及致病机制等方面的最新进展进行了综述,希望能进一步阐释Cag A介导的幽门螺杆菌的致病机制,为以后的研究提供一定的方向和指导。  相似文献   

7.
The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown.  相似文献   

8.
The lack of a versatile system to control gene expression in Helicobacter pylori has hampered efforts to study H. pylori physiology and pathogenesis. To overcome these limitations, we evaluated the utility of an inducible system based on the well-characterized Tet repressor (TetR) and Tet operator (tetO). As validation of this system, we introduced three copies of tetO into the promoter region upstream of the cagUT operon (encoding two virulence factors required for function of the H. pylori Cag type IV secretion system) and expressed tetR by introducing a codon-optimized gene into the chromosomal ureA locus. Introduction of the tetO copies upstream of cagUT did not disrupt promoter activity, as determined by immunoblotting for CagT. The subsequent introduction of tetR, however, did repress CagT synthesis. Production of CagT was restored when strains were cultured in the presence of the inducer, anhydrotetracycline. To demonstrate one potential application of this new tool, we analyzed the function of the Cag type IV secretion system. When the modified H. pylori strains were co-cultured with AGS cells, activity of the Cag type IV secretion system was dependent on the presence of anhydrotetracycline as evidenced by inducer-dependent induction of IL-8 secretion, CagA translocation, and appearance of type IV secretion system pili at the bacteria–host interface. These studies demonstrate the effectiveness of the tetRtetO system to control gene expression in H. pylori and provide an improved system for studying H. pylori physiology and pathogenesis.  相似文献   

9.
Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type‐IV secretion system. Injected CagA becomes tyrosine‐phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation‐dependent and phosphorylation‐independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high‐resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence‐associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a ‘master key’ that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin‐cytoskeletal rearrangements and the disruption of cell‐to‐cell junctions as well as proliferative, pro‐inflammatory and anti‐apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon.  相似文献   

10.
Helicobacter pylori (H. pylori) is a human gastric pathogen that colonizes the stomach in more than 50 % of the world’s human population. Infection with this bacterium can induce several gastric diseases ranging from gastritis to peptic ulcer and gastric cancer. Virulent H. pylori isolates harboring the cag pathogenicity island (cag PAI), which encodes a Type IV Secretion System (T4SS), form a pilus for the injection of its major virulence protein CagA into gastric cells. Several cag PAI genes have been identified as homologues of T4SS genes from Agrobacterium tumefaciens, while the other members in cag PAI still have no known function. We studied one of such proteins with unknown function, CagM, which was predicted to have a putative N-terminal signal sequence and at least three transmembrane helices. To determine the subcellular localization of CagM, we performed a cell fractionation procedure and produced rabbit anti-CagM polyclonal antibodies for immunoblotting assays. Furthermore, we generated an isogenic ΔcagM mutant to investigate the ability of CagA translocation compared with the wild-type NCTC 11637 strain using GES-1 and MKN-45 cell infection experiments. Our results indicated that CagM was mainly located in the bacterial membrane, partially located in the periplasm, and essential for CagA translocation both in GES-1 and MKN-45 cells, which suggested that CagM was one of the core members of Cag T4SS and localized in the transmembrane channel.  相似文献   

11.
Helicobacter pylori is a paradigm of persistent pathogens and major risk factor for developing severe diseases including adenocarcinoma in the human stomach. An important bacterial factor linked to gastric disease progression is the cag pathogenicity island‐encoded type‐IV secretion system (T4SS) effector protein CagA. Translocated CagA undergoes tyrosine phosphorylation at EPIYA‐motifs and then activates or inactivates multiple host signaling proteins in a phosphorylation‐dependent and phosphorylation‐independent fashion. In this way, intracellular CagA acts as a ‘masterkey’ or ‘picklock’, which evolved during evolution to hijack key host cell signal transduction functions. Crucial targets of CagA represent a variety of serine/threonine and tyrosine kinases, which control major checkpoints of eukaryotic signaling. Here we review the signal transmission by translocated CagA on multiple receptor kinases (c‐Met and EGFR) and non‐receptor kinases (Src, Abl, Csk, aPKC, Par1, PI3K, Akt, FAK, GSK‐3, JAK, PAK1, PAK2 and MAP kinases), manipulating a selection of fundamental processes in the human gastric epithelium such as cell adhesion, polarity, proliferation, motility, receptor endocytosis, cytoskeletal rearrangements, apoptosis, inflammation and cell cycle progression. This enormous complexity generates a highly remarkable and puzzling scenario during H. pylori infection. The contribution of these signaling pathways to bacterial survival, persistence and gastric pathogenesis is discussed.  相似文献   

12.
Helicobacter pylori represents an important pathogen involved in diseases ranging from gastritis, peptic ulceration, to gastric malignancies. Prominent virulence factors comprise the vacuolating cytotoxin VacA and the cytotoxin‐associated genes pathogenicity island (cagPAI)‐encoded type IV secretion system (T4SS). The T4SS effector protein CagA can be translocated into AGS and other gastric epithelial cells followed by phosphorylation through c‐Src and c‐Abl tyrosin kinases to hijack signalling networks. The duodenal cell line AZ‐521 has been recently introduced as novel model system to investigate CagA delivery and phosphorylation in a VacA‐dependent fashion. In contrast, we discovered that AZ‐521 cells display a T4SS incompetence phenotype for CagA injection, which represents the first reported gastrointestinal cell line with a remarkable T4SS defect. We proposed that this deficiency may be due to an imbalanced coexpression of T4SS receptor integrin‐β1 or carcinoembryonic antigen‐related cell adhesion molecules (CEACAMs), which were described recently as novel H. pylori receptors. We demonstrate that AZ‐521 cells readily express integrin‐β1, but overexpression of integrin‐β1 constructs did not restore the T4SS defect. We further show that AZ‐521 cells lack the expression of CEACAMs. We demonstrate that genetic introduction of either CEACAM1 or CEACAM5, but not CEACAM6, in AZ‐521 cells is sufficient to permit injection and phosphorylation of CagA by H. pylori to degrees observed in the AGS cell model. Expression of CEACAM1 or CEACAM5 in infected AZ‐521 cells was also accompanied by tyrosine dephosphorylation of the cytoskeletal proteins vinculin and cortactin, a hallmark of H. pyloriinfected AGS cells. Our results suggest the existence of an integrin‐β1‐ and CEACAM1‐ or CEACAM5‐dependent T4SS delivery pathway for CagA, which is clearly independent of VacA. The presence of two essential host protein receptors during infection with H. pylori represents a unique feature in the bacterial T4SS world. Further detailed investigation of these T4SS functions will help to better understand infection strategies by bacterial pathogens.  相似文献   

13.
The cag-pathogenicity-island-encoded type IV secretion system of Helicobacter pylori functions to translocate the effector protein CagA directly through the plasma membrane of gastric epithelial cells. Similar to other secretion systems, the Cag type IV secretion system elaborates a surface filament structure, which is unusually sheathed by the large cag-pathogenicity-island-encoded protein CagY. CagY is distinguished by unusual amino acid composition and extensive repetitive sequence organised into two defined repeat regions. The second and major repeat region (CagYrpt2) has a regular disposition of six repetitive motifs, which are subject to deletion and duplication, facilitating the generation of CagY size and phenotypic variants. In this study, we show CagYrpt2 to comprise two highly thermostable and acid-stable α-helical structural motifs, the most abundant of which (motif A) occurs in tandem arrays of one to six repeats terminally flanked by single copies of the second repeat (motif B). Isolated motifs demonstrate hetero- and homomeric interactions, suggesting a propensity for uniform assembly of discrete structural subunit motifs within the larger CagYrpt2 structure. Consistent with this, CagY proteins comprising substantially different repeat 2 motif organisations demonstrate equivalent CagA translocation competence, illustrating a remarkable structural and functional tolerance for precise deletion and duplication of motif subunits. We provide the first insight into the structural basis for CagYrpt2 assembly that accommodates both the variable motif sequence composition and the extensive contraction/expansion of repeat modules within the CagYrpt2 region.  相似文献   

14.
Protein-protein interactions among Helicobacter pylori cag proteins   总被引:4,自引:0,他引:4       下载免费PDF全文
Many Helicobacter pylori isolates contain a 40-kb region of chromosomal DNA known as the cag pathogenicity island (PAI). The risk for development of gastric cancer or peptic ulcer disease is higher among humans infected with cag PAI-positive H. pylori strains than among those infected with cag PAI-negative strains. The cag PAI encodes a type IV secretion system that translocates CagA into gastric epithelial cells. To identify Cag proteins that are expressed by H. pylori during growth in vitro, we compared the proteomes of a wild-type H. pylori strain and an isogenic cag PAI deletion mutant using two-dimensional difference gel electrophoresis (2D-DIGE) in multiple pH ranges. Seven Cag proteins were identified by this approach. We then used a yeast two-hybrid system to detect potential protein-protein interactions among 14 Cag proteins. One heterotypic interaction (CagY/7 with CagX/8) and two homotypic interactions (involving H. pylori VirB11/ATPase and Cag5) were similar to interactions previously reported to occur among homologous components of the Agrobacterium tumefaciens type IV secretion system. Other interactions involved Cag proteins that do not have known homologues in other bacterial species. Biochemical analysis confirmed selected interactions involving five of the proteins that were identified by 2D-DIGE. Protein-protein interactions among Cag proteins are likely to have an important role in the assembly of the H. pylori type IV secretion apparatus.  相似文献   

15.
16.
Chronic infection with the human bacterial pathogen Helicobacter pylori causes gastritis and predisposes carriers to an increased gastric cancer risk. Consequently, H. pylori-specific vaccination is widely viewed as a promising strategy of gastric cancer prevention. H. pylori strains harboring the Cag pathogenicity island (PAI) are associated with particularly unfavorable disease outcomes in humans and experimental rodent models. We show in this study using a C57BL/6 mouse model of Cag-PAI(+) H. pylori infection that the only known protein substrate of the Cag-PAI-encoded type IV secretion system, the cytotoxin-associated gene A (CagA) protein, harbors MHC class II-restricted T cell epitopes. Several distinct nonoverlapping epitopes in CagA's central and C-terminal regions were predicted in silico and could be confirmed experimentally. CagA(+) infection elicits CD4(+) T cell responses in mice, which are strongly enhanced by prior mucosal or parenteral vaccination with recombinant CagA. The adoptive transfer of CagA-specific T cells to T cell-deficient, H. pylori-infected recipients is sufficient to induce the full range of preneoplastic immunopathology. Similarly, immunization with a cholera toxin-adjuvanted, CagA(+) whole-cell sonicate vaccine sensitizes mice to, rather than protects them from, H. pylori-associated gastric cancer precursor lesions. In contrast, H. pylori-specific tolerization by neonatal administration of H. pylori sonicate in conjunction with a CD40L-neutralizing Ab prevents H. pylori-specific, pathogenic T cell responses and gastric immunopathology. We conclude that active tolerization may be superior to vaccination strategies in gastric cancer prevention.  相似文献   

17.
The type III secretion system (TTSS) proteins form a needle-like structure injecting effector proteins into eukaryotic target cells. Although the TTSS forms an important pathway for bacterium-host interaction, its assembly process in vivo is poorly understood. The process is thought to include the opening of a pore before TTSS proteins are inserted into the bacterial cell wall. The proteins that break the bacterial cell wall have not yet been identified. We hypothesize that a hypersensitive response and pathogenicity (hrp) gene functions to digest the bacterial cell wall because it contains a conserved protein sequence similar to lytic transglycosylase. In this study, we cloned hrp-associated 2 (hpa2) genes from the bacteria Xanthomonas oryzae pathovars. We show in vitro that expressed Hpa2 protein has a lytic activity against bacterial cell walls. The analysis of a loss-of-function mutant of the hpa2 gene suggests that the hpa2 affects bacterial proliferation in host plants and a hypersensitive response in nonhost plants. As this is the first of such enzyme activity identified in the Hrp protein family, we speculate that the Hpa2 contributes to the assembly of the TTSS by enlarging gaps in the peptidoglycan meshwork of bacterial cell walls.  相似文献   

18.
To develop an oral vaccine against Helicobacter pylori infection, we have expressed the H. pylori cag12 (HP0532) gene, encoding the outer membrane protein Cag12 (31 kDa), in a live delivery vehicle Lactococcus lactis. The cag12 gene was amplified by polymerase chain reaction (PCR) using the genomic DNA of H. pylori K51 isolated from Korean patients. DNA sequence analysis revealed that the cag12 gene of H. pylori K51 has 98.1 and 97.4% identity with individual cag12 genes of the H. pylori 26695 and J99, respectively. The GST–Cag12 fusion protein, produced using the Escherichia coli expression system, was used to raise a rat polyclonal anti-Cag12 antibody. The PCR-amplified cag12 gene of H. pylori K51 was cloned in the E. coliL. lactis shuttle vector (pMG36e) and transformed into L. lactis. Western blot analysis demonstrated that the Cag12 protein was expressed in the L. lactis transformant, with a maximum level at the log phase without extracelluar secretion. The oral administration of the transformant into mice resulted in the generation of the anti-Cag12 antibody in serum in two out of five cases. These results suggest that the recombinant L. lactis, which expresses Cag12, may be applicable as an oral vaccine to induce protective immunity against H. pylori.  相似文献   

19.
Helicobacter pylori (H. pylori) causes chronic inflammation which is a key precursor to gastric carcinogenesis. It has been suggested that H. pylori may limit this immunopathology by inducing the production of interleukin 33 (IL‐33) in gastric epithelial cells, thus promoting T helper 2 immune responses. The molecular mechanism underlying IL‐33 production in response to H. pylori infection, however, remains unknown. In this study, we demonstrate that H. pylori activates signalling via the pathogen recognition molecule Nucleotide‐Binding Oligomerisation Domain‐Containing Protein 1 (NOD1) and its adaptor protein receptor‐interacting serine–threonine Kinase 2, to promote production of both full‐length and processed IL‐33 in gastric epithelial cells. Furthermore, IL‐33 responses were dependent on the actions of the H. pylori Type IV secretion system, required for activation of the NOD1 pathway, as well as on the Type IV secretion system effector protein, CagA. Importantly, Nod1+/+ mice with chronic H. pylori infection exhibited significantly increased gastric IL‐33 and splenic IL‐13 responses, but decreased IFN‐γ responses, when compared with Nod1?/? animals. Collectively, our data identify NOD1 as an important regulator of mucosal IL‐33 responses in H. pylori infection. We suggest that NOD1 may play a role in protection against excessive inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号